Skip to main content

Y900003 (Isis 3521) and G3139 (Genasense; Oblimersen)

Phosphorothioate Antisense Oligonucleotides With Pleiotropic Mechanisms of Action

  • Chapter
Nucleic Acid Therapeutics in Cancer

Abstract

The chemical synthesis of stereorandom phosphorothioate oligodeoxynucleotides (ODN) was first performed in 1984 by Wojciech Stec and his colleagues (1,2). Ever since, these molecules have essentially formed one of the most important elements of antisense oligonucleotide (asON) biotechnology. Several of these constructs have relatively recently entered phase II and even phase III clinical therapeutic trials for cancer indications, with encouraging preliminary results (3–5). In fact, the single Food and Drug Administrationapproved asON drug, Vitravene (for cytomegalovirus retinitis), is a phosphorothioate ODN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guga P, Koziolkiewicz M, Okruszek A, Stec W. Oligo(nucleoside phosphorothioate). In: Stein CA, Krieg A, eds., Applied Antisense Oligonucleotide Technology. New York: Wiley Liss 1998:23–50.

    Google Scholar 

  2. Stec W, Zon G, Egan W, Stec B. Automated solid-phase synthesis, separation, and stereochemistry of phosphorothioate analogues of oligodeoxyribonucleotides. J Am Chem Soc 1984; 106:6077–6080.

    Article  CAS  Google Scholar 

  3. Jansen B, Wacheck V, Heere-Ress E, et al. Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 2000; 356:1728–1733.

    Article  PubMed  CAS  Google Scholar 

  4. Yuen AR, Halsey J, Fisher GA, et al. Phase I study of an antisense oligonucleotide to protein kinase C-alpha (ISIS 3521/CGP 64128A) in patients with cancer. Clin Cancer Res 1999; 5:3357–3363.

    PubMed  CAS  Google Scholar 

  5. Jansen B, Schlagbauer-Wadl H, Brown BD, et al. bc-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat Med 1998; 4:232–234.

    Article  PubMed  CAS  Google Scholar 

  6. Lebedeva I, Stein CA. Antisense oligonucleotides: promise and reality. Annu Rev Pharmacol Toxicol 2001; 41:403–419.

    Article  PubMed  CAS  Google Scholar 

  7. Stein CA. The experimental use of antisense oligonucleotides: a guide for the perplexed. J Clin Invest 2001; 108:641–644.

    PubMed  CAS  Google Scholar 

  8. Koziolkiewicz M, Gendaszewska E, Maszewska M, Stein CA, Stec WJ. The mononucleotidedependent. nonantisense mechanism of action of phosphodiester and phosphorothioate oligonucleotides depends upon the activity of an ecto-5′-nucleotidase. Blood 2001; 98:995–1002.

    Article  PubMed  CAS  Google Scholar 

  9. Eder PS, DeVine RJ, Dagle JM, Walder JA. Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′ exonuclease in plasma. Antisense Res Dev 1991; 1:141–151.

    PubMed  CAS  Google Scholar 

  10. Stein CA, Subasinghe C, Shinozuka K, Cohen JS. Physicochemical properties of phosphorothioate oli2odeoxvnucleotides. Nucleic Acids Res 1988; 16:3209–3221.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang H, Cook J, Nickel J, et al. Reduction of liver Fas expression by an antisense oligonucleotide protects mice from fulminant hepatitis. Nat Biotechnol 2000; 18:862–867.

    Article  PubMed  CAS  Google Scholar 

  12. Benimetskaya L, Miller P, Benimetsky S, et al. Inhibition of potentially anti-apoptotic proteins by antisense protein kinase C-alpha (Isis 3521) and antisense bc-2 (G3139) phosphorothioate oligodeoxynucleotides: relationship to the decreased viability of T24 bladder and PC3 prostate cancer cells. Mol Pharmacol 2001; 60:1296–1307.

    PubMed  CAS  Google Scholar 

  13. Lesser DR, Grajkowski A, Kurpiewski MR, Koziolkiewicz M, Stec WJ, Jen-Jacobson L. Stereoselective interaction with chiral phosphorothioates at the central DNA kink of the EcoRI endonuclease-GAATTC complex. J Biol Chem 1992; 267:24810–24818.

    PubMed  CAS  Google Scholar 

  14. Marcus-Sekura CJ, Woerner AM, Shinozuka K, Zon G, Quinnan GV, Jr. Comparative inhibition of chloramphenicol acetyltransferase gene expression by antisense oligonucleotide analogues having alkyl phosphotriester, methylphosphonate and phosphorothioate linkages. Nucleic Acids Res 1987; 15:5749–5763.

    Article  PubMed  CAS  Google Scholar 

  15. Gilar M, Belenky A, Budman Y, Smisek DL, Cohen AS. Impact of 3′-exonuclease stereoselectivity on the kinetics of phosphorothioate oligonucleotide metabolism. Antisense Nucleic Acid Drug Dey 1998; 8:35–42.

    Article  CAS  Google Scholar 

  16. Koziolkiewicz M, Wojcik M, Kobylanska A, et al. Stability of stereoregular oligo(nucleoside phosphorothioate)s in human plasma: diastereoselectivity of plasma 3′-exonuclease. Antisense Nucleic Acid Drug Dey 1997; 7:43–48.

    Article  CAS  Google Scholar 

  17. Stec WJ, Grajkowski A, Koziolkiewicz M, Uznanski B. Novel route to oligo(deoxyribonucleoside phosphorothioates). Stereocontrolled synthesis of P-chiral oligo(deoxyribonucleoside phosphorothioates). Nucleic Acids Res 1991; 19:5883–5888.

    Article  PubMed  CAS  Google Scholar 

  18. Wilk A, Grajkowski A, Bull TE, Dixon AM, Freedberg DI, Beaucage SL. Direct assignment of the absolute configuration of a distinct class of deoxyribonucleoside cyclic N-acylphosphoramidites at phosphorus by M- GOESY nuclear magnetic resonance spectroscopy. J Am Chem Soc 2002; 124:1180–1181.

    Article  PubMed  CAS  Google Scholar 

  19. Stec W, Karwowski B, Boczkowska M, et al. Deoxyribonucleoside 3′-O-(2-thio-and 3′O-(2oxo “spiro”-4,4-pentamethylene-1,3,2-oxathiaphospholane)s: monomers for stereocontrolled synthesis of oligo(deoxyribonucleoside phosphorothioate)s and chimeric PS/PO oligonucleotides. J Am Chem Soc 1998; 120:7156–7167.

    Article  CAS  Google Scholar 

  20. Fennewald SM, Rando RF. Inhibition of high affinity basic fibroblast growth factor binding by oligonucleotides. J Biol Chem 1995; 270:21718–21721.

    Article  PubMed  CAS  Google Scholar 

  21. Guvakova MA, Yakubov LA, Vlodavsky I, Tonkinson JL, Stein CA. Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J Biol Chem 1995; 270:2620–2627.

    Article  PubMed  CAS  Google Scholar 

  22. Rockwell P, O’Connor WJ, King K, Goldstein NI, Zhang LM, Stein CA. Cellsurface perturbations of the epidermal growth factor and vascular endothelial growth factor receptors by phosphorothioate oligodeoxynucleotides. Proc Natl Acad Sci USA 1997; 94:6523–6528.

    Article  PubMed  CAS  Google Scholar 

  23. Khaled Z, Benimetskaya L, Zeltser R, et al. Multiple mechanisms may contribute to the cellular anti-adhesive effects of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 1996; 24:737–745.

    Article  PubMed  CAS  Google Scholar 

  24. Nakajima M, DeChavigny A, Johnson CE, Hamada J, Stein CA, Nicolson GL. Suramin. A potent inhibitor of melanoma heparanase and invasion. J Biol Chem 1991; 266:9661–9666.

    PubMed  CAS  Google Scholar 

  25. Miao HQ, Elkin M, Aingorn E, Ishai-Michaeli R, Stein CA, Vlodavsky I. Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phosphorothioate oligodeoxynucleotides. Int J Cancer 1999; 83:424–431.

    Article  PubMed  CAS  Google Scholar 

  26. Khaled Z, Rideout D, O’Driscoll KR, et al. Effects of suramin-related and other clinically therapeutic polyanions on protein kinase C activity. Clin Cancer Res 1995; 1:113–122.

    PubMed  CAS  Google Scholar 

  27. Benimetskaya L, Tonkinson JL, Koziolkiewicz M, et al. Binding of phosphorothioate oligodeoxynucleotides to basic fibroblast growth factor, recombinant soluble CD4, laminin and fibronectin is P- chirality independent. Nucleic Acids Res 1995; 23:4239–4245.

    Article  PubMed  CAS  Google Scholar 

  28. Gao WY, Han FS, Storm C, Egan W, Cheng YC. Phosphorothioate oligonucleotides are inhibitors of human DNA polymerases and RNase H: implications for antisense technology. Mol Pharmacol 1992; 41:223–229.

    PubMed  CAS  Google Scholar 

  29. Perez JR, Li Y, Stein CA, Majumder S, van Oorschot A, Narayanan R. Sequence-independent induction of Spi transcription factor activity by phosphorothioate oligodeoxynucleotides. Proc Natl Acad Sci U S A 1994; 91:5957–5961.

    Article  PubMed  CAS  Google Scholar 

  30. Stein CA, Krieg AM. Problems in interpretation of data derived from in vitro and in vivo use of antisense oligodeoxynucleotides. Antisense Res Dey 1994; 4:67–69.

    CAS  Google Scholar 

  31. Stein CA, Neckers LM, Nair BC, Mumbauer S, Hoke G, Pal R. Phosphorothioate oligodeoxycytidine interferes with binding of HIV-1 gp120 to CD4. J Acquir Immune Defic Syndr 1991; 4:686–693.

    PubMed  CAS  Google Scholar 

  32. Gao WY, Stein CA, Cohen JS, Dutschman GE, Cheng YC. Effect of phosphorothioate homooligodeoxynucleotides on herpes simplex virus type 2-induced DNA polymerase. J Biol Chem 1989; 264:11521–11526.

    PubMed  CAS  Google Scholar 

  33. Stein CA. Is irrelevant cleavage the price of antisense efficacy? Pharmacol Ther 2000; 85:231–236.

    Article  PubMed  CAS  Google Scholar 

  34. Giles RV, Tidd DM. Increased specificity for antisense oligodeoxynucleotide targeting of RNA cleavage by RNase H using chimeric methylphosphonodiester/phosphodiester structures. Nucleic Acids Res 1992a; 20:763–770.

    Article  CAS  Google Scholar 

  35. Giles RV, Tidd DM. Enhanced RNase H activity with methylphosphonodiester/phosphodiester chimeric antisense oligodeoxynucleotides. Anticancer Drug Des 1992b; 7:37–48.

    CAS  Google Scholar 

  36. Walder RY, Walder JA. Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc Natl Acad Sci USA 1988; 85:5011–5015.

    Article  PubMed  CAS  Google Scholar 

  37. Minshull J, Hunt T. The use of single-stranded DNA and RNase H to promote quantitative ‘hybrid arrest of translation’ of mRNA/DNA hybrids in reticulocyte lysate cell-free translations. Nucleic Acids Res 1986; 14:6433–6451.

    Article  PubMed  CAS  Google Scholar 

  38. Cazenave C, Loreau N, Thuong NT, Toulme JJ, Helene C. Enzymatic amplification of translation inhibition of rabbit beta-globin mRNA mediated by anti-messenger oligodeoxynucleotides covalently linked to intercalating agents. Nucleic Acids Res 1987; 15:4717–4736.

    Article  PubMed  CAS  Google Scholar 

  39. Monia BP, Lesnik EA, Gonzalez C, et al. Evaluation of 2′-modified oligonucleotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem 1993; 268:14514–14522.

    PubMed  CAS  Google Scholar 

  40. Mir KU, Southern EM. Determining the influence of structure on hybridization using oligonucleotide arrays. Nat Biotechnol 1999; 17:788–792.

    Article  PubMed  CAS  Google Scholar 

  41. Dean NM, McKay R. Inhibition of protein kinase C-alpha expression in mice after systemic administration of phosphorothioate antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 1994; 91:11762–11766.

    Article  PubMed  CAS  Google Scholar 

  42. Dean NM, McKay R, Condon TP, Bennett CF. Inhibition of protein kinase C-alpha expression in human A549 cells by antisense oligonucleotides inhibits induction of intercellular adhesion molecule 1 (ICAM-1) mRNA by phorbol esters. J Biol Chem 1994; 269:16416–16424.

    PubMed  CAS  Google Scholar 

  43. Benimetskaya L, Takle GB, Vilenchik M, Lebedeva I, Miller P, Stein CA. Cationic porphyrins: novel delivery vehicles for antisense oligodeoxynucleotides. Nucleic Acids Res 1998; 26:5310–5317.

    Article  PubMed  CAS  Google Scholar 

  44. Gee JE, Robbins I, van der Laan AC, et al. Assessment of high-affinity hybridization, RNase H cleavage, and covalent linkage in translation arrest by antisense oligonucleotides. Antisense Nucleic Acid Drug Dey 1998; 8:103–111.

    Article  CAS  Google Scholar 

  45. Heidenreich O, Gryaznov S, Nerenberg M. RNase IH-independent antisense activity of oligonucleotide N3 -> P5 phosphoramidates. Nucleic Acids Res 1997; 25:776–780.

    Article  PubMed  CAS  Google Scholar 

  46. Furdon PJ, Dominski Z, Kole R. RNase H cleavage of RNA hybridized to oligonucleotides containing methylphosphonate, phosphorothioate and phosphodiester bonds. Nucleic Acids Res 1989: 17:9193–9204.

    Article  PubMed  CAS  Google Scholar 

  47. Giles RV, Spiller DG, Grzybowski J, Clark RE, Nicklin P, Tidd DM. Selecting optimal oligonucleotide composition for maximal antisense effect following streptolysin 0-mediated delivery into human leukaemia cells. Nucleic Acids Res 1998; 26:1567–1575.

    Article  PubMed  CAS  Google Scholar 

  48. Bonham MA, Brown S, Boyd AL, et al. An assessment of the antisense properties of RNase H-competent and steric-blocking oligomers. Nucleic Acids Res 1995; 23:1197–1203.

    Article  PubMed  CAS  Google Scholar 

  49. Chiang MY, Chan H, Zounes MA, Freier SM, Lima WF, Bennett CF. Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem 1991; 266:18162–18171.

    PubMed  CAS  Google Scholar 

  50. Liebhaber SA, Cash FE, Shakin SH. Translationally associated helix-destabilizing activity in rabbit reticulocyte lysate. J Biol Chem 1984; 259:15597–15602.

    PubMed  CAS  Google Scholar 

  51. Dias N, Dheur S, Nielsen PE, et al. Antisense PNA tridecamers targeted to the coding region of Ha-ras mRNA arrest polypeptide chain elongation. J Mol Biol 1999; 294:403–416.

    Article  PubMed  CAS  Google Scholar 

  52. Baker BF, Lot SS, Condon TP, et al. 2′-0-(2-Methoxy)ethyl-modified anti-intercellular adhesion molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells. J Biol Chem 1997; 272:11994–2000.

    Article  PubMed  CAS  Google Scholar 

  53. Gray GD, Basu S, Wickstrom E. Transformed and immortalized cellular uptake of oligodeoxynucleoside phosphorothioates, 3′-alkylamino oligodeoxynucleotides, 2′-0-methyl oligoribonucleotides, oligodeoxynucleoside methylphosphonates, and peptide nucleic acids. Biochem Pharmacol 1997; 53:1465–1476.

    Article  PubMed  CAS  Google Scholar 

  54. Braasch DA, Corey DR. Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol 2001; 8:1–7.

    Article  PubMed  CAS  Google Scholar 

  55. Koshkin AA, Singh SK, Nielsen PE, et al. LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation and unprecedented nucleic acid recognition. Tetrahedron 1998; 54:3607–3630.

    Article  CAS  Google Scholar 

  56. Shen LX, Kandimalla ER, Agrawal S. Impact of mixed-backbone oligonucleotides on target binding affinity and target cleaving specificity and selectivity by Escherichia coli RNase H. Bioorg Med Chem 1998; 6:1695–1705.

    Article  PubMed  CAS  Google Scholar 

  57. Agrawal S, Jiang Z, Zhao Q, et al. Mixed-backbone oligonucleotides as second generation antisense oligonucleotides: in vitro and in vivo studies. Proc Natl Acad Sci USA 1997; 94:2620–2625.

    Article  PubMed  CAS  Google Scholar 

  58. Giles RV, Ruddell CJ, Spiller DG, Green JA, Tidd DM. Single base discrimination for ribonuclease H-dependent antisense effects within intact human leukaemia cells. Nucleic Acids Res 1995; 23:954–961.

    Article  PubMed  CAS  Google Scholar 

  59. Larrouy B, Boiziau C, Sproat B, Toulme JJ. RNase H is responsible for the non-specific inhibition of in vitro translation by 2′-0-alkyl chimeric oligonucleotides: high affinity or selectivity, a dilemma to design antisense oligomers. Nucleic Acids Res 1995; 23:3434–3440.

    Article  PubMed  CAS  Google Scholar 

  60. Ma M, Benimetskaya L, Lebedeva I, Dignam J, Takle G, Stein CA. Intracellular mRNA cleavage induced through activation of RNase P by nuclease-resistant external guide sequences. Nat Biotechnol 2000; 18:58–61.

    Article  PubMed  CAS  Google Scholar 

  61. Ma MY, Jacob-Samuel B, Dignam JC, Pace U, Goldberg AR, George ST. Nuclease-resistant external guide sequence-induced cleavage of target RNA by human ribonuclease P. Antisense Nucleic Acid Drug Dey 1998; 8:415–426.

    Article  CAS  Google Scholar 

  62. Altman S. RNA enzyme-directed gene therapy. Proc Natl Acad Sci USA 1993; 90:10898–10900.

    Article  PubMed  CAS  Google Scholar 

  63. Forster AC, Altman S. External guide sequences for an RNA enzyme. Science 1990; 249:783–786.

    Article  PubMed  CAS  Google Scholar 

  64. Yuan Y, Hwang ES, Altman S. Targeted cleavage of mRNA by human RNase P. Proc Nat1 Acad Sci USA 1992: 89:8006–8010.

    Article  CAS  Google Scholar 

  65. Evans TL, Lynch TI, Jr. Lung cancer. Oncologist 2001; 6:407–414.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stein, C.A., Dias, N., Benimetskaya, L., Jepsen, J.S., Lai, J.C.H., Raffo, A.J. (2004). Y900003 (Isis 3521) and G3139 (Genasense; Oblimersen). In: Gewirtz, A.M. (eds) Nucleic Acid Therapeutics in Cancer. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-777-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-777-2_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9858-5

  • Online ISBN: 978-1-59259-777-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics