Skip to main content

Clinical Approaches to Discovering and Testing New Breast Cancer Prevention Drugs

  • Chapter
Cancer Chemoprevention

Abstract

It was estimated that 211,000 women would be diagnosed with invasive breast cancer and 47,000 diagnosed with ductal carcinoma in situ (DCIS) in 2003 (1). Furthermore, more than 39,000 women were expected to die from breast cancer in that year (1). Approximately 70% of these cancers were anticipated to be estrogen receptor (ER)-positive (2). If a proportion of those tumors could be prevented, morbidity resulting from surgery, radiation, and chemotherapy, as well as breast cancer-related mortality, could be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cancer Facts & Figures 2003. American Cancer Society, Atlanta, 2003.

    Google Scholar 

  2. Osborne CK, Yochmowitz MG, Knight WA 3rd, McGuire WL. The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer 1980;46(Suppl):2884–2888.

    Article  PubMed  CAS  Google Scholar 

  3. Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for prevention of breast cancer: Report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 1998;90:1371–1388.

    Article  PubMed  CAS  Google Scholar 

  4. Gail MH, Briton LA, Byar DP, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 1989;81:1879–1886.

    Article  PubMed  CAS  Google Scholar 

  5. King M-C, Wieand S, Hale K, et al. Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2. JAMA 2001;286:2251–2256.

    Article  PubMed  CAS  Google Scholar 

  6. Freedman AN, Graubard BI, Rao SR, et al. Estimates of the number of US women who could benefit from tamoxifen for breast cancer chemoprevention. J Natl Cancer Inst 2003;95:526–532.

    PubMed  CAS  Google Scholar 

  7. Gail MH, Costantino JP, Bryant J, et al. Weighing the risks and benefits of tamoxifen treatment for preventing breast cancer. J Natl Cancer Inst 1999;91:1829–1846.

    Article  PubMed  CAS  Google Scholar 

  8. Rockhill B, Spiegelman D, Byrne C, et al. Validation of the Gail et al. model of breast cancer risk prediction and implications for chemoprevention. J Natl Cancer Inst 2001;93:358–366.

    Article  PubMed  CAS  Google Scholar 

  9. Costantino JP, Gail MH, Pee D, et al. Validation studies for models projecting the risk of invasive and total breast cancer incidence. J Natl Cancer Inst 1999;91:1541–1548.

    Article  PubMed  CAS  Google Scholar 

  10. Kelloff GJ, Boone CW, Steele VE, et al. Mechanistic considerations in chemopreventive drug development. J Cell Biochem Suppl 1994;20:1–24.

    Article  PubMed  CAS  Google Scholar 

  11. Kelloff GJ, Boone CW, Steele VE, et al. Progress in cancer chemoprevention: perspectives on agent selection and short-term clinical intervention trials. Cancer Res 1994;54(Suppl):2015S–2024S.

    PubMed  CAS  Google Scholar 

  12. Kelloff GJ, Boone CW, Crowell JA, et al. Risk biomarkers and current strategies for cancer chemoprevention. J Cell Biochem 1996;25:1–14.

    Article  CAS  Google Scholar 

  13. O’Shaughnessy JA, Kelloff GJ, Gordon GB, et al. Treatment and prevention of intraepithelial neoplasia: an important target for accelerated new agent development. Clin Cancer Res 2002;8:314–346.

    PubMed  Google Scholar 

  14. Meijers-Heijboer H, van Geel B, van Putten WL, et al. Breast cancer after prophylactic bilateral mastectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 2001;345:159–164.

    Article  PubMed  CAS  Google Scholar 

  15. Brekelmans CT, Seynaeve C, Bartels CC, et al. Effectiveness of breast cancer surveillance in BRCA1/2 gene mutation carriers and women with high familial risk. J Clin Oncol 2001;19:924–930.

    PubMed  CAS  Google Scholar 

  16. Fisher ER, Fisher B, Sass R, Wickerham L. Pathologic findings from the National Surgical Adjuvant Breast Project (Protocol No. 4). XI. Bilateral breast cancer. Cancer 1984;54:3002–3011.

    Article  PubMed  CAS  Google Scholar 

  17. Broet P, de la Rochefordiere A, Scholl SM, et al. Contralateral breast cancer: annual incidence and risk parameters. J Clin Oncol 1995;13:1578–1583.

    PubMed  CAS  Google Scholar 

  18. Obedian E, Fischer DB, Haffty BG. Second malignancies after treatment of early-stage breast cancer: lumpectomy and radiation therapy versus mastectomy. J Clin Oncol 2000;18:2406–2412.

    PubMed  CAS  Google Scholar 

  19. Ernster VL, Wrensch MR, Petrakis NL, et al. Benign and malignant breast disease: initial study results of serum and breast fluid analyses of endogenous estrogens. J Natl Cancer Inst 1987;79:949–960.

    PubMed  CAS  Google Scholar 

  20. Page DL, Dupont WD. Anatomic markers of human pre-malignancy and risk of breast cancer. Cancer 1990;66:1326–1335.

    Article  PubMed  CAS  Google Scholar 

  21. Byrne C, Schairer C, Wolfe J, et al. Mammographic features and breast cancer risk: effects with time, age and menopause status. Natl Cancer Inst 1995;87:1622–1629.

    Article  CAS  Google Scholar 

  22. Boyd NF, Lockwood GA, Bying JW, et al. Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev 1998;7:1133–1144.

    PubMed  CAS  Google Scholar 

  23. Hankinson SE, Willett WC, Colditz GA, et al. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 1998;351:1393–1396.

    Article  PubMed  CAS  Google Scholar 

  24. Cauley JA, Lucas FL, Kuller LH, et al. Elevated serum estradiol and testosterone concentrations are associated with a high risk for breast cancer. Ann Intern Med 1999;130:270–277.

    PubMed  CAS  Google Scholar 

  25. Fabian CJ, Kimler BF, Zalles CM, et al. Short-term breast cancer prediction by random periareolar fine-needle aspiration cytology and the Gail risk model. J Natl Cancer Inst 2000;92:1217–1227.

    Article  PubMed  CAS  Google Scholar 

  26. Fabian CJ, Kimler BF. Beyond tamoxifen. New endpoints for breast cancer chemoprevention, new drugs for breast cancer prevention. Ann NY Acad Sci 2001;952:44–59.

    PubMed  CAS  Google Scholar 

  27. Evron E, Dooley WC, Umbricht CB, et al. Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet 2001;357:1335–1336.

    Article  PubMed  CAS  Google Scholar 

  28. Fabian CJ, Kimler BF. Breast cancer chemoprevention: current challenges and a look towards the future. Clin Breast Cancer 2002;3:120–131.

    Google Scholar 

  29. Wrensch MR, Petrakis NL, Miike R, et al. Breast cancer risk in women with abnormal cytology in nipple aspirates of breast fluid. J Natl Cancer Inst 2001;93:1791–1798.

    Article  PubMed  CAS  Google Scholar 

  30. Shaaban AM, Sloane JP, West CR, Foster CS. Breast cancer risk in usual ductal hyperplasia is defined by estrogen receptor-alpha and Ki-67 expression. Am J Pathol 2002;160: 597–604.

    PubMed  Google Scholar 

  31. Boone CW, Kelloff GJ. Intraepithelial neoplasia, surrogate endpoint biomarkers, and cancer chemoprevention. J Cell Biochem Suppl 1993;17F:37–48.

    Article  PubMed  CAS  Google Scholar 

  32. Wellings SR, Jensen HM, Marcum RG. An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst 1975;55:231–273.

    PubMed  CAS  Google Scholar 

  33. Boone CW, Bacus JW, Bacus JV, et al. Properties of intraepithelial neoplasia relevant to cancer chemoprevention and to the development of surrogate end points for clinical trials. Proc Soc Exp Biol Med 1997;216:151–165.

    PubMed  CAS  Google Scholar 

  34. Page DL, Dupont WD, Rogers LW, Rados MS. Atypical hyperplastic lesions of the female breast. A long-term followup study. Cancer 1985;55:2698–2708.

    Article  PubMed  CAS  Google Scholar 

  35. Page DL, Kidd TE Jr, Dupont WD, et al. Lobular neoplasia of the breast: higher risk for subsequent invasive cancer by more extensive disease. Hum Pathol 1991;22:1232–1239.

    Article  PubMed  CAS  Google Scholar 

  36. Tavassoli FA, Norris HJ. A comparison of the results of long-term followup for atypical intraductal hyperplasia and intraductal hyperplasia of the breast. Cancer 1990;65:518–529.

    Article  PubMed  CAS  Google Scholar 

  37. Ottesen GL, Graversen HP, Blichert-Toft M, et al. Lobular carcinoma in situ of the female breast. Short-term results of a prospective nationwide study. The Danish Breast Cancer Cooperative Group. Am J Surg Pathol 1993; 17:14–21.

    Article  PubMed  CAS  Google Scholar 

  38. Modan B, Lubin F, Alfandary E, et al. Breast cancer following benign breast disease—a nationwide study. Breast Cancer Res Treat 1997;46:45.

    Google Scholar 

  39. Kramer WM, Rush BF. Mammary duct proliferation in the elderly. A histopathologic study. Cancer 1973;31:130–137.

    Article  PubMed  CAS  Google Scholar 

  40. Bhathal PS, Brown RW, Lesueur GC, Russell TS. Frequency of benign and malignant breast lesions in 207 consecutive autopsies in Australian women. Br J Cancer 1985;51:271–278.

    PubMed  CAS  Google Scholar 

  41. Nielsen M, Thomsen JL, Primdahl S, et al. Breast cancer and atypia among young and middle-aged women: a study of 110 medicolegal autopsies. Br J Cancer 1987;56:814–819.

    PubMed  CAS  Google Scholar 

  42. Hoogerbrugge N, Bult P, de Widt-Levert LM, et al. High prevalence of premalignant lesions in prophylactically removed breasts from women at hereditary risk for breast cancer. J Clin Oncol 2003;21:41–45.

    Article  PubMed  CAS  Google Scholar 

  43. Fabian C, Zalles C, Kamel S, et al. Biomarker and cytologic abnormalities in women at high and low risk for breast cancer. J Cell Biochem 1993;17(Suppl G):153–160.

    Article  Google Scholar 

  44. Tan-Chiu E, Costantino J, Wang J, et al. The effect of tamoxifen on benign breast disease. Findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) Breast Cancer Prevention Trial. Breast Cancer Res Treat 2001;69:210 (abstract).

    Google Scholar 

  45. Masood S, Frykberg ER, McLellan GL, et al. Prospective evaluation of radiologically directed fine-needle aspiration biopsy of nonpalpable breast lesions. Cancer 1990;66:1480–1487.

    Article  PubMed  CAS  Google Scholar 

  46. Masood S. Cytomorphology of fibrocystic change, high risk, and premalignant breast lesions. Breast J 1995;1:210–221.

    Article  Google Scholar 

  47. King EB, Chew KL, Duarte LA, et al. Image cytometric classification of premalignant breast disease in fine needle aspirates. Cancer 1988;62:114–124.

    Article  PubMed  CAS  Google Scholar 

  48. Bacus JW, Bacus JV. A method of correcting DNA ploidy measurements in tissue sections. Mod Pathol 1994;7:652–664.

    PubMed  CAS  Google Scholar 

  49. Bacus JW, Bacus JV, Stoner GD, et al. Quantitation of preinvasive neoplastic progression in animal models of chemical carcinogenesis. J Cell Biochem Suppl 1997;28–29:21–38.

    Article  PubMed  Google Scholar 

  50. Page DL, Rogers LW. Combined histologic and cytologic criteria for the diagnosis of mammary atypical ductal hyperplasia. Hum Pathol 1992;23:1095–1097.

    Article  PubMed  CAS  Google Scholar 

  51. Schnitt J, Connolly L, Tavassoli FA, et al. Interobserver reproducibility in the diagnosis of ductal proliferative breast lesions using standardized criteria. Am J Surg Pathol 1992;16:1133–1143.

    Article  PubMed  CAS  Google Scholar 

  52. Tavassoli FA. Mammary intraepithelial neoplasia: a translational classification system for the intraductal epithelial proliferations. Breast J 1997;3:48–58.

    Article  Google Scholar 

  53. Sidawy MK, Stoler MH, Frable WJ, et al. Interobserver variability in the classification of proliferative breast lesions by fine-needle aspiration: results of the Papanicolaou Society of Cytopathology Study. Diagn Cytopathol 1998;18: 150–165.

    Article  PubMed  CAS  Google Scholar 

  54. Mansoor S, Ip C, Stomper PC. Yield of terminal ductal lobule units (TDLU) in normal breast stereotactic core biopsy specimens: implications of biomarker studies. Breast J 2000;6:220–224.

    Article  PubMed  Google Scholar 

  55. Harper-Wynne C, Ross A, Sacks N, Dowsett M. A pilot prevention study of the aromatase inhibitor letrozole: effects on breast cell proliferation and bone/lipid indices in healthy postmenopausal women. Breast Cancer Res Treat 2001;69:225 (abstract).

    Google Scholar 

  56. Fabian CJ, Kimler BF, Elledge RM, et al. Models for early chemoprevention trials in breast cancer. Hematol Oncol Clin North Am 1998;12:993–1017.

    Article  PubMed  CAS  Google Scholar 

  57. Dooley WC, Ljung BM, Veronesi U, et al. Ductal lavage for detection of cellular atypia in women at high risk for breast cancer. J Natl Cancer Inst 2001;93:1624–1632.

    Article  PubMed  CAS  Google Scholar 

  58. Rose DP. Hormones and growth factors in nipple aspirates from normal women and benign breast disease patients. Cancer Detect Prev 1992;16:43–51.

    PubMed  CAS  Google Scholar 

  59. Wrensch M, Petrakis NL, King EB, et al. Breast cancer risk associated with abnormal cytology in nipple aspirates of breast fluid and prior history of breast biopsy. Am J Epidemiol 1993;137:829–833.

    PubMed  CAS  Google Scholar 

  60. Allan DJ, Howell A, Roberts SA, et al. Reduction in apoptosis relative to mitosis in histologically normal epithelium accompanies fibrocytstic change and carcinoma of the premenopausal human breast. J Pathol 1992;167:25–32.

    Article  PubMed  CAS  Google Scholar 

  61. Mommers EC, van Diest PJ, Leonhart AM, et al. Balance of cell proliferation and apoptosis in breast carcinogenesis. Breast Cancer Res Treat 1999;58:163–169.

    Article  PubMed  CAS  Google Scholar 

  62. Pavelic ZP, Pavelic L, Lower EE, et al. c-myc, c-erbB-2, and Ki-67 expression in normal breast tissue and in invasive and noninvasive breast carcinoma. Cancer Res 1992;52:2597–2602.

    PubMed  CAS  Google Scholar 

  63. Siziopikou KP, Schnitt SJ. MIB-1 proliferation index in ductal carcinoma in situ of the breast: relationship to the expression of the apoptosis-regulating proteins bcl-2 and p53. Breast J 2000;6:400–406.

    Article  PubMed  CAS  Google Scholar 

  64. Allred DC, Mohsin SK, Fuqua SA. Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer 2001;8:47–61.

    Article  PubMed  CAS  Google Scholar 

  65. Tuccari G, Rizzo A, Muscara M, et al. PCNA/cyclin expressin in breast carcinomas: its relationships with Ki-67, ER, PgR immunostaining and clinico-pathologic aspects. Pathologica 1993;85(1095):47–55.

    PubMed  CAS  Google Scholar 

  66. Dawson AE, Norton JA, Weinber DS. Comparative assessment of proliferation and DNA content in breast carcinoma by image analysis and flow cytometry. Am J Pathol 1990;136:1115–1124.

    PubMed  CAS  Google Scholar 

  67. Shrestha P, Yamada K, Wada T, et al. Proliferating cell nuclear antigen in breast lesions: correlation of c-erbB-2 oncoprotein and EGF receptor and its clinicopathological significance in breast cancer. Virchows Arch A Pathol Anat Histopathol 1992;421:193–202.

    Article  PubMed  CAS  Google Scholar 

  68. Wolf HK, Dittrich KL. Detection of proliferating cell nuclear antigen in diagnostic histopathology. J Histochem Cytochem 1992;40:1269–1273.

    PubMed  CAS  Google Scholar 

  69. Gee JM, Douglas-Jones A, Hepburn P, et al. Acautionary note regarding the application of Ki-67 antibodies to paraffin-embedded breast cancers. J Pathol 1995;177:285–293.

    Article  PubMed  CAS  Google Scholar 

  70. Yu CC, Dublin EA, Camplejohn RS, Levison DA. Optimization of immunohistochemical staining of proliferating cells in paraffin sections of breast carcinoma using antibodies to proliferating cell nuclear antigen and the Ki-67 antigen. Anal Cell Pathol 1995;9:45–52.

    PubMed  CAS  Google Scholar 

  71. Meyer JS. Cell proliferation in normal human breast ducts, fibroadenomas, and other ductal hyperplasias measured by nuclear labeling with tritiated thymidine. Effects of menstrual phase, age, and oral contraceptive hormones. Hum Pathol 1977;8:67–81.

    Article  PubMed  CAS  Google Scholar 

  72. Potten CS, Watson RJ, Williams GT, et al. The effect of age and menstrual cycle upon proliferative activity of the normal human breast. Br J Cancer 1988;58:163–170.

    PubMed  CAS  Google Scholar 

  73. Chang J, Powles TJ, Allred DC, et al. Prediction of clinical outcome from primary tamoxifen by expression of biologic markers in breast cancer patients. Clin Cancer Res 2000;6:616–621.

    PubMed  CAS  Google Scholar 

  74. Ellis MJ, Coop A, Singh B, et al. Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1-and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a Phase III randomized trial. J Clin Oncol 2001;19:3808–3816.

    PubMed  CAS  Google Scholar 

  75. Dowsett M, Bundred NJ, Decensi A, et al. Effect of raloxifene on breast cancer cell Ki67 and apoptosis: a doubleblind, placebo-controlled, randomized clinical trial in postmenopausal patients. Cancer Epidemiol Biomarkers Prev 2001;10:961–966.

    PubMed  CAS  Google Scholar 

  76. Clarke RB, Laidlaw IJ, Jones LJ, et al. Effect of tamoxifen on Ki-67 labelling index in human breast tumours and its relationship to oestrogen and progesterone receptor status. Br J Cancer 1993;67:606–611.

    PubMed  CAS  Google Scholar 

  77. Fabian CJ, Kimler BF, Anderson J, et al. Phase I biomarker and toxicity evaluation of LY353381 (a 3rd generation selective estrogen receptor modulator, SERM) in breast cancer. Proc Am Soc Clin Oncol 2000;19:75a.

    Google Scholar 

  78. Kimler BF, Zalles CM, Masood S, et al. Phase II chemoprevention trial of α-difluoromethylornithine (DFMO) in women at high risk for breast cancer: surrogate endpoint biomarkers. Proc Am Assoc Cancer Res 2001;42: 826:abstr. no. 4437.

    Google Scholar 

  79. Fabian CJ, Kimler BF, Brady DA, et al. APhase II breast cancer chemoprevention trial of oral α-difluoromethylornithine: breast tissue, imaging, and serum and urine biomarkers. Clin Cancer Res 2002;8: 3105–3117.

    PubMed  CAS  Google Scholar 

  80. Oza AM, Boyd NF. Mammographic parenchymal patterns: a marker of breast cancer risk. Epidemiol Rev 1993;15: 196–208.

    PubMed  CAS  Google Scholar 

  81. White E, Velentgas P, Mandelson MT, et al. Variation in mammographic breast density by time in menstrual cycle among women aged 40–49 years. J Natl Cancer Inst 1998;90:906–910.

    Article  PubMed  CAS  Google Scholar 

  82. Ursin G, Parisky YR, Pike MC, Spicer DV. Mammographic density changes during the menstrual cycle. Cancer Epidemiol Biomarkers Prev 2001;10:141–142.

    PubMed  CAS  Google Scholar 

  83. Gertig DM, Stillman IE, Byrne C, et al. Association of age and reproductive factors with benign breast tissue composition. Cancer Epidemiol Biomarkers Prev 1999;8:873–879.

    PubMed  CAS  Google Scholar 

  84. Persson I, Thurfjell E, Holmberg L. Effect of estrogen and estrogen-progestin replacement regimens on mammographic breast parenchymal density. J Clin Oncol 1997;15:3201–3207.

    PubMed  CAS  Google Scholar 

  85. Sterns EE, Zee B. Mammographic density changes in perimenopausal and postmenopausal women: is effect of hormone replacement therapy predictable? Breast Cancer Res Treat 2000;59:125–132.

    Article  PubMed  CAS  Google Scholar 

  86. Boyd NF, Byng JW, Jong RA, et al. Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst 1995;87:670–675.

    Article  PubMed  CAS  Google Scholar 

  87. Bland KI, Kuhns JG, Buchanan JB, et al. A clinicopathologic correlation of mammographic parenchymal patterns and associated risk factors for human mammary carcinoma. Ann Surg 1982;195:582–594.

    Article  PubMed  CAS  Google Scholar 

  88. Boyd NF, Jensen HM, Cooke G, Han HL. Relationship between mammographic and histological risk factors for breast cancer. J Natl Cancer Inst 1992;84:1170–1179.

    Article  PubMed  CAS  Google Scholar 

  89. Lee MM, Petrakis NL, Wrensch MR, et al. Association of abnormal nipple aspirate cytology and mammographic pattern and density. Cancer Epidemiol Biomarkers Prev 1994;3:33–36.

    PubMed  CAS  Google Scholar 

  90. Laya MB, Gallagher JC, Schreiman JS, et al. Effect of postmenopausal hormonal replacement therapy on mammographic density and parenchymal pattern. Radiology 1995;196:433–437.

    PubMed  CAS  Google Scholar 

  91. Greendale GA, Reboussin BA, Sie A, et al. Effects of estrogen and estrogen-progestin on mammographic parenchymal density. Postmenopausal Estrogen/Progestin Interventions (PEPI) Investigators. Ann Intern Med 1999;130: 262–269.

    PubMed  CAS  Google Scholar 

  92. Hainline S, Myers L, McLelland R, et al. Mammographic patterns and risk of breast cancer. AJR Am J Roentgenol 1978;130:1157–1158.

    PubMed  CAS  Google Scholar 

  93. Pankow JS, Vachon CM, Kuni CC, et al. Genetic analysis of mammographic breast density in adult women: evidence of a gene effect. J Natl Cancer Inst 1997;89:549–556.

    Article  PubMed  CAS  Google Scholar 

  94. Kelsey JL, Gammon MD, John EM. Reproductive factors and breast cancer. Epidemiol Rev 1993;15:36–47.

    PubMed  CAS  Google Scholar 

  95. Byrne C, Colditz GA, Willet WC, et al. Plasma insulin-like growth factor (IGF) I, IGF-binding protein 3, and mammographic density. Cancer Res 2000;60:3744–3748.

    PubMed  CAS  Google Scholar 

  96. Ursin G, Pike MC, Spicer DV, et al. Can mammographic densities predict effects of tamoxifen on the breast? J Natl Cancer Inst 1996;88:128–129.

    Article  PubMed  CAS  Google Scholar 

  97. Atkinson C, Warren R, Bingham SA, Day NE. Mammographic patterns as a predictive biomarker of breast cancer risk: effect of tamoxifen. Cancer Epidemiol Biomarkers Prev 1999;8:863–866.

    PubMed  CAS  Google Scholar 

  98. Brisson J, Brisson B, Cote G, et al. Tamoxifen and mammographic breast densities. Cancer Epidemiol Biomarkers Prev 2000;9:911–915.

    PubMed  CAS  Google Scholar 

  99. Ursin G, Astrahan MA, Salane M, et al. The detection of changes in mammographic densities. Cancer Epidemiol Biomarkers Prev 1998;7:43–47.

    PubMed  CAS  Google Scholar 

  100. Zhou C, Chan HP, Petrick N, et al. Computerized image analysis: estimation of breast density on mammograms. Med Phys 2001;28:1056–1069.

    Article  PubMed  CAS  Google Scholar 

  101. Cassano E, Coopmans de Yoldi G, et al. Mammographic patterns in breast cancer chemoprevention with fenretinide (4-HPR). Eur J Cancer 1993;29A:2161–2163.

    Article  PubMed  CAS  Google Scholar 

  102. Boyd NF, Greenberg C, Lockwood G, et al. Effects at two years of a low-fat, high-carbohydrate diet on radiologic features of the breast: results from a randomized trial. J Natl Cancer Inst 1997;89:488–496.

    Article  PubMed  CAS  Google Scholar 

  103. Spicer DV, Ursin G, Parisky YR, et al. Changes in mammographic densities induced by a hormonal contraceptive designed to reduce breast cancer risk. J Natl Cancer Inst 1994;86:431–436.

    Article  PubMed  CAS  Google Scholar 

  104. Harvey JA, Pinkerton JV, Herman CR. Short-term cessation of hormone replacement therapy and improvement of mammographic specificity. J Natl Cancer Inst 1997;89:1623–1625.

    Article  PubMed  CAS  Google Scholar 

  105. Gamroudi F, Cullen KJ. Insulin-like growth factors in breast cancer. J Womens Cancer 2000;2:41–52.

    Google Scholar 

  106. Pollak M. Insulin-like growth factor physiology and cancer risk. Eur J Cancer 2000;36:1224–1228.

    Article  PubMed  CAS  Google Scholar 

  107. Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 2000;92:1472–1489.

    Article  PubMed  CAS  Google Scholar 

  108. Jernstrom H, Deal C, Wilkin F, et al. Genetic and nongenetic factors associated with variation of plasma levels of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in healthy premenopausal women. Cancer Epidemiol Biomarkers Prev 2001;10:377–384.

    PubMed  CAS  Google Scholar 

  109. White E, Malone K, Weiss N, Daling J. Breast cancer among young U.S. women in relation to oral contraception use. J Natl Cancer Inst 1994;86:505–514.

    Article  PubMed  CAS  Google Scholar 

  110. Wang HS, Lee JD, Soong YK. Serum levels of insulin-like growth factor-binding protein-1 and-3 in women with regular menstrual cycles. Fertil Steril 1995;63:1204–1209.

    PubMed  CAS  Google Scholar 

  111. Thierry van Dessel HJ, Chandrasekher Y, Yap OW, et al. Serum and follicular fluid levels of insulin-like growth factor I (IGF-I), IGF-II, and IGF-binding protein-1 and-3 during the normal menstrual cycle. J Clin Endocrinol Metab 1996;81:1224–1231.

    Article  PubMed  CAS  Google Scholar 

  112. Janssen YJ, Helmerhorst F, Frolich M, Roelfsema F. A switch from oral (2 mg/day) to transdermal (50 microg/day) 17beta-estradiol therapy increases serum insulin-like growth factor-I levels in recombinant human growth hormone (GH)-substituted women with GH deficiency. J Clin Endocrinol Metab 2000;85:464–467.

    Article  PubMed  CAS  Google Scholar 

  113. van den Berg HW, Claffie D, Boylan M, et al. Expression of receptors for epidermal growth factor and insulin-like growth factor I by ZR-75-1 human breast cancer cell variants is inversely related: the effect of steroid hormones on insulin-like growth factor I receptor expression. Br J Cancer 1996;73:477–481.

    PubMed  Google Scholar 

  114. Lee AV, Jackson JG, Gooch JL, et al. Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo. Mol Endocrinol 1999;13:787–796.

    Article  PubMed  CAS  Google Scholar 

  115. Yee D, Lee AV. Crosstalk between the insulin-like growth factors and estrogens in breast cancer. J Mammary Gland Biol Neoplasia 2000;5:107–115.

    Article  PubMed  CAS  Google Scholar 

  116. Oesterreich S, Zhang P, Guler RL, et al. Re-expression of estrogen receptor alpha in estrogen receptor alpha-negative MCF-7 cells restores both estrogen and insulin-like growth factor-mediated signaling and growth. Cancer Res 2001;61:5771–5777.

    PubMed  CAS  Google Scholar 

  117. Singh A, Blench I, Morris HR, et al. Synergistic interaction of growth factors and albumin in regulating estradiol synthesis in breast cancer cells. Mol Cell Endocrinol 1992;85:165–173.

    Article  PubMed  CAS  Google Scholar 

  118. Stewart AJ, Johnson MD, May FE, Westley BR. Role of insulin-like growth factors and the type I insulin-like growth factor receptor in the estrogen-stimulated proliferation of human breast cancer cells. J Biol Chem 1990;265:21,172–21,178.

    PubMed  CAS  Google Scholar 

  119. Stewart AJ, Westley BR, May FE. Modulation of the proliferative response of breast cancer cells to growth factors by oestrogen. Br J Cancer 1992;66:640–648.

    PubMed  CAS  Google Scholar 

  120. van Landeghem AA, Poortman J, Nabuurs M, Thijssen JH. Endogenous concentration and subcellular distribution of estrogens in normal and malignant human breast tissue. Cancer Res 1985;45:2900–2906.

    PubMed  Google Scholar 

  121. Yue W, Wang JP, Hamilton CJ, et al. In situ aromatization enhances breast tumor estradiol levels and celular proliferation. Cancer Res 1998;58:927–932.

    PubMed  CAS  Google Scholar 

  122. Santen RJ, Martel J, Hoagland M, et al. Demonstration of aromatase activity and its regulation in breast tumor and benign breast fibroblasts. Breast Cancer Res Treat 1998;49(Suppl 1):S93–S99.

    Article  PubMed  CAS  Google Scholar 

  123. Brodie A, Long B, Lu Q. Aromatase expression in the human breast. Breast Cancer Res Treat 1998;49:S85–S91.

    Article  PubMed  CAS  Google Scholar 

  124. Bonanni B, Johansson H, Gandini S, et al. Effect of low dose tamoxifen on the insulin-like growth factor system in healthy women. Breast Cancer Res Treat 2001;69:21–27.

    Article  PubMed  CAS  Google Scholar 

  125. Daughaday WH, Rotwein P. Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev 1989;10:68–91.

    PubMed  CAS  Google Scholar 

  126. Guvakova MA, Surmacz E. Tamoxifen interferes with the insulin-like growth factor I receptor (IGF-IR) signaling pathway in breast cancer cells. Cancer Res 1997;57:2606–2610.

    PubMed  CAS  Google Scholar 

  127. Resnik JL, Reichart DB, Huey K, et al. Elevated insulin-like growth factor I receptor autophosphorylation and kinase activity in human breast cancer. Cancer Res 1998;58:1159–1164.

    PubMed  CAS  Google Scholar 

  128. Decensi A, Mariani L, Johansson H, et al. Role of plasma IGF-1 as a surrogate biomarker of second breast cancer in a prevention trial of fenretinide. Proc Am Assoc Cancer Res 2002;43:821:abstr. no. 4078.

    Google Scholar 

  129. The Endogenous Hormones and Breast Cancer Collaborative Group. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 2002; 94:606–616.

    Google Scholar 

  130. Cummings SR, Duong T, Kenyon E, et al. Serum estradiol level and risk of breast cancer during treatment with raloxifene. JAMA 2002;287:216–220.

    Article  PubMed  CAS  Google Scholar 

  131. Gann P, Chatterton R, Vogelsong K, et al. Mitogenic growth factors in breast fluid obtained from healthy women: evaluation of biological and extraneous sources of variability. Cancer Epidemiol Biomarkers Prev 1997;6:421–428.

    PubMed  CAS  Google Scholar 

  132. Paweletz CP, Trock B, Pennanen M, et al. Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF for new biomarkers to aid in diagnosis of breast cancer. Dis Markers 2001;17:301–307.

    PubMed  CAS  Google Scholar 

  133. Elia M, Handpour S, Terranova P, et al. Marked variation in nipple aspirate fluid (NAF) estrogen concentration and NAF/serum ratios between ducts in high risk women. Proc Am Assoc Cancer Res 2002;43:820:abstr. no. 4072.

    Google Scholar 

  134. Shiau AK, Barstad D, Loria PM, et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 1998;95:927–937.

    Article  PubMed  CAS  Google Scholar 

  135. Starcevic SL, Elferink C, Novak RF. Progressive resistance to apoptosis in a cell lineage model of human proliferative breast disease. J Natl Cancer Inst 2001;93:776–782.

    Article  PubMed  CAS  Google Scholar 

  136. Harvey JM, Clark GM, Osborne CK, Allred DC. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 1999;17:1474–1481.

    PubMed  CAS  Google Scholar 

  137. Newby JC, Johnston SR, Smith IE, Dowsett M. Expression of epidermal growth factor receptor and c-erbB2 during the development of tamoxifen resistance in human breast cancer. Clin Cancer Res 1997;3:1643–1651.

    PubMed  CAS  Google Scholar 

  138. Sun M, Paciga JE, Feldman RI, et al. Phosphatidylinositol-3-OH kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor alpha (ERalpha) via interaction between ERalpha and PI3K. Cancer Res 2001;61:5985–5991.

    PubMed  CAS  Google Scholar 

  139. Tonetti DA, Jordan VC. Possible mechanisms in the emergence of tamoxifen-resistant breast cancer. Anticancer Drugs 1995;6:498–507.

    Article  PubMed  CAS  Google Scholar 

  140. Brzozowski AM, Pike AC, Dauter Z, et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997;389:753–758.

    Article  PubMed  CAS  Google Scholar 

  141. Takimoto GS, Graham JD, Jackson TA, et al. Tamoxifen resistant breast cancer: coregulators determine the direction of transcription by antagonist-occupied steroid receptors. J Steroid Biochem Mol Biol 1999;69:45–50.

    Article  PubMed  CAS  Google Scholar 

  142. Leygue E, Dotzlaw H, Watson PH, Murphy LC. Altered estrogen receptor alpha and beta messenger RNA expression during human breast tumorigenesis. Cancer Res 1998;58: 3197–3201.

    PubMed  CAS  Google Scholar 

  143. Speirs V, Malone C, Walton DS, et al. Increased expression of estrogen receptor beta mRNA in tamoxifen-resistant breast cancer patients. Cancer Res 1999;59:5421–5424.

    PubMed  CAS  Google Scholar 

  144. Fuqua SA, Wiltschke C, Zhang QX, et al. A hypersensitive estrogen receptor-α mutation in premalignant breast lesions. Cancer Res 2000;60:4026–4029.

    PubMed  CAS  Google Scholar 

  145. Hopp TA, Hilsenbeck S, Mohsin S, et al. A hypersensitive estrogen receptor α protein in premalignant breast lesions. Breast Cancer Res Treat 2000;64:33:abstr.

    Google Scholar 

  146. Nass SJ, Herman JG, Gabrielson E, et al. Aberrant methylation of the estrogen receptor and E-cadherin 5’ CpG islands increases with malignant progression in human breast cancer. Cancer Res 2000;60:4346–4348.

    PubMed  CAS  Google Scholar 

  147. Lavinsky RM, Jepsen K, Heinzel T, et al. Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci USA 1998;95:2920–2925.

    Article  PubMed  CAS  Google Scholar 

  148. Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002;359:572–577.

    Article  PubMed  CAS  Google Scholar 

  149. Gillespie JW, Best CJ, Bichsel VE, et al. Evaluation of nonformalin tissue fixation for molecular profiling studies. Am J Pathol 2002;160:449–457.

    PubMed  CAS  Google Scholar 

  150. Kelloff GJ, Boone CW, Steele VE, et al. Development of breast cancer chemopreventive drugs. J Cell Biochem Suppl 1993;17G:2–13.

    PubMed  CAS  Google Scholar 

  151. Xu XC, Sneige N, Liu X, et al. Progressive decrease in nuclear retinoic acid receptor beta messenger RNA level during breast carcinogenesis. Cancer Res 1997;15:4992–4996.

    Google Scholar 

  152. Widschwendter M, Berger J, Daxenbichler G, et al. Loss of retinoic acid receptor B expression in breast cancer and normal adjacent tissue but not in normal tissue distinct from the cancer. Cancer Res 1997;57:4158–4161.

    PubMed  CAS  Google Scholar 

  153. Huschtscha LI, Noble JR, Neumann AA, et al. Loss of p16INK4 expression of methylation is associated with lifespan extension of human mammary epithelial cells. Cancer Res 1998;58:3508–3512.

    PubMed  CAS  Google Scholar 

  154. Gobbi H, DuPont WD, Simpson JF, et al. Transforming growth factor-B and breast cancer risk in women with mammary epithelial hyperplasia. J Natl Cancer Inst 1999;91:2096–2101.

    Article  PubMed  CAS  Google Scholar 

  155. Gross JM, Yee D. How does the estrogen receptor work? Breast Cancer Res 2002;4:62–64.

    Article  PubMed  CAS  Google Scholar 

  156. Gasco M, Shami S, Crook T. The p53 pathway in breast cancer. Breast Cancer Res 2002;4:70–76.

    Article  PubMed  CAS  Google Scholar 

  157. Miller WR, O’Neill J. The importance of local synthesis of estrogen within the breast. Steroids 1987;50:537–548.

    Article  PubMed  CAS  Google Scholar 

  158. Miller WR. Biology of aromatase inhibitors: pharmacology/endocrinology within the breast. Endocr Relat Cancer 1999;6:187–195.

    Article  PubMed  CAS  Google Scholar 

  159. Reed MJ, Coldham NG, Patel SR, et al. Interleukin-1 and interleukin-6 in breast cyst fluid: their role in regulating aromatase activity in breast cancer cells. J Endocrinol 1992; 132:R5–R8.

    PubMed  Google Scholar 

  160. Singh A, Purohit A, Ghilchik MW, Reed MJ. The regulation of aromatase activity in breast fibroblasts: the role of interleukin-6 and prostaglandin E2. Endocr Relat Cancer 1999;6:139–147.

    Article  PubMed  CAS  Google Scholar 

  161. Wei J, Xu H, Davies JL, Hemmings GP. Increase of plasma IL-6 concentration with age in healthy subjects. Life Sci 1992;51:1953–1956.

    Article  PubMed  CAS  Google Scholar 

  162. Zhao Y, Nichols JE, Bulun SE, et al. Aromatase P450 gene expression in human adipose tissue. Role of a Jak/STAT pathway in regulation of the adipose-specific promoter. J Biol Chem 1995;270:16,449–16,457.

    Article  PubMed  CAS  Google Scholar 

  163. Zhao Y, Agarwal V, Mendelson C, Simpson ER. Estrogen synthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP; leading to activation of promoter II CYP 19 (aromatase) gene. Endocrinology 1996;137: 5739–5742.

    Article  PubMed  CAS  Google Scholar 

  164. Rubin GL, Zhao Y, Kalus AM, Simpson ER. Peroxisome proliferator-activated receptor gamma ligands inhibit estrogen biosynthesis in human breast adipose tissue: possible implications for breast cancer therapy. Cancer Res 2000;60:1604–1608.

    PubMed  CAS  Google Scholar 

  165. Purohit A, Newman SP, Reed MJ. The role of cytokines in regulating estrogen synthesis: implications for the etiology of breast cancer. Breast Cancer Res 2002;4:65–69.

    Article  PubMed  CAS  Google Scholar 

  166. Khan SA, Rogers MA, Khurana KK, et al. Estrogen receptor expression in benign breast epithelium and breast cancer risk. J Natl Cancer Inst 1998;90:37–42.

    Article  PubMed  CAS  Google Scholar 

  167. Clarke RB, Howell A, Potten CS, Anderson E. Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 1997;57:4987–4991.

    PubMed  CAS  Google Scholar 

  168. Russo J, Ao X, Grill C, Russo IH. Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res Treat 1999;53:217–227.

    Article  PubMed  CAS  Google Scholar 

  169. Shoker BS, Jarvis C, Clarke RB, et al. Estrogen receptorpositive proliferating cells in the normal and precancerous breast. Am J Pathol 1999;155:1811–1815.

    PubMed  CAS  Google Scholar 

  170. Stoica A, Saceda M, Doraiswamy VL, et al. Regulation of estrogen receptor-alpha gene expression by epidermal growth factor. J Endocrinol 2000;165:371–378.

    Article  PubMed  CAS  Google Scholar 

  171. Oh AS, Lorant LA, Holloway JN, et al. Hyperactivation of MAPK induces loss of ERalpha expression in breast cancer cells. Mol Endocrinol 2001;15:1344–1359.

    Article  PubMed  CAS  Google Scholar 

  172. Scambia G, Benedetti Panici P, Ferrandina G, et al. Cathepsin D and epidermal growth factor in human breast cyst fluid. Br J Cancer 1991;64:965–967.

    PubMed  CAS  Google Scholar 

  173. Parham DM, Jankowski J. Transforming growth factor alpha in epithelial proliferative diseases of the breast. Clin Pathol 1992;45:513–516.

    Article  CAS  Google Scholar 

  174. Walker RA, Dearing SJ. Expression of epidermal growth factor receptor mRNA and protein in primary breast cancers. Breast Cancer Res Treat 1999; 53:167–176.

    Article  PubMed  CAS  Google Scholar 

  175. Stark A, Hulka BS, Joens S, et al. Her-2/neu amplification in benign breast disease and the risk of subsequent breast cancer. J Clin Oncol 2000;8:267–274.

    Google Scholar 

  176. Stoica A, Saceda M, Fakhro A, et al. Role of insulin-like growth factor-I in regulating estrogen receptor-alpha gene expression. J Cell Biochem 2000;76:605–614.

    Article  PubMed  CAS  Google Scholar 

  177. Koukoulis GK, Vertanen I, Korhonen M, et al. Immunohistochemical localization of integrins in the normal, hyperlastic and neoplastic breast: correlations with their functions as receptors and cell adhesion molecules. Am J Pathol 1991;139:787–799.

    PubMed  CAS  Google Scholar 

  178. Simpson JF, Page DL. Altered expression of a structural protein (fodrin) within epithelial proliferation disease of the breast. Am J Pathol 1992;141:285–289.

    PubMed  CAS  Google Scholar 

  179. Fregene TA, Kellogg CM, Pienta KJ. Microvessel quantification as a measure of angiogenic activity in benign breast tissue lesions: a marker for precancerous disease? Int J Oncol 1994;4:1999–2002.

    Google Scholar 

  180. Shekhar MPV, Werdell J, Tait L. Interaction with endothelial cells is a prerequisite for branching ductal-alveola morphogenesis and hyperplasia of preneoplastic human breast epithelial cells: regulation by estrogen. Cancer Res 2000;60:439–449.

    PubMed  CAS  Google Scholar 

  181. Roger P, Daures JP, Maudelonde T, et al. Dissociated over-expression of cathepsin D and estrogen receptor alpha in preinvasive mammary tumors. Hum Pathol 2000;31:593–600.

    Article  PubMed  CAS  Google Scholar 

  182. Monteagudo C, Merino MJ, San-Juan J, et al. Immunohistochemical distribution of type IV collagenase in normal, benign, and malignant breast tissue. Am J Pathol 1990;136:585–592.

    PubMed  CAS  Google Scholar 

  183. Clemens JA, Bennett DR, Black LJ, Jones CD. Effects of a new antiestrogen, keoxifene (LY156758), on growth of carcinogen-induced mammary tumors and on LH and prolactin levels. Life Sci 1983;32:2869–2875.

    Article  PubMed  CAS  Google Scholar 

  184. Draper MW, Flowers DE, Huster WJ, et al. A controlled trial of raloxifene HCl:impact on bone turnover and serum lipid profile in healthy postmenopausal women. J Bone Mineral Res 1996;11:835–842.

    Article  CAS  Google Scholar 

  185. Walsh BW, Kuller LH, Wild RA, et al. Effects of raloxifene on serum lipids and coagulation factors in healthy postmenopausal women. JAMA 1998;279:145–151.

    Article  Google Scholar 

  186. Khovidhunkit W, Shoback DM. Clinical effects of raloxifene hydrochloride in women. Ann Intern Med 1999;130:431–439.

    PubMed  CAS  Google Scholar 

  187. Cano A, Hermenegildo C. Endometrial effects of SERMs. Hum Reprod Update 2000;6:244–254.

    Article  PubMed  CAS  Google Scholar 

  188. Buzdar AU, Marcus C, Holmes F, et al. Phase II evaluation of LY156758 in metastatic breast cancer. Oncology 1988;45:344–345.

    Article  PubMed  CAS  Google Scholar 

  189. Gradishar W, Glusman J, Lu Y, et al. Effects of high dose raloxifene in selected patients with advanced breast carcinoma. Cancer 2000;88:2047–2053.

    Article  PubMed  CAS  Google Scholar 

  190. Cummings SR, Eckert S, Krueger KA, et al. The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE Randomized Trial. Multiple outcomes of raloxifene evaluation. JAMA 1999;281: 2189–2197.

    Article  PubMed  CAS  Google Scholar 

  191. Cauley JA, Norton L, Lippman ME, et al. Continued breast cancer risk reduction in postmenopausal women treated with raloxifene: 4-year results from the MORE trial. Multiple outcomes of raloxifene evaluation. Breast Cancer Res Treat 2001;65:125–134.

    Article  PubMed  CAS  Google Scholar 

  192. Davies GC, Huster WJ, Lu Y, et al. Adverse events reported by postmenopausal women in controlled trials with raloxifene. Obstet Gynecol 1999;93:558–565.

    Article  PubMed  CAS  Google Scholar 

  193. Dunn BK, Ford LG. From adjuvant therapy to breast cancer prevention: BCPT and STAR. Breast J 2001;7:144–157.

    Article  PubMed  CAS  Google Scholar 

  194. Sato M, Turner CH, Wang TY, et al. LY353381.HC1: a novel raloxifene analog with improved SERM potency and efficacy in vivo. J Pharmacol Exp Ther 1998;287:1–7.

    PubMed  CAS  Google Scholar 

  195. Suh N, Glasebrook AL, Palkowitz AD, et al. Arzoxifene, a new selective estrogen receptor modulator for chemoprevention of experimental breast cancer. Cancer Res 2001;61:8412–8415.

    PubMed  CAS  Google Scholar 

  196. Munster PN, Buzdar A, Dhingra K, et al. Phase I study of a third-generation selective estrogen receptor modulator, LY353381.HCL, in metastatic breast cancer. J Clin Oncol 2001;19:2002–2009.

    PubMed  CAS  Google Scholar 

  197. Schafer JM, Lee ES, Dardes RC, et al. Analysis of cross-resistance of the selective estrogen receptor modulators arzoxifene (LY353381) and LY117018 in tamoxifen-stimulated breast cancer xenografts. Clin Cancer Res 2001;7:2505–2512.

    PubMed  CAS  Google Scholar 

  198. Wakeling AE, Bowler J. Steroidal pure antioestrogens. J Endocrinol 1987;112:R7–R10.

    PubMed  CAS  Google Scholar 

  199. Osborne CK, Zhao H, Fuqua SA. Selective estrogen receptor modulators: structure, function, and clinical use. J Clin Oncol 2000;18:3172–3186.

    PubMed  CAS  Google Scholar 

  200. Osborne CK, Coronado-Heinsohn EB, Hilsenbeck SG, et al. Comparison of the effects of a pure steroidal antiestrogen with those of tamoxifen in a model of human breast cancer. J Natl Cancer Inst 1995;87:746–750.

    Article  PubMed  CAS  Google Scholar 

  201. Howell A, DeFriend D, Robertson J, et al. Response to a specific antioestrogen (ICI 182780) in tamoxifen-resistant breast cancer. Lancet 1995;345:29–30.

    Article  PubMed  CAS  Google Scholar 

  202. Howell A, DeFriend DJ, Robertson JF, et al. Pharmacokinetics, pharmacological and anti-tumour effects of the specific anti-oestrogen ICI 182780 in women with advanced breast cancer. Br J Cancer 1996;74:300–308.

    PubMed  CAS  Google Scholar 

  203. Wade GN, Blaustein JD, Gray JM, Meredith JM. ICI 182, 780: a pure antiestrogen that affects behaviors and energy balance in rats without acting in the brain. Am J Physiol 1993;265:R1392–R1398.

    PubMed  CAS  Google Scholar 

  204. Nabholtz JM, Buzdar A, Pollak M, et al. Anastrozole is superior to tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: results of a North American multicenter randomized trial. J Clin Oncol 2000;18:3758–3767.

    PubMed  CAS  Google Scholar 

  205. Mouridsen H, Gershanovich M, Sun Y, et al. Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a Phase III study of the International Letrozole Breast Cancer Group. J Clin Oncol 2001;19:2596–3606.

    PubMed  CAS  Google Scholar 

  206. The ATAC Trialists’ Group. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 2002;359:2131–2139.

    Article  Google Scholar 

  207. Tzukerman MT, Esty A, Santiso-Mere D, et al. Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol Endocrinol 1994;8:21–30.

    Article  PubMed  CAS  Google Scholar 

  208. Tsai EM, Wang SC, Lee JN, Hung MC. Akt activation by estrogen in estrogen receptor-negative breast cancer cells. Cancer Res 2001;61:8390–8392.

    PubMed  CAS  Google Scholar 

  209. Bonneterre J, Thurlimann B, Robertson JF, et al. Anastrozole versus tamoxifen as first-line therapy for advanced breast cancer in 668 postmenopausal women: results of the tamoxifen or arimidex randomized group efficacy and tolerability study. J Clin Oncol 2000;18:3748–3757.

    PubMed  CAS  Google Scholar 

  210. Goss P, Grynpas M, Qi S, Hu H. The effects of exemestane on bone and lipids in the ovariectomized rat. Breast Cancer Res Treat 2001;69:224:abstr. no. 132.

    Google Scholar 

  211. Kirma N, Mandava UK, Tekmal RR. Use of letrozole as a chemopreventive agent in the aromatase overexpression transgenic mouse model. Breast Cancer Res Treat 2001;69:289: abstr.

    Google Scholar 

  212. Kirma NB, Gill K, Mandava U, Tekmal RR. The overexpression of colony-stimulating factor 1 and/or its receptor c-fms leads to mammary hyperplasia in transgenic mice. Proc Am Assoc Cancer Res 2002;43:187:abstr. no. 940.

    Google Scholar 

  213. Bevilacqua G, Silingardi V, Marchetti P. Exemestane for the prevention of breast cancer in postmenopausal unaffected carriers of BRCA1/2 mutations—aromasin prevention study (ApreS). Breast Cancer Res Treat 2001;69:226 abstr.

    Google Scholar 

  214. Brodie A, Lu Q, Liu Y, et al. Preclinical studies using the intratumoral aromatase model for postmenopausal breast cancer. Oncology (Huntingt) 1998;12(3 Suppl 5):36–40.

    CAS  Google Scholar 

  215. Long BJ, Jelovac D, Thiantanawat A, Brodie AM. The effect of alternating letrozole and tamoxifen in comparison to sequential treatment with each drug alone or in combination. Breast Cancer Res Treat 2001;69:287:abstr. no. 444.

    Google Scholar 

  216. Ingle JN, Suman VJ, Johnson PA, et al. Evaluation of tamoxifen plus letrozole with assessment of pharmacokinetic interaction in postmenopausal women with metastatic breast cancer. Clin Cancer Res 1999;5: 1642–1649.

    PubMed  CAS  Google Scholar 

  217. Purohit A, Hejaz HA, Woo LW, et al. Recent advances in the development of steroid sulphatase inhibitors. J Steroid Biochem Mol Biol 1999;69:227–238.

    Article  PubMed  CAS  Google Scholar 

  218. Pasqualini JR. Recent developments of the biological role of progestins in human breast cancer. J Woman’s Cancer 2000;2:135–143.

    Google Scholar 

  219. Prost-Avallet O, Oursin J, Adessi GL. In vitro effect of synthetic progestogens on estrone sulfatase activity in human breast carcinoma. J Steroid Biochem Mol Biol 1991;39:967–973.

    Article  PubMed  CAS  Google Scholar 

  220. Santner SJ, Santen RJ. Inhibition of estrone sulfatase and 17 beta-hydroxysteroid dehydrogenase by antiestrogens. J Steroid Biochem Mol Biol 1993;45:383–390.

    Article  PubMed  CAS  Google Scholar 

  221. Gompel A, Kandouz M, Siromachkova M, et al. The effect of tibolone on proliferation, differentiation and apoptosis in normal breast cells. Gynecol Endocrinol 1999;1:77–79.

    Google Scholar 

  222. Gompel A, Siromachkova M, Lombet A, et al. Tibolone actions on normal and breast cancer cells. Eur J Cancer 2000;36: S76–S77.

    Article  PubMed  CAS  Google Scholar 

  223. Dobson R, Chan K, Knox WR, et al. Tibolone does not stimulate epithelial proliferation in the breast. Breast Cancer Res Treat 2001;69:292:abstr. no. 461.

    Google Scholar 

  224. Deckers GH, Verheul HAM, van Aalst GBT, et al. Tibolone and 5alpha-dihydrotestosterone alone or in combination with an antiandrogen in a rat breast tumour model. Eur J Cancer 2002;38: 443–448.

    Article  PubMed  CAS  Google Scholar 

  225. Kloosterboer HJ. Tibolone: a steroid with a tissue-specific mode of action. J Steroid Biochem Mol Biol 2001;76:231–238.

    Article  PubMed  CAS  Google Scholar 

  226. Spicer DV, Pike MC. Future possibilities in the prevention of breast cancer. Luteinizing hormone-releasing hormone agonists. Breast Cancer Res 2000;2:264–267.

    Article  PubMed  CAS  Google Scholar 

  227. Weitzel JN, Pike MC, Daniels, AM, et al. Safety of a gonadotropin-releasing hormone agonist (GnRHA)-based hormonal chemoprevention regimen for young women at high genetic risk for breast cancer. Breast Cancer Res Treat 2000;64:48: abstr. no. 150.

    Google Scholar 

  228. Gram IT, Ursin G, Spicer DV, Pike MC. Reversal of gonadotropin-releasing hormone agonist induced reductions in mammographic densities on stopping treatment. Cancer Epidemiol Biomarkers Prev 2001;10:1117–1120.

    PubMed  CAS  Google Scholar 

  229. Bischoff ED, Heyman RA, Lamph WW. Effect of retinoid X receptor-selective ligand LGD1069 on mammary carcinoma after tamoxifen failure. J Natl Cancer Inst 1999;91:2118–2123.

    Article  PubMed  CAS  Google Scholar 

  230. Mehta RG, Williamson E, Patel MK, Koeffler HP. A ligand of peroxisome proliferator-activated receptor γ, retinoids and prevention of preneoplastic mammary lesions. J Natl Cancer Inst 2000;92:418–423.

    Article  PubMed  CAS  Google Scholar 

  231. Brown PH, Lippman SM. Chemoprevention of breast cancer. Breast Cancer Res Treat 2000;62:1–17.

    Article  PubMed  CAS  Google Scholar 

  232. van der Leede BJ, Folkers GE, van den Brink CE, et al. Retinoic acid receptor alpha 1 isoform is induced by estradiol and confers retinoic acid sensitivity in human breast cancer cells. Mol Cell Endocrinol 1995;109:77–86.

    Article  PubMed  Google Scholar 

  233. Wu K, Kim HT, Rodriquez JL, et al. 9-cis-Retinoic acid suppresses mammary tumorigenesis in C3(1)-simian virus 40 T antigen-transgenic mice. Clin Cancer Res 2000;6: 3696–3704.

    PubMed  CAS  Google Scholar 

  234. Wu K, Kim HT, Rodriquez JL, et al. Suppression of mammary tumorigenesis in transgenic mice by the RXR-selective retinoid, LGD1069. Cancer Epidemiol Biomarkers Prev 2002;11:467–474.

    PubMed  CAS  Google Scholar 

  235. Veronesi U, DePalo G, Marubini E, et al. Randomized trial of fenretinide to prevent second breast malignancy in women with early breast cancer. J Natl Cancer Inst 1999;91:1847–1856.

    Article  PubMed  CAS  Google Scholar 

  236. Gottardis MM, Bischoff ED, Shirley MA, et al. Chemoprevention of mammary carcinoma by LGD1069 (Targretin): an RXR-selective ligand. Cancer Res 1996;56:5566–5570.

    PubMed  CAS  Google Scholar 

  237. Manni A, Grove R, Kunselman S, Aldaz M. Involvement of the polyamine pathway in breast cancer progression. Cancer Lett 1995;92: 49–57.

    Article  PubMed  CAS  Google Scholar 

  238. Klohs WD, Fry DW, Kraker AJ. Inhibitors of tyrosine kinase. Curr Opin Oncol 1997;9:562–568.

    Article  PubMed  CAS  Google Scholar 

  239. Meyskens FL, Gerner EW. Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin Cancer Res 1999;5:945–951.

    PubMed  CAS  Google Scholar 

  240. Steele VE, Holmes CA, Hawk ET, et al. Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prev 1999;8:467–483.

    PubMed  CAS  Google Scholar 

  241. Koki AT, Leahy KM, Masferrer JL. Potential utility of COX-2 inhibitors in chemoprevention and chemotherapy. Expert Opin Invest Drugs 1999;8:1623–1638.

    Article  CAS  Google Scholar 

  242. Leveque J, Foucher F, Havouis R, et al. Benefits of complete polyamine deprivation in hormone responsive and hormone resistant MCF-7 human breast adenocarcinoma in vivo. Anticancer Res 2000;20:97–101.

    PubMed  CAS  Google Scholar 

  243. Marks PA, Richon JM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 2000;92:1210–1216.

    Article  PubMed  CAS  Google Scholar 

  244. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 2000;18:1135–1149.

    PubMed  CAS  Google Scholar 

  245. Cherrington JM, Strawn LM, Shawver LK. New paradigms for the treatment of cancer: the role of anti-angiogenesis agents. Adv Cancer Res 2000;79:1–38.

    Article  PubMed  CAS  Google Scholar 

  246. Harris RE, Alshafie GA, Hussen AI, Seibert K. Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Res 2000;60:2101–2103.

    PubMed  CAS  Google Scholar 

  247. Davis T, Kennedy C, Chiew YE, et al. Histone deacetylase inhibitors decrease proliferation and modulate cell cycle gene expression in normal mammary epithelial cells. Clin Cancer Res 2000;6:4334–4342.

    PubMed  CAS  Google Scholar 

  248. Duffy MJ, Maguire TM, Hill A, et al. Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res 2000;2:252–257.

    Article  PubMed  CAS  Google Scholar 

  249. Baselga J. Targeting the epidermal growth factor receptor: a clinical reality. J Clin Oncol 2001;19:41S–44S.

    PubMed  CAS  Google Scholar 

  250. Chan KC, Knox WF, Gandhi A, et al. Blockade of growth factor receptors in ductal carcinoma in situ inhibits epithelial proliferation. Br J Surg 2001;88:412–418.

    Article  PubMed  CAS  Google Scholar 

  251. Chan KC, Knox WF, Gee JM, et al. Effect of epidermal growth factor receptor tyrosine kinase inhibition on epithelial proliferation in normal and premalignant breast. Cancer Res 2002;62:122–128.

    PubMed  CAS  Google Scholar 

  252. Munster PN, Troso-Sandoval T, Rosen N, et al. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 2001;61:8492–8497.

    PubMed  CAS  Google Scholar 

  253. Paridaens R, Uges DR, Barbet N, et al. A Phase I study of a new polyamine biosynthesis inhibitor, SAM486A, in cancer patients with solid tumours. Br J Cancer 2000;83:594–601.

    Article  PubMed  CAS  Google Scholar 

  254. Soslow RA, Dannenberg AJ, Rush D, et al. COX-2 is expressed in human pulmonary, colonic and mammary tumors. Cancer 2000;89:2637–2645.

    Article  PubMed  CAS  Google Scholar 

  255. Ristimaki A, Sivula A, Lundin J, et al. Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res 2002;62:632–635.

    PubMed  CAS  Google Scholar 

  256. Hwang D, Scollard D, Byrne J, Levine E. Expression of cyclo-oxygenase-1 and cyclo-oxygenase-2 in human breast cancer. J Natl Cancer Inst 1998;90:455–460.

    Article  PubMed  CAS  Google Scholar 

  257. Simon LS, Lanza FL, Lipsky PE, et al. Preliminary study of the safety and efficacy of SC 58635, a novel cycloogenase 2 inhibitor. Arthritis Rheum 1998;41:1591–1602.

    Article  PubMed  CAS  Google Scholar 

  258. Silverstein FE, Faich G, Goldstein JL, et al. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial. JAMA 2000;284:1247–1255.

    Article  PubMed  CAS  Google Scholar 

  259. Feldman M, McMahon AT. Do cyclooxygenase-2 inhibitors provide benefits similar to those of traditional nonsteroidal anti-inflammatory drugs, with less gastrointestinal toxicity? Ann Intern Med 2000;132:134–143.

    PubMed  CAS  Google Scholar 

  260. Steinbach G, Lynch PM, Phillips RK, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 2000;342:1946–1952.

    Article  PubMed  CAS  Google Scholar 

  261. Shalinsky DR, Shetty B, Pithavola Y, et al. A potent and selective matrix metalloproteinase inhibitor—preclinical and clinical development for oncology. In Cancer Drug Discovery and Development: Matrix Metalloproteinases in Cancer Therapy. Clendenin NJ, Appelt K, eds. Humana Press Inc., Totowa, NJ, 2000; pp.143–173.

    Google Scholar 

  262. Albanell J, Rojo F, Averbuch S, et al. Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition. J Clin Oncol 2001;20:110–124.

    Article  Google Scholar 

  263. Akiyama T, Ishida J, Nakagawa S, et al. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 1987;262:5592–5595.

    PubMed  CAS  Google Scholar 

  264. Fotsis T, Pepper M, Adlercreutz H, et al. Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci USA 1993;90:2690–2694.

    Article  PubMed  CAS  Google Scholar 

  265. Duncan AM, Merz BE, Xu X, et al. Soy isoflavones exert modest hormonal effects in premenopausal women. J Clin Endocrinol Metab 1999;84:192–197.

    Article  PubMed  CAS  Google Scholar 

  266. Lu LJ, Anderson KE, Grady JJ, et al. Decreased ovarian hormones during a soya diet: implications for breast cancer prevention. Cancer Res 2000;60:4112–4121.

    PubMed  CAS  Google Scholar 

  267. Galvez AF, Chen N, Macasieb J, de Lumen BO. Chemopreventive property of a soybean peptide (lunasin) that binds to deacetylated histones and inhibits acetylation. Cancer Res 2001;61:7473–7478.

    PubMed  CAS  Google Scholar 

  268. Thompson HJ, Jiang C, Lu J, et al. Sulfone metabolite of sulindac inhibits mammary carcinogenesis. Cancer Res 1997;57:267–271.

    PubMed  CAS  Google Scholar 

  269. Russo IH, Russo J. Hormonal approach to breast cancer prevention. J Cell Biochem 2000;77(S34):1–6.

    Article  Google Scholar 

  270. Ferguson AT, Lapidus RG, Baylin SB, Davidson NE. Demethylation of the estrogen receptor gene in estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res 1995;55:2279–2283.

    PubMed  CAS  Google Scholar 

  271. Anzano MA, Peer CW, Smith JM, et al. Chemoprevention of mammary carcinogenesis in the rat: combined use of raloxifene and 9-CIS-retinoic acid. J Natl Cancer Inst 1996;88:123–125.

    Article  PubMed  CAS  Google Scholar 

  272. Love-Schimenti CD, Gibson DF, Ratnam AV, Bikle DD. Antiestrogen potentiation of antiproliferative effects of vitamin D3 analogues in breast cancer cells. Cancer Res 1996;56:2789–2794.

    PubMed  CAS  Google Scholar 

  273. Conley B, O’Shaughnessy J, Prindiville S, et al. Pilot trial of the safety, tolerability, and retinoid levels of N-(4-hydroxyphenyl) retinamide in combination with tamoxifen in patients at high risk for developing invasive breast cancer. J Clin Oncol 2000;18:275–283.

    PubMed  CAS  Google Scholar 

  274. Wang Q, Lee D, Sysounthone V, et al. 1,25-Dihydroxyvitamin D3 and retinoic acid analogues induce differentiation in breast cancer cells with function-and cell-specific additive effects. Breast Cancer Res Treat 2001;67:157–168.

    Article  PubMed  CAS  Google Scholar 

  275. Brueggemeier RW, Quinn AL, Parrett ML, et al. Correlation of aromatase and cyclooxygenase gene expression in human breast cancer specimens. Cancer Lett 1999;140:27–35.

    Article  PubMed  CAS  Google Scholar 

  276. Sporn MB. Retinoids and demethylating agents—looking for partners. J Natl Cancer Inst 2000;92:780–781.

    Article  PubMed  CAS  Google Scholar 

  277. Pike MC, Spicer DV, Dahmoush L, Press MF. Estrogens, progestins, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev 1993;15:17–35.

    PubMed  CAS  Google Scholar 

  278. Boland GP, McKeown A, Chan KC, et al. Oestrogen withdrawal reduces cell proliferation in oestrogen receptor (ER) positive ductal carcinoma in situ (DCIS). Breast Cancer Res Treat 2001;69:251: abstr. no. 257.

    Google Scholar 

  279. Grizzle WE, Meyers RB, Oelschlager DK. Prognostic biomarkers in breast cancer: factors affecting immunohistochemical evaluation. Breast J 1995;1:243–250.

    Article  Google Scholar 

  280. Grizzle WE, Myers RB, Manne U, et al. Factors affecting immunohistochemical evaluation of biomarker expression in neoplasia. In John Walker’s Methods in Molecular Medicine—Tumor Marker Protocols. Hanausek M, Walaszek Z, eds. Humana Press, Inc., Totowa, NJ; 1998; pp.161–179.

    Google Scholar 

  281. Urban D, Myers R, Manne U, et al. Evaluation of biomarker modulation by fenretinide in prostate cancer patients. Eur J Urol 1999;35:429–438.

    Article  CAS  Google Scholar 

  282. Singletary E, Lieberman R, Atkinson N, et al. Novel translational model for breast cancer chemoprevention study: accrual to a presurgical intervention with tamoxifen and N-(4-hydroxyphenyl) retinamide. Cancer Epidemiol Biomarkers Prev 2000;9:1087–1090.

    PubMed  CAS  Google Scholar 

  283. Singletary SE, Atkinson EN, Hoque A, et al. Phase II clinical trial of N-(4-hydroxyphenyl)retinamide and tamoxifen administration before definitive surgery for breast neoplasia. Clin Cancer Res 2002;8:2835–2842.

    PubMed  CAS  Google Scholar 

  284. Zalles C, Kimler BF, Kamel S, et al. Cytologic patterns in random aspirates from women at high and low risk for breast cancer. Breast J 1995;1:343–349.

    Article  Google Scholar 

  285. Pasqualini JR, Cortes-Prieto J, Chetrite G, et al. Concentrations of estrone, estradiol and their sulfates, and evaluation of sulfatase and aromatase activities in patients with breast fibroadenoma. Int J Cancer 1997;70:639–643.

    Article  PubMed  CAS  Google Scholar 

  286. Final Version: the uniform approach to breast fine-needle aspiration biopsy. Breast J 1997;3:149–168.

    Google Scholar 

  287. Bacus JW, Boone CW, Bacus JV, et al. Image morphometric nuclear grading of intraepithelial neoplastic lesions with applications to cancer chemoprevention trials. Cancer Epidemiol Biomarkers Prev 1999;8:1087–1094.

    PubMed  CAS  Google Scholar 

  288. Keshgegian AA, Cnaan A. Proliferation markers in breast carcinoma. Mitotic figure count, S-phase fraction, proliferating cell nuclear antigen, Ki-67 and MIB-1. Am J Clin Pathol 1995;104:42–49.

    PubMed  CAS  Google Scholar 

  289. Biesterfeld S, Kluppel D, Koch R. Rapid and prognostically valid quantification of immunohistochemical reactions by immunohistometry of the most positive tumour focus. A prospective follow-up study on breast cancer using antibodies against MIB-1, PCNA, ER, and PR. J Pathol 1998;185:25–31.

    Article  PubMed  CAS  Google Scholar 

  290. Fisher B, Dignam J, Wolmark N, et al. Tamoxifen in treatment of intraductal breast cancer: National Surgical Adjuvant Breast and Bowel Project B-24 randomised controlled trial. Lancet 1999;353:1993–2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Fabian, C.J., Kimler, B.F., Mayo, M.S., Grizzle, W.E., Masood, S., Ursin, G. (2005). Clinical Approaches to Discovering and Testing New Breast Cancer Prevention Drugs. In: Kelloff, G.J., Hawk, E.T., Sigman, C.C. (eds) Cancer Chemoprevention. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59259-768-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-768-0_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-077-9

  • Online ISBN: 978-1-59259-768-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics