Skip to main content

Antisense Methodology

An Assessment After 25 Years

  • Chapter
Nucleic Acid Therapeutics in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 120 Accesses

Abstract

The original concept for antisense methodology for the sequence-dependent inhibition of gene expression was remarkably simple. An oligonucleotide (ODN) complementary to a region of an mRNA to form a complex should prevent the ribosome from traveling along the message and thus prevent translation (1) . Now, with 25 years of experience, we realize that we have overlooked a fair number of problems associated with this strategy. However, this time has not been wasted, as it has given us insight into questions that were not anticipated. Therefore the development of the strategy was, and probably still is, an interesting and challenging learning process. The literature of the antisense field is immense, and many reviews have dealt with the potential for application and the difficulties encountered (2–6). This chapter briefly discusses the areas where progress has been made over the years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and transformation by a specific oligonucleotide. Proc Natl Acad Sci USA 1978; 75:285–288.

    Article  PubMed  Google Scholar 

  2. Cook ST. (ed.) Antisense drug technology: Principles, strategies, and application. Marcel Dekker, New York, 2001.

    Google Scholar 

  3. Tamm I, Dörken B, Hartmann G. Antisense therapy in oncology: new hope for an old idea? Lancet 2002; 358:489–497.

    Article  Google Scholar 

  4. Lebedeva I, Stein CA. Antisense oligonucleotides: promise and reality. Annu Rev Pharmacol Toxicol 2001; 41:403–419.

    Article  PubMed  CAS  Google Scholar 

  5. Agrawal S, Kandimalla ER. Antisense and/or immunostimulatory oligonucleotide therapeutics. Curr Cancer Drug Targets 2001; 1:197–209.

    Article  PubMed  CAS  Google Scholar 

  6. Gewirtz A. Suppression of gene expression by targeted disruption of messenger RNA: Available options and current strategies. Stem Cells 2000; 18:307–319.

    Google Scholar 

  7. Kvaerno L, Wengel J. Antisense molecules and furanose conformations—is it really that simple? Chem Commun 2001;1419–1424.

    Google Scholar 

  8. Eckstein F. Nucleoside phosphorothioates. Annu Rev Biochem 1985; 54:367–402.

    Article  PubMed  CAS  Google Scholar 

  9. Verma S, Eckstein F. Modified oligonucleotides: Synthesis and strategy for users. Annu Rev Biochem 1998; 67:99–134.

    Article  PubMed  CAS  Google Scholar 

  10. Stec WJ, Cierniewski CS, Okruszek A, et al. Stereodependent inhibition of plasminogen activator inhibitor type 1 by phosphorothioate oligonucleotides: Proof of sequence specificity in cell culture and in vivo rat experiments. Antisense & Nucleic Acid Drug Dev 1997; 7:57–573.

    Google Scholar 

  11. Thoma C, Hasselblatt P, Köck J, et al. Generation of stable mRNA fragments and translation of N-truncated proteins induced by antisense oligodeoxynucleotides. Mol Cell 2001; 8:865–872.

    Article  PubMed  CAS  Google Scholar 

  12. Matsukura M, Shinozuka K, Zon G, et al. Phosphorothioate analogues of oligodeoxy-nucleotides: Inhibitors of replication and cytopathic effects of human immunodeficiency virus. Proc Natl Acad Sci USA 1987; 84:7706–7710.

    Article  PubMed  CAS  Google Scholar 

  13. Agrawal S, Goodchild J, Civeira MP, Thornton AH, Sarin PS, Zamecnik PC. Oligodeoxynucleoside phosphoramidates and phosphorothioates as inhibitors of human immunodeficiency virus. Proc Natl Acad Sci USA 1988; 85:7079–7083.

    Article  PubMed  CAS  Google Scholar 

  14. Eckstein F. Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense & Nucleic Acid Drug Devel 2000; 10:117–121.

    Article  CAS  Google Scholar 

  15. Brautigam CA, Steitz TA. Structural principles for the inhibition of the 3’-5’ exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. J Mol Biol 1998; 277:363–377.

    Article  PubMed  CAS  Google Scholar 

  16. Waters JS, Webb A, Cunningham D, et al. Phase I clinical and pharmacokinetic study of bcl2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma. J Clin Oncol 2000; 18: 1812–1823.

    PubMed  CAS  Google Scholar 

  17. Monia BP, Lesnik EA, Gonzalez C, et al. Evaluation of 2’-modified oligonucleotides containing 2’-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem 1993; 268:14514–14522.

    PubMed  CAS  Google Scholar 

  18. Ruskowski M, Qu T, Roskey A, Agrawal S. Biodistribution and metabolism of a mixed backbone oligonucleotide (GEM 231) following single and multiple dose administration in mice. Antisense & Nucleic Acid Drug Dev 2000; 10:333–345.

    Article  Google Scholar 

  19. Zhang H, Cook J, Nickel J, et al. Reduction of liver Fas expression by an antisense oligonucleotide protects mice from fulminant hepatitis. Nature Biotechnol 2000; 18:862–867.

    Article  CAS  Google Scholar 

  20. Wahlestedt C, Salmi P, Good L, et al. Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci USA 2000; 97:5633–5638.

    Article  PubMed  CAS  Google Scholar 

  21. Verbeure B, Lescrinier E, Wang J, Herdewijn P. RNase H mediated cleavage of RNA by cyclohexene nucleic acid (CeNA). Nucleic Acids Res 2001; 29:4941–4947.

    Article  PubMed  CAS  Google Scholar 

  22. Wilds CJ, Damha MJ. 2’-Deoxy-2’-fluoro-ß-D-arabinonucleosides and oligonucleotides (2’FANA): synthesis and physicochemical studies. Nucleic Acids Res 2000; 28:3625–3635.

    Article  PubMed  CAS  Google Scholar 

  23. Gryaznov SM. Oligonucleotide N3’-P5 phosphoramidates as potential therapeutic agents. Biochim Biophys Acta 1999; 1489:131–140.

    Article  PubMed  CAS  Google Scholar 

  24. Nielsen PE. Peptide nucleic acids as therapeutic agents. Curr Opin Struct Biol 1999; 9:353–357.

    Article  PubMed  CAS  Google Scholar 

  25. Hudziak RM, Summerton J, Weller DD, Iversen PL. Antiproliferative effects of steric blocking phosphordiamidate morpholino antisense agents directed against c-myc. Antisense & Nucleic Acid Drug Dev 2000; 10:163–176.

    Article  CAS  Google Scholar 

  26. Eriksson M, Nielsen PE, Good L. Cell permeabilization and uptake of antisense peptidenucleic acid (PNA) into Escherichia coli. J Biol Chem 2002; 277:7144–7147.

    Article  PubMed  CAS  Google Scholar 

  27. Zangemeister-Wittke U, Leech SH, Olie RA, et al. A novel bispecific antisense oligonucleotide inhibiting both bc1–2 and bc1-xL expression efficiently induces apoptosis in tumor cells. Clin Cancer Res 2000; 6:2547–2555.

    PubMed  CAS  Google Scholar 

  28. Jansen B, Wacheck V, Heere-Ress E, et al. Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 2000; 356:1728–1733.

    Article  PubMed  CAS  Google Scholar 

  29. Yuen AR, Halsey J, Fisher GA, et al. Phase I clinical study of an antisense oligonucleotide to protein kinase C-α (ISIS 3521/CGP 64128A) in patients with cancer. Clin Cancer Res 1999; 5:3357–3363.

    PubMed  CAS  Google Scholar 

  30. Krieg A. From bugs to drugs: therapeutic immunomodulation with oligodeoxynucleotides containing CpG sequences from bacterial DNA. Antisense & Nucleic Acid Drug Devel 2001; 11:181–188.

    Article  CAS  Google Scholar 

  31. Peyman A, Helsberg M, Kretzschmar G, Mag M, Grabley S, Uhlmann E. Inhibition of viral growth by antisense oligonucleotides directed against the IE110 and the UL mRNA of Herpes Simplex virus type-1. Biol Chem Hoppe-Seyler 1995; 376:195–198.

    Article  PubMed  CAS  Google Scholar 

  32. Monia BP, Johnston JF, Geiger T, Muller M, Fabbro D. Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Medicine 1996; 2:669–675.

    Google Scholar 

  33. Ho SP, Bao Y, Lesher T, et al. Mapping of RNA accessible sites for antisense experiment with oligonucleotide libraries. Nat. Biotechnol. 1998: 16:59–63.

    Article  PubMed  CAS  Google Scholar 

  34. Birikh KR, Berlin YA, Soreq H, Eckstein F. Probing accessible sites for ribozymes on human acetylcholinesterase RNA. RNA 1997; 3:429–437.

    PubMed  CAS  Google Scholar 

  35. Scherr M, Rossi JJ, Sczakiel G, Patzel V. RNA accessibility prediction: a theoretical approach is consistent with experimental studies in cell extracts. Nucleic Acids Res 2000; 28:2455–2461.

    Article  PubMed  CAS  Google Scholar 

  36. Sohail M, Hochegger H, Klotzbücher A, et al. Antisense oligonucleotides selected by hybridization to scanning arrays are effective reagents in vivo. Nucleic Acids Res 2001; 29:2041–2051.

    Article  PubMed  CAS  Google Scholar 

  37. Vickers TA, Wyatt JR, Freier SM. Effects of RNA secondary structure on cellular antisense activity. Nucleic Acids Res 2000; 28:1340–1347.

    Article  PubMed  CAS  Google Scholar 

  38. Bramlage B, Eckstein F. The hammerhead ribozyme. Biopolymers (Nucleic Acid Sciences) 2001; 52:147–154.

    Google Scholar 

  39. Pavco PA, Bouhana KS, Gallegos AM, et al. Antitumor and antimetastatic activity of ribozymes targeting the messenger RNA of vascular endothelial growth factor receptors. Clinical Cancer Res 2000; 6:2094–2103.

    CAS  Google Scholar 

  40. Rossi JJ. Therapeutic ribozymes. BioDrugs 1998; 1:1–10.

    Article  Google Scholar 

  41. Santoro SW, Joyce GF. A general-purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 1997; 94:4262–4266.

    Article  PubMed  CAS  Google Scholar 

  42. Kurreck J, Bieber B, Jahnel R, Erdmann VA. Comparative study of DNA enzymes and ribozymes against the same full length messenger RNA of the vanilloid receptor. J Biol Chem 2002;277:7099–7107.

    Article  PubMed  CAS  Google Scholar 

  43. Santoro SW, Joyce GF, Sakthivel K, Gramatikova S, Barbas CF. RNA cleavage by a DNA enzyme with extended chemical functionality. J Am Chem Soc 2000; 122:2433–2439.

    Article  PubMed  CAS  Google Scholar 

  44. Santiago FS, Lowe HC, Kavurma MM, et al. New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury. Nat Medicine 1999; 11:1264–1269.

    Article  Google Scholar 

  45. Warashina M, Kuwabara T, Nakamatsu Y, Taira K. Extremely high and specific activity of DNA enzymes in cells with a Philadelphia chromosome. Chem Biol 1999; 6:237–250.

    Article  PubMed  CAS  Google Scholar 

  46. Sioud M, Leirdal M. Design of nuclease resistant protein kinase Ca DNA enzymes with potential therapeutic application. J Mol Biol 2000; 296:937–947.

    Article  PubMed  CAS  Google Scholar 

  47. Elbashir SM, Harborth J, Lendecke W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411:494–498.

    Article  PubMed  CAS  Google Scholar 

  48. Lipardi C., Wie Q, Paterson BM. RNAi as random degradative PCR: siRNA primers concert mRNA into dsRNA that are degraded to generate new siRNAs. Cell 2001; 107:297–307.

    Article  PubMed  CAS  Google Scholar 

  49. Paddison PJ, Caudy AA, Hannon GJ. Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci USA 2002; 99:1443–1448.

    Article  PubMed  CAS  Google Scholar 

  50. Dove A. Antisense and sensibility. Nat Biotechnol 2002; 20:21–124.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eckstein, F. (2004). Antisense Methodology. In: Gewirtz, A.M. (eds) Nucleic Acid Therapeutics in Cancer. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-777-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-777-2_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9858-5

  • Online ISBN: 978-1-59259-777-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics