Skip to main content

Genetic Polymorphisms and Risk Assessment for Cancer Chemoprevention

  • Chapter
Cancer Chemoprevention

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 852 Accesses

Abstract

Cancer risk carries wide interindividual variation; only a fraction of the population exposed to a known carcinogen develops cancer. Genetic susceptibility is both inherited and acquired. Genes that affect cancer susceptibility can be found in those controlling behavior, carcinogen metabolism, and cellular response to carcinogen exposure. Genetic traits affect DNA repair, cell cycle control, and immune response. Polymorphic genetic variants are under intense study. It stands to reason that if genetic traits that affect cancer risk can be measured, these traits would also govern responses to cancer prevention strategies such as chemoprevention. Cancer prevention strategies may become more focused if it is possible to identify susceptible subgroups of the population. Thus, incorporating such measures should lead to more rational chemoprevention studies, allowing for smaller sample size and shorter duration. This chapter describes concepts underlying genetic susceptibility and current technology used to assess it, provides specific examples of low-penetrance genes involved in cancer susceptibility, and comments on the implications for cancer prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Waldron HA. A brief history of scrotal cancer. Br J Ind Med 1983;40:390–401.

    PubMed  CAS  Google Scholar 

  2. Rothman N, Wacholder S, Caparoso NE, et al. The use of common genetic polymorphisms to enhance the epidemiologic study of environmental carcinogens. Biochem Biophys Acta 2001;1471:c1–c10.

    PubMed  CAS  Google Scholar 

  3. Goodman GE. Prevention of lung cancer. Crit Rev Oncol Hematol 2000;33:187–197.

    Article  PubMed  CAS  Google Scholar 

  4. Harris CC. Interindividual variation among humans in carcinogen metabolism, DNA adduct formation and DNA repair. Carcinogenesis 1989;10:1563–1566.

    Article  PubMed  CAS  Google Scholar 

  5. Lai C, Shields PG. The role of interindividual variation in human carcinogenesis. J Nutr 1999; 129:552S–555S.

    PubMed  CAS  Google Scholar 

  6. Perera FP. Molecular epidemiology: on the path of prevention? J Natl Cancer Inst 2000a;92:602–612.

    Article  PubMed  CAS  Google Scholar 

  7. Ponder BAJ. Cancer genetics. Nature 2001;411:336–341.

    Article  PubMed  CAS  Google Scholar 

  8. Streuwing JP, Hartgre P, Wacholder S, et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 1997;336:1401–1408.

    Article  Google Scholar 

  9. Perera FP. Environment and cancer: who are susceptible? Science 1997;278:1068–1073.

    Article  PubMed  CAS  Google Scholar 

  10. Shields PG, Harris CC. Cancer risk and low-penetrance susceptibility genes in gene-environment interactions. J Clin Oncol 2000;18:2309–2315.

    PubMed  CAS  Google Scholar 

  11. Nakachi K, Imai K, Hayashi S, Kawajiri K. Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population. Cancer Res 1993;53:2994–2999.

    PubMed  CAS  Google Scholar 

  12. Vineis P, Bartsch H, Caparoso N, et al. Genetically based N-acetyltransferase metabolic polymorphism and low-level environmental exposure to carcinogens. Nature 1994;369: 154–156.

    Article  PubMed  CAS  Google Scholar 

  13. Perera FP, Weinstein IB. Molecular epidemiology: recent advances and future directions. Carcinogenesis 2000b;21: 517–524.

    Article  PubMed  CAS  Google Scholar 

  14. Schairer E, Schoniger E. Lung cancer and tobacco consumption. Intl J Epidemiol 2001;30: 24–27.

    Article  CAS  Google Scholar 

  15. Perera FP, Santella RM, Brenner D, et al. Application of biological markers to the study of lung cancer causation and prevention. IARC Sci Publ 1988;89:451–459.

    PubMed  Google Scholar 

  16. Rock CL, Lampe JW, Patterson RE. Nutrition, genetics and risks of cancer. Annu Rev Public Health 2000;21:47–64.

    Article  PubMed  CAS  Google Scholar 

  17. Crofts F, Taioli E, Trachman J, et al. Functional significance of different human CYP1A1 genotypes. Carcinogenesis 1994;15:2961–2963.

    Article  PubMed  CAS  Google Scholar 

  18. Kihara M, Noda K. Risk of smoking for squamous and small carcinomas of the lung modulated by combinations of CYP1A1 and GSTM1 gene polymorphisms in a Japanese population. Carcinogenesis 1995;16:2331–2336.

    Article  PubMed  CAS  Google Scholar 

  19. Kawajiri K, Eguchi H, Nakachi K, et al. Association of CYP1A1 germ line polymorphisms with mutations of the p53 gene in lung cancer. Cancer Res 1996;56:72–76.

    PubMed  CAS  Google Scholar 

  20. Nakachi K, Imai K, Hayashi S, et al. Genetic susceptibility to squamous cell carcinoma of the lung in relation to cigarette smoking dose. Cancer Res 1991;51:5177–5180.

    PubMed  CAS  Google Scholar 

  21. Okada T, Kawashima K, Fukushi S, et al. Association between a cytochrome P450 CYP1A1 genotype and incidence of lung cancer. Pharmacogenetics 1994;4:333–340.

    Article  PubMed  CAS  Google Scholar 

  22. Bouchardy C, Benhamou S, Jourenkova N, et al. Metabolic genetic polymorphisms and susceptibility to lung cancer. Lung Cancer 2001;32:109–112.

    Article  PubMed  CAS  Google Scholar 

  23. Lang NP, Butler MA, Massengill J, et al. Rapid metabolic phenotypes of acetyltransferase and cytochrome P4501A2 and putative exposure to food-borne heterocyclic amines increase the risk for colorectal cancer or polyps. Cancer Epidemiol Biomarkers Prev 1994;3:675–682.

    PubMed  CAS  Google Scholar 

  24. Raner GM, Vaz AD, Coon MJ. Metabolism of all-trans, 9-cis, and 13-cis isomers of retinal by purified isozymes of microsomal cytochrome P450 and mechanism-based inhibition of retinoid oxidation by citral. Mol Pharmacol 1996;49:515–522.

    PubMed  CAS  Google Scholar 

  25. Roberts ES, Vaz AD, Coon MJ. Role of isozymes of rabbit microsomal cytochrome P450 in the metabolism of retinoic acid, retinol, and retinal. Mol Pharmacol 1992;41: 427–433.

    PubMed  CAS  Google Scholar 

  26. Albanes D, Heinonen OP, Taylor PR, et al. Alpha-tocopherol and beta-carotene supplements and lung cancer in the alpha-tocopherol, beta carotene cancer prevention study compliance. J Natl Cancer Inst 1996;88:1560–1570.

    Article  PubMed  CAS  Google Scholar 

  27. Blumberg J, Block G. The alpha-tocopherol beta-carotene cancer prevention study in Finland. Nutr Rev 1994;52:242–245.

    Article  PubMed  CAS  Google Scholar 

  28. Gradelet S, Leclerc J, Siess MH, Astorg PO. Beta-apo-8′-carotenal, but not beta-carotene, is a strong inducer of liver cytochromes P4501A1 and 1A2 in rat. Xenobiotica 1996;26:909–919.

    Article  PubMed  CAS  Google Scholar 

  29. McGlynn KA, Rosvold EA, Lustbader ED, et al. Susceptibility to hepatocellular carcinoma is associated with genetic variation in the enzymatic detoxification of aflotoxin B1. Proc Natl Acad Sci USA 1995;92:2384–2387.

    Article  PubMed  CAS  Google Scholar 

  30. Spareboom A, Nooter K. Does P-glycoprotein play a role in anti-cancer drug pharmacokinetics? Drug Resist Update 2000;3:357–363.

    Article  Google Scholar 

  31. Goodman MT, McDuffie K, Kolonie LN, et al. Case-control study of ovarian cancer and polymorphisms in genes involved in catecholestrogen formation and metabolism. Cancer Epidemiol Biomarkers Prev 2001;10: 209–216.

    PubMed  CAS  Google Scholar 

  32. Watanabe J, Shimada T, Gillam EM, et al. Association of CYP1B1 genetic polymorphism with incidence of breast and lung cancer. Pharmacogenetics 2000;10:25–33.

    Article  PubMed  CAS  Google Scholar 

  33. Spivack SD, Hurteau GJ, Reilly AA, et al. CYP1B1 expression in human lung. Drug Metab Dispos 2001; 29:916–922.

    PubMed  CAS  Google Scholar 

  34. Tang YM, Green BL, Chen GF, et al. Human CYP1B1 Leu432Val gene polymorphism: ethnic distribution in African-Americans, Caucasians and Chinese; oestradiol hydroxylase activity; and distribution in prostate cancer cases and controls. Pharmacogenetics 2000;10:761–766.

    Article  PubMed  CAS  Google Scholar 

  35. Mollerup S, Ovrebo S, Haugen A. Lung carcinogenesis: reveratrol moduates the expression of genes involved in the metabolism of PAH in human bronchial epithelial cells. Int J Cancer 2001;92:18–25.

    Article  PubMed  CAS  Google Scholar 

  36. Desai PB, Nallani SC, Sane RS, et al. Induction of cytochrome P450 3A4 in primary human hepatocytes and activation of the human pregnane x receptor by tamoxifen and 4-hydroxytamoxifen. Drug Metab Dispos 2002; 30: 608–612.

    Article  PubMed  CAS  Google Scholar 

  37. Crewe HK, Ellis SW, Lennard MS, Tucker GT. Variable contribution of cytochrome P450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem Pharmacol 1997;53:171–178.

    Article  PubMed  CAS  Google Scholar 

  38. Dehal SS, Kupfer D. Cytochrome P-450 3A and 2D6 catalyze ortho hydroxylation of 4-hydroxytamoxifen and 3-hydroxytamoxifen (droloxifene) yielding tamoxifen catechol: involvement of catechols in covalent biding to hepatic proteins. Drug Metab Dispos 1999;27:681–688.

    PubMed  CAS  Google Scholar 

  39. Mannervik B, Awasthi YC, Board PG, et al. Nomenclature for human glutathione transferases. Biochem J 1992;282: 305–308.

    PubMed  CAS  Google Scholar 

  40. Harries LW, Stubbins MJ, Forman D, et al. Identification of genetic polymorphisms at glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 1997;18:641–644.

    Article  PubMed  CAS  Google Scholar 

  41. Pemble SE, Hallier E. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 1994;300:271–276.

    PubMed  CAS  Google Scholar 

  42. Seidegard J, Vorachek WR, Pero RW, Pearson WR. Hereditary differences in the expression of the human glutathione transferase activity on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci USA 1988;85: 7293–7297.

    Article  PubMed  CAS  Google Scholar 

  43. Brockmoller J, Cacorbil I, Kerb R, et al. Polymorphisms in xenobiotic conjugation and disease predisposition. Toxicol Lett 1998;102:173–183.

    Article  PubMed  Google Scholar 

  44. Rebbeck TR. Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility. Cancer Epidemiol Biomarkers Prev 1997;6:733–743.

    PubMed  CAS  Google Scholar 

  45. McWilliams JE, Sanderson BJ, Harris EL, et al. Glutathione-S-transferase M1(GSTM1) deficiency and lung cancer risk. Cancer Epidemiol Biomarkers Prev 1995;4:589–594.

    PubMed  CAS  Google Scholar 

  46. Bennett WP, Alavanja MC, Blomeke B, et al. Environmental tobacco smoke and genetic susceptibility as lung cancer risk factors in never-smoking women. J Natl Cancer Inst 1999;91:2009–2014.

    Article  PubMed  CAS  Google Scholar 

  47. Geisler SA, Olshan AF. GSTM1, GSTT1, and the risk of squamous cell carcinoma of the head and neck: a mini-HuGE review. Am J Epidemiol 2001;154:95–105.

    Article  PubMed  CAS  Google Scholar 

  48. Kato S, Bowman ED, Harrington AM, et al. Human lung carcinogen-DNA adduct levels mediated by genetic polymorphisms in vivo. J Natl Cancer Inst 1995;87:902–907.

    Article  PubMed  CAS  Google Scholar 

  49. Ryberg D, Skaug V, Hewer A, et al. Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis 1997;18: 1285–1289.

    Article  PubMed  CAS  Google Scholar 

  50. Naoe T, Tagawa Y, Kiyoi H, et al. Prognostic significance of the null genotype of glutathione S-transferase-T1 in patients with acute myeloid leukemia: increased early death after chemotherapy. Leukemia 2002;16:203–208.

    Article  PubMed  CAS  Google Scholar 

  51. Rebbeck TR, Walker AH, Jaffe JM, et al. Glutathione S-transferase-mu (GSTM1) and-theta (GSTT1) genotypes in the etiology of prostate cancer. Cancer Epidemiol Biomarkers Prev 1999;8:283–287.

    PubMed  CAS  Google Scholar 

  52. Allan JM, Wild PC, Rollinson S, et al. Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci USA 2001;98:11,592–11,597.

    Article  PubMed  CAS  Google Scholar 

  53. Hein DW, Doll MA, Fretland AJ, et al. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev 2000;9:29–42.

    PubMed  CAS  Google Scholar 

  54. Hein DW, Omichinski JG, Brewer JA, Weber WW. A unique pharmacogenetic expression of the N-acetylation polymorphism in the inbred hamster. J Pharmacol Exp Ther 1982;220:8–15.

    PubMed  CAS  Google Scholar 

  55. Cartwright RA, Glashan RW, Rogers HJ, et al. Role of N-acetyltransferase phenotypes in bladder carcinogenesis: a pharmacogenetic epidemiological approach to bladder cancer. Lancet 1982;2:842–845.

    Article  PubMed  CAS  Google Scholar 

  56. Ambrosone CB, Freudenheim JL, Graham S, et al. Cigarette smoking, N-acetyltransferase 2 genetic polymorphisms, and breast cancer risk. JAMA 1996;276:1494–1501.

    Article  PubMed  CAS  Google Scholar 

  57. van der Hel OL, Hein DW, Doll M, et al. N-acetyltransferase 2 genotype and smoking in relation to breast cancer in the Netherlands. Proc Am Assoc Cancer Res 2002;43:851–852, abst. no. 4220.

    Google Scholar 

  58. Chang-Claude JC, Kropp S, Bartsch H, Risch A. Active and passive smoking, NAT1*10 and NAT2 genotype and breast cancer risk. Proc Am Assoc Cancer Res 2002;43:852, abst.no. 4221.

    Google Scholar 

  59. Hunter DJ, Hankinson SE, Hough H, et al. A prospective study of NAT2 acetylation genotype, cigarette smoking, risk of breast cancer. Carcinogenesis 1997;18:2127–2132.

    Article  PubMed  CAS  Google Scholar 

  60. Millikan RC, Pittman GS, Newman B, et al. Cigarette smoking, N-acetyltransferases 1 and 2, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 1998;7:371–378.

    PubMed  CAS  Google Scholar 

  61. Sinha R, Caparoso N. Diet, genetic susceptibility and human cancer etiology. J Nutr 1999;129: 556S–559S.

    PubMed  CAS  Google Scholar 

  62. Deitz AC, Zheng W, Leff MA, et al. N-Acethyltransferase-2 genetic polymorphism, well-done meat intake, and breast cancer risk among postmenopausal women. Cancer Epidemiol Biomarkers Prev 2000;9:905–910.

    PubMed  CAS  Google Scholar 

  63. Potter JD. Colorectal cancer: molecules and populations. J Natl Cancer Inst 1999;91:916–932.

    Article  PubMed  CAS  Google Scholar 

  64. Bailey LB, Gregory JF. Polymorphisms of methylenetetrahydrofolate reductase and other enzymes: metabolic significance risks and impact on folate requirement. J Nutr 1999;129: 919–922.

    PubMed  CAS  Google Scholar 

  65. Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995;10: 111–113.

    Article  PubMed  CAS  Google Scholar 

  66. Austin H, Hooper WC, Dilley A, et al. The prevalence of two genetic traits related to venous thrombosis in whites and African-Americans. Thromb Res 1997;86:409–415.

    Article  PubMed  CAS  Google Scholar 

  67. Gudnason V, Stansbie D, Scott J, et al. C677T (thermolabile alanine/valine) polymorphism in methylenetetrahydrofolate reductase (MTHFR): its frequency and impact on plasma homocysteine concentration in different European populations. Atherosclerosis 1998;136:347–354.

    Article  PubMed  CAS  Google Scholar 

  68. Chen J, Giovannucci E, Kelsey K, et al. A methylenetetrahydrofolate reductase polymorphism and the risk of colorectal cancer. Cancer Res 1996;56:4862–4864.

    PubMed  CAS  Google Scholar 

  69. Chen J, Giovannucci E, Hankinson SE, et al. A prospective study of methylenetetrahydrofolate reductase and methionine synthase gene polymorphisms, and risk of colorectal adenoma. Carcinogenesis 1998;19: 2129–2132.

    Article  PubMed  CAS  Google Scholar 

  70. Chen J, Giovanucci E, Hunter DJ. MTHFR polymorphism, methyl-replete diets and the risk of colorectal carcinoma and adenoma among U.S. men and women: an example of geneenvironment interactions in colorectal carcinogenesis. J Nutr 1999;129:560S–564S.

    PubMed  CAS  Google Scholar 

  71. Ma J, Stampfer MJ, Giovannucci E, et al. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res 1997;57: 1098–1102.

    PubMed  CAS  Google Scholar 

  72. Chen LH, Liu ML, Hwang HY, et al. Human methionine synthase cDNA cloning, gene localization, and expression. J Biol Chem 1997;272:3628–3634.

    Article  PubMed  CAS  Google Scholar 

  73. van der Put NM, van der Molen EF, Kluijtmans LA, et al. Sequence analysis of the cooling region of human methionine synthase: relevance to hyperhomocysteinaemia in neural-tube defects and vascular disease. Q J Med 1997b; 90:511–517.

    Google Scholar 

  74. Dekou V, Gunadson V, Hawe E, et al. Gene-environment and gene-gene interaction in the determination of plasma homocysteine levels in healthy middle-aged men. Thromb Haemost 2001;85:67–74.

    PubMed  CAS  Google Scholar 

  75. Ma J, Stampfer MJ, Christensen B, et al. A polymorphism of the methionine synthase gene: association with plasma folate, vitamin B12, homocyst(e)ine, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 1999; 8: 825–829.

    PubMed  CAS  Google Scholar 

  76. Dunning AM, Healey CS, Pharoah PD, et al. A systematic review of genetic and polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev 1999;8:843–854.

    PubMed  CAS  Google Scholar 

  77. Carey AH, Waterworth D, Patel K, et al. Polycystic ovaries and premature male pattern baldness are associated with one allele of the steroid metabolism gene CYP17. Hum Mol Genet 1994;3:1873–1876.

    Article  PubMed  CAS  Google Scholar 

  78. Feigelson HS, Coetzee GA, Kolonel LN, et al. A polymorphism in the CYP 17 gene increases the risk of breast cancer. Cancer Res 1997;57:1063–1065.

    PubMed  CAS  Google Scholar 

  79. Dunning AM, Healey CS, Pharoah PD, et al. No association between a polymorphism in the steroid metabolism gene CYP 17 and risk of breast cancer. Br J Cancer 1998;77: 2045–2047.

    PubMed  CAS  Google Scholar 

  80. Helzlsouer KJ, Huang HY, Strickland PT, et al. Association between CYP 17 polymorphism and the development of breast cancer. Cancer Epidemiol Biomarkers Prev 1998;7:945–949.

    PubMed  CAS  Google Scholar 

  81. Weston A, Pan CF, Bleiweiss IJ, et al. CYP17 genotype and breast cancer risk. Cancer Epidemiol Biomarkers Prev 1998;7:941–944.

    PubMed  CAS  Google Scholar 

  82. Stanford JL, Nooman EA, Iwasaki L, et al. A polymorphism in the CYP 17 gene and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2002;11:243–247.

    PubMed  CAS  Google Scholar 

  83. Haiman CA, Hankinson SE, Spiegelman D, et al. A tetranucleotide repeat polymorphism in CYP 19 and breast cancer risk. Int J Cancer 2000;87:204–210.

    Article  PubMed  CAS  Google Scholar 

  84. Kristensen VN, Andersen TI, Lindblom A, et al. A rare CYP 19 (aromatase) variant may increase the risk of breast cancer. Pharmacogenetics 1998;8:43–48.

    Article  PubMed  CAS  Google Scholar 

  85. Siegelmann-Danieli N, Buetow KH. Constitutional genetic variation at the human aromatase gene (CYP 19) and breast cancer risk. Br J Cancer 1999;79:456–463.

    Article  PubMed  CAS  Google Scholar 

  86. Thompson PA, Shields PG, Freudenheim JL, et al. Genetic polymorphisms in catechol-O-methyltransferase, menopausal status, and breast cancer risk. Cancer Res 1998; 58:2107–2110.

    PubMed  CAS  Google Scholar 

  87. Lavigne JA, Helzlsouer KJ, Huang HY, et al. An association between the allele coding for a low activity variant of catechol-O-methyltranferase and the risk for breast cancer. Cancer Res 1997;57:5493–5497.

    PubMed  CAS  Google Scholar 

  88. Miller MC, Mohrenweiser HW, Bell DA. Genetic variability in susceptibility and response to toxicants. Toxicol Lett 2001;120:269–280.

    Article  PubMed  CAS  Google Scholar 

  89. Shen MR, Jones IM, Mohrenweiser H. Nonconservative amino acid substitution variants exist at polymorphism frequency in DNA repair genes in healthy humans. Cancer Res 1998;58:604–608.

    PubMed  CAS  Google Scholar 

  90. Lunn RM, Langlois RG, Hsieh LL, et al. XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res 1999;59:2557–2561.

    PubMed  CAS  Google Scholar 

  91. Matullo G, Palli D, Peluso M, et al. XRCC1, XRCC3, XPD gene polymorphisms, smoking and 32P-DNA adducts in a sample of healthy subjects. Carcinogenesis 2001;22: 1437–1445.

    Article  PubMed  CAS  Google Scholar 

  92. Divine KK, Gilliland FD, Crowell RE, et al. The XRCC1 399 glutamine allele is a risk factor for adenocarcinoma of the lung. Mutat Res 2001;461:273–278.

    PubMed  CAS  Google Scholar 

  93. Park JY, Lee SY, Jeon HS, et al. Polymorphism of the DNA repair gene XRCC1 and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev 2002;11:23–27.

    PubMed  CAS  Google Scholar 

  94. Sturgis EM, Castillo EJ, Li L, et al. Polymorphisms of DNA repair gene XRCC1 in squamous cell carcinoma of head and neck. Carcinogenesis 1999;20:2125–2129.

    Article  PubMed  CAS  Google Scholar 

  95. Olshan AF, Watson MA, Weissler MC, Bell DA. XRCC1 polymorphisms and head and neck cancer. Cancer Lett 2002;178:181–186.

    Article  PubMed  CAS  Google Scholar 

  96. Abdel-Rahman SZ, Soliman AS, Bondy M, et al. Inheritance of the 194Trp and the 399Gln variant alleles of the DNA repair gene XRCC1 are associated with increased risk of early-onset colorectal carcinoma in Egypt. Cancer Lett 2000;159:79–86.

    Article  PubMed  CAS  Google Scholar 

  97. Nelson HH, Kelsey KT, Mott LA, Karagas MR. The XRCC1 Arg399Gln polymorphism, sunburn and non-melanoma skin cancer: evidence of gene-environment interaction. Cancer Res 2002;62:152–155.

    PubMed  CAS  Google Scholar 

  98. Spitz MR, Wu X, Wang Y, et al. Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients. Cancer Res 2001;61:1354–1357.

    PubMed  CAS  Google Scholar 

  99. Butkiewicz D, Rusin M, Enewold L, et al. Genetic polymorphisms in DNA repair genes and risk of lung cancer. Carcinogenesis 2001;22:593–597.

    Article  PubMed  CAS  Google Scholar 

  100. Fink L, Collins FS. The human genome project: view from the National Institutes of Health. J Am Med Wom Assoc 1997;52:4–15.

    PubMed  CAS  Google Scholar 

  101. Strausberg RL, Dahl CA, Klausner RD. New opportunities for uncovering the molecular basis of cancer. Nature Genet 197;15:415–416.

    Google Scholar 

  102. Kwov PY. Approaches to allele frequency determination. Pharmacogenomics 2000;1:231–235.

    Article  Google Scholar 

  103. Guo Z, Gatterman MS, Hood L, et al. Oligonucleotide arrays for high-throughput SNPs detection in the MHC class I genes: HLA-B as a model system. Genome Res 2002;12:447–457.

    PubMed  CAS  Google Scholar 

  104. Schaid DJ, Buetow K, Weeks DE, et al. Discovery of cancer susceptibility genes: study designs, analytic approaches, and trends in technology. J Natl Cancer Inst Monogr 1999;26:1–16.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

de Assis, S., Shields, P.G. (2005). Genetic Polymorphisms and Risk Assessment for Cancer Chemoprevention. In: Kelloff, G.J., Hawk, E.T., Sigman, C.C. (eds) Cancer Chemoprevention. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59259-768-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-768-0_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-077-9

  • Online ISBN: 978-1-59259-768-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics