Antiinflammatories and Chemoprevention

NSAIDs and Other Inhibitors of Arachidonic Acid Metabolism
  • Gary B. Gordon
  • Gary J. Kelloff
  • Caroline C. C. Sigman
Part of the Cancer Drug Discovery and Development book series (CDD&D)


As demonstrated in this and the following chapters of this volume, there has been a virtual explosion of interest in the prostanoids—their formation, metabolism and catabolism, physiologic roles, and pathophysiologic involvement in the related disease processes of inflammation and carcinogenesis. With the understanding that there are two major forms of cyclooxygenase (COX-1 and COX-2), an enzyme that is critical to prostanoid synthesis, and the development of pharmacologic and genetic tools to selectively inhibit each form and examine the consequences of their activity, it is possible to conduct meaningful animal experiments and human trials to establish or repudiate their clinical importance. This opportunity has opened many challenging and valuable discussions within and among the academic, regulatory, patient, and pharmaceutical communities.


Arachidonic Acid Cancer Prevention Familial Adenomatous Polyposis Colorectal Adenoma Aberrant Crypt Focus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zenser TV, Davis BB. Arachidonic acid metabolism, in Cellular and Molecular Targets for Chemoprevention. Steele VE, Stoner GD, Boone CW, Kelloff GJ, eds. CRC Press, Boca Raton, FL 1992, pp. 225–243.Google Scholar
  2. 2.
    Taketo MM. Cyclooxygenase-2 inhibitors in tumorigenesis (part II). J Natl Cancer Inst 1998;90:1609–1620.PubMedCrossRefGoogle Scholar
  3. 3.
    Taketo MM. Cyclooxygenase-2 inhibitors in tumorigenesis (part I). J Nall Cancer Inst 1998;90:1529–1536.CrossRefGoogle Scholar
  4. 4.
    Herschman HR. Function and regulation of prostaglandin synthase 2. Adv Exp Med Biol 1999;469:3–8.PubMedCrossRefGoogle Scholar
  5. 5.
    FitzGerald GA, Patrono C. The coxibs, selective inhibitors of cyclooxygenase-2. N Engl J Med 2001;345:433–442.PubMedCrossRefGoogle Scholar
  6. 6.
    Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001;294:1871–1875.PubMedCrossRefGoogle Scholar
  7. 7.
    Kelloff GJ. Perspectives on cancer chemoprevention research and drug development. Adv Cancer Res 2000;78:199–334.PubMedCrossRefGoogle Scholar
  8. 8.
    Gupta RA, DuBois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 2001;1:11–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Anderson WF, Umar A, Viner JL, Hawk ET. The role of cyclooxygenase inhibitors in cancer prevention. Curr Pharm Des 2002:8:1035–1062.PubMedCrossRefGoogle Scholar
  10. 10.
    Howe LR, Dannenberg AJ. A role for cyclooxygenase-2 inhibitors in the prevention and treatment of cancer. Semin Oncol 2002;29:111–119.PubMedGoogle Scholar
  11. 11.
    Kelloff GJ, Steele VE, Sigman CC. Chemoprevention of cancer by NSAIDs and selective COX-2 blockade, in COX-2 Blockade in Cancer Prevention and Therapy. Harris RE, ed. Humana Press, Totowa, NJ, 2002, pp.279–300.Google Scholar
  12. 12.
    Marnett LJ, DuBois RN. COX-2: A Target for Colon Cancer Prevention. Annu Rev Pharmacol Toxicol 2002;42:55–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Kelloff GJ, Sigman CC. Arachidonic acid pathway in cancer prevention, in Mechanisms in Carcinogenesis and Cancer Prevention. Vainio HU, Hietanen E, eds. H Springer-Verlag, Heidelberg, Germany, 2003, pp.187–210.Google Scholar
  14. 14.
    Samuelsson B. An elucidation of the arachidonic acid cascade. Discovery of prostaglandins, thromboxane and leukotrienes. Drugs 1987;33 Suppl 1:2–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Needleman P, Turk J, Jakschik BA, et al. Arachidonic acid metabolism. Annu Rev Biochem 1986;55:69–102.PubMedCrossRefGoogle Scholar
  16. 16.
    Smith WL, Marnett LJ, De Witt DL. Prostaglandin and thromboxane biosynthesis. Pharmacol Ther 1991;49:153–179.PubMedCrossRefGoogle Scholar
  17. 17.
    Watanabe K, Kawamori T, Nakatsugi S, et al. Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Res 1999;59:5093–5096.PubMedGoogle Scholar
  18. 18.
    Adam L, Mazumdar A, Sharma T, et al. A three-dimensional and temporo-spatial model to study invasiveness of cancer cells by heregulin and prostaglandin E2. Cancer Res 2001;61:81–87.PubMedGoogle Scholar
  19. 19.
    Marnett LJ. Aspirin and the potential role of prostaglandins in colon cancer. Cancer Res 1992;52:5575–5589.PubMedGoogle Scholar
  20. 20.
    Wolfe MM, Lichtenstein DR, Singh G. Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs. N Engl J Med 1999;340:1888–1899.PubMedCrossRefGoogle Scholar
  21. 21.
    Kulkarni SK, Jain NK, Singh A. Cyclooxygenase isoenzymes and newer therapeutic potential for selective COX-2 inhibitors. Methods Find Exp Clin Pharmacol 2000;22:291–298.PubMedCrossRefGoogle Scholar
  22. 22.
    Smith WL, De Witt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 2000;69:145–182.PubMedCrossRefGoogle Scholar
  23. 23.
    Sheng H, Shao J, DuBois RN. K-Ras-mediated increase in cyclooxygenase 2 mRNA stability involves activation of the protein kinase B 1. Cancer Res 2001;61:2670–2675.PubMedGoogle Scholar
  24. 24.
    Cok SJ, Morrison AR. The 3’-untranslated region of murine cyclooxygenase-2 contains multiple regulatory elements that alter message stability and translational efficiency. J Biol Chem 2001;276:23,179–23,185.CrossRefGoogle Scholar
  25. 25.
    Dixon DA, Tolley ND, King PH, et al. Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J Clin Investig 2001;108:1657–1665.PubMedGoogle Scholar
  26. 26.
    Subbaramaiah K, Dannenberg AJ. Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci 2003;24:96–102.PubMedCrossRefGoogle Scholar
  27. 27.
    Steele VE, Holmes CA, Hawk ET, et al. Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomark Prey 1999;8:467–483.Google Scholar
  28. 28.
    Samuelsson B, Dahlen SE, Lindgren JA, et al. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 1987;237:1171–1176.PubMedCrossRefGoogle Scholar
  29. 29.
    Masferrer J. Approach to angiogenesis inhibition based on cyclooxygenase-2. Cancer J 2001;7 Suppl 3:S144-S150.Google Scholar
  30. 30.
    Harris RE. Cyclooxygenase-2 blockade in cancer prevention and therapy: widening the scope of impact, in COX-2 Blockade in Cancer Prevention and Therapy. Harris RE, ed. Humana Press Totowa, NJ, 2002,pp.341–365.CrossRefGoogle Scholar
  31. 31.
    Xie W, Herschman HR. Transcriptional regulation of prostaglandin synthase 2 gene expression by plateletderived growth factor and serum. J Biol Chem 1996;271:31,742–31,748.Google Scholar
  32. 32.
    Herschman HR, Reddy ST, Xie W. Function and regulation of prostaglandin synthase-2. Adv Exp Med Biol 1997;407:61–66.PubMedGoogle Scholar
  33. 33.
    Subbaramaiah K, Norton L, Gerald W, Dannenberg AJ. Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer: evidence for involvement of AP-1 and PEA3. J Biol Chem 2002;277:18,649–18,657.CrossRefGoogle Scholar
  34. 34.
    Weitzman SA, Gordon LI. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood 1990:76:655–663.PubMedGoogle Scholar
  35. 35.
    Balch CM, Dougherty PA, Cloud GA, Tilden AB. Prostaglandin E2-mediated suppression of cellular immunity in colon cancer patients. Surgery 1984;95:71–77.PubMedGoogle Scholar
  36. 36.
    McDougall CJ, Ngoi SS, Goldman IS, et al. Reduced expression of HLA class I and II antigens in colon cancer. Cancer Res 1990;50:8023–8027.PubMedGoogle Scholar
  37. 37.
    Wilgus TA, Ross MS, Parrett ML, Oberyszyn TM. Topical application of a selective cyclooxygenase inhibitor suppresses UVB mediated cutaneous inflammation. Prostaglandins Other Lipid Mediat 2000;62:367–384.PubMedCrossRefGoogle Scholar
  38. 38.
    Bedi A, Pasricha PJ, Akhtar AJ, et al. Inhibition of apoptosis during development of colorectal cancer. Cancer Res 1995;55:1811–1816.PubMedGoogle Scholar
  39. 39.
    Tsujii M, DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 1995;83:493–501.PubMedCrossRefGoogle Scholar
  40. 40.
    Hara A, Yoshimi N, Niwa M, et al. Apoptosis induced by NS-398, a selective cyclooxygenase-2 inhibitor, in human colorectal cancer cell lines. Jpn J Cancer Res 1997;88:600–604.PubMedCrossRefGoogle Scholar
  41. 41.
    Sheng H, Williams CS, Shao J, et al. Induction of cyclooxygenase-2 by activated Ha-ras oncogene in Rat-1 fibroblasts and the role of mitogen-activated protein kinase pathway. J Biol Chem 1998;273:22,120–22,127.CrossRefGoogle Scholar
  42. 42.
    Mohammed SI, Knapp DW, Bostwick DG, et al. Expression of cyclooxygenase-2 (COX-2) in human invasive transitional cell carcinoma (TCC) of the urinary bladder. Cancer Res 1999;59:5647–5650.PubMedGoogle Scholar
  43. 43.
    Sawaoka H, Tsuji S, Tsujii M, et al. Expression of the cyclooxygenase-2 gene in gastric epithelium. J Clin Gastroenterol 1997;25 Suppl 1:S105-S110.CrossRefGoogle Scholar
  44. 44.
    Liu XH, Yao S, Kirschenbaum A, Levine AC. NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bc1–2 expression in LNCaP cells. Cancer Res 1998;58:4245–4249.PubMedGoogle Scholar
  45. 45.
    Ding XZ, Tong WG, Adrian TE. Blockade of cyclooxygenase-2 inhibits proliferation and induces apoptosis in human pancreatic cancer cells. Anticancer Res 2000;20:2625–2631.PubMedGoogle Scholar
  46. 46.
    Zimmermann KC, Sarbia M, Weber AA, et al. Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res 1999;59:198–204.PubMedGoogle Scholar
  47. 47.
    Hida T, Kozaki K, Muramatsu H, et al. Cyclooxygenase-2 inhibitor induces apoptosis and enhances cytotoxicity of various anticancer agents in non-small cell lung cancer cell lines. Clin Cancer Res 2000;6:2006–2011.PubMedGoogle Scholar
  48. 48.
    Yao R, Rioux N, Castonguay A, You M. Inhibition of COX-2 and induction of apoptosis: two determinants of nonsteroidal anti-inflammatory drugs’ chemopreventive efficacies in mouse lung tumorigenesis. Exp Lung Res 2000;26:731–742.PubMedCrossRefGoogle Scholar
  49. 49.
    Li M, Lotan R, Levin B, et al. Aspirin induction of apoptosis in esophageal cancer: a potential for chemoprevention. Cancer Epidemiol Biomark Prey 2000;9:545–549.Google Scholar
  50. 50.
    Nishimura G, Yanoma S, Mizuno H, et al. A selective cyclooxygenase-2 inhibitor suppresses tumor growth in nude mouse xenografted with human head and neck squamous carcinoma cells. Jpn J Cancer Res 1999;90:1152–1162.PubMedCrossRefGoogle Scholar
  51. 51.
    Tsujii M, Kawano S, Tsuji S, et al. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 1998;93:705–716.PubMedCrossRefGoogle Scholar
  52. 52.
    Tomozawa S, Tsuno NH, Sunami E, et al. Cyclooxygenase-2 overexpression correlates with tumour recurrence, especially haematogenous metastasis, of colorectal cancer. Br J Cancer 2000;83:324–328.PubMedCrossRefGoogle Scholar
  53. 53.
    Uefuji K, Ichikura T, Mochizuki H. Cyclooxygenase-2 expression is related to prostaglandin biosynthesis and angiogenesis in human gastric cancer. Clin Cancer Res 2000;6:135–138.PubMedGoogle Scholar
  54. 54.
    Koki AT, Leahy KM, Masferrer JL. Potential utility of COX-2 inhibitors in chemoprevention and chemotherapy. Expert Opin Investig Drugs 1999;8:1623–1638.PubMedCrossRefGoogle Scholar
  55. 55.
    Masferrer JL, Koki A, Seibert K. COX-2 inhibitors. A new class of antiangiogenic agents. Ann NY Acad Sci 1999;889:84–86.PubMedCrossRefGoogle Scholar
  56. 56.
    Koki A, Khan NK, Woerner BM, et al. Cyclooxygenase-2 in human pathological disease. Adv Exp Med Biol 2002;507:177–184.PubMedCrossRefGoogle Scholar
  57. 57.
    Dormond O, Foletti A, Paroz C, Ruegg C. NSAIDs inhibit alpha V beta 3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis. Nat Med 2001;7:1041–1047.PubMedCrossRefGoogle Scholar
  58. 58.
    Jones MK, Wang H, Peskar BM, et al. Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing. Nat Med 1999;5:1418–1423.PubMedCrossRefGoogle Scholar
  59. 59.
    Sawaoka H, Tsuji S, Tsujii M, Gunawan ES, Sasaki Y, Kawano S, et al. Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo. Lab Investig 1999:79:1469–1477.PubMedGoogle Scholar
  60. 60.
    Suh N, Wang Y, Williams CR, et al. A new ligand for the peroxisome proliferator-activated receptor-gamma (PPARgamma), GW7845, inhibits rat mammary carcinogenesis. Cancer Res 1999;59:5671–5673.PubMedGoogle Scholar
  61. 61.
    Majima M, Hayashi I, Muramatsu M, et al. Cyclo-oxygenase-2 enhances basic fibroblast growth factor-induced angiogenesis through induction of vascular endothelial growth factor in rat sponge implants. Br J Pharmacol 2000;130:641–649.PubMedCrossRefGoogle Scholar
  62. 62.
    Mehta RG, Williamson E, Patel MK, Koeffler HP. A ligand of peroxisome proliferator-activated receptor gamma, retinoids, and prevention of preneoplastic mammary lesions. J Natl Cancer Inst 2000;92:418–423.PubMedCrossRefGoogle Scholar
  63. 63.
    Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA 1997;94:3336–3340.PubMedCrossRefGoogle Scholar
  64. 64.
    Thun MJ, Henley SJ, Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 2002;94:252–266.PubMedCrossRefGoogle Scholar
  65. 65.
    Sorensen HT, Friis S, Norgard B, et al. Risk of cancer in a large cohort of nonaspirin NSAID users: a population-based study. Br J Cancer 2003;88:1687–1692.PubMedCrossRefGoogle Scholar
  66. 66.
    Sheey OE, Zhao SZ, Raymoundo AL, et al. Celecoxib associated with reduced risk of superficial bladder cancer (SBC) recurrence. Proc Amer Soc Clin Oncol Abstract 2003;1539.Google Scholar
  67. 67.
    Grubbs CJ, Lubet RA, Koki AT, et al. Celecoxib inhibits N-butyl-N-(4-hydroxybutyl)-nitrosamine-induced urinary bladder cancers in male B6D2F1 mice and female Fischer344 rats. Cancer Res 2000;60:5599–5602.PubMedGoogle Scholar
  68. 68.
    Fischer SM, Lo HH, Gordon GB, et al. Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, and indomethacin against ultraviolet light-induced skin carcinogenesis. Mol Carcinog 1999;25:231–240.PubMedCrossRefGoogle Scholar
  69. 69.
    Fischer SM, Conti CJ, Viner J, et al. Celecoxib and difluoromethylornithine in combination have strong therapeutic activity against UV-induced skin tumors in mice. Carcinogenesis 2003;24:945–952.PubMedCrossRefGoogle Scholar
  70. 70.
    Kelloff GJ, Sigman CC, Johnson KM, et al. Perspectives on surrogate end points in the development of drugs that reduce the risk of cancer. Cancer Epidemiol Biomark Prey 2000;9:127–137.Google Scholar
  71. 71.
    O’Shaughnessy JA, Kelloff GJ, Gordon GB, et al. Treatment and prevention of intraepithelial neoplasia: an important target for accelerated new agent development. Clin Cancer Res 2002;8:314–346.PubMedGoogle Scholar
  72. 72.
    Metz DC, Alberts DS. Gastrointestinal cancer prevention in the United States: the road ahead. Cancer Epidemiol Biomark Prey 2003;12:81–83.Google Scholar
  73. 73.
    Giardiello FM, Hamilton SR, Krush AJ, et al. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med 1993;328:1313–1316.PubMedCrossRefGoogle Scholar
  74. 74.
    Cruz-Correa M, Hylind LM, Romans KE, Booker SV, Giardiello FM. Long-term treatment with sulindac in familial adenomatous polyposis: a prospective cohort study. Gastroenterology 2002;122:641–645.PubMedCrossRefGoogle Scholar
  75. 75.
    Giardiello FM, Yang VW, Hylind LM, et al. Primary chemoprevention of familial adenomatous polyposis with sulindac. N Engl J Med 2002;346:1054–1059.PubMedCrossRefGoogle Scholar
  76. 76.
    Steinbach G, Lynch PM, Phillips RK, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 2000;342:1946–1952.PubMedCrossRefGoogle Scholar
  77. 77.
    Phillips RK, Wallace MH, Lynch PM, et al. A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis. Gut 2002;50:857–860.PubMedCrossRefGoogle Scholar
  78. 78.
    Oshima M, Murai N, Kargman S, et al. Chemoprevention of intestinal polyposis in the Apcdelta716 mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer Res 2001;61:1733–1740.PubMedGoogle Scholar
  79. 79.
    Sandler RS, Halabi S, Baron JA, et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med 2003;348:883–890.PubMedCrossRefGoogle Scholar
  80. 80.
    Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R, et al. A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med 2003;348:891–899.PubMedCrossRefGoogle Scholar
  81. 81.
    Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 2001;286:954–959.PubMedCrossRefGoogle Scholar
  82. 82.
    McAdam BF, Catella-Lawson F, Mardini IA, et al. Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: the human pharmacology of a selective inhibitor of COX-2. Proc Natl Acad Sci USA 1999;96:272–277.PubMedCrossRefGoogle Scholar
  83. 83.
    Honn KV, Tang DG, Gao X, et al. 12-lipoxygenases and 12(S)-HETE: role in cancer metastasis. Cancer Metastasis Rev 1994;13:365–396.PubMedCrossRefGoogle Scholar
  84. 84.
    Honn KV, Timar J, Rozhin J, et al. A lipoxygenase metabolite, 12-(S)-HETE, stimulates protein kinase C-mediated release of cathepsin B from malignant cells. Exp Cell Res 1994;214:120–130.PubMedCrossRefGoogle Scholar
  85. 85.
    Schade UF, Ernst M, Reinke M, Wolter DT. Lipoxygenase inhibitors suppress formation of tumor necrosis factor in vitro and in vivo. Biochem Biophys Res Commun 1989;159:748–754.PubMedCrossRefGoogle Scholar
  86. 86.
    Masferrer JL, Rimarachin JA, Gerritsen ME, et al. 12(R)hydroxyeicosatrienoic acid, a potent chemotactic and angiogenic factor produced by the cornea. Exp Eye Res 1991;52:417–424.PubMedCrossRefGoogle Scholar
  87. 87.
    Liu B, Maher RJ, Hannun YA, et al. 12(S)-HETE enhancement of prostate tumor cell invasion: selective role of PKC alpha. J Natl Cancer Inst 1994;86:1145–1151.PubMedCrossRefGoogle Scholar
  88. 88.
    Liu YW, Chen BK, Chen CJ, et al. Epidermal growth factor enhances transcription of human arachidonate 12-lipoxygenase in A431 cells. Biochim Biophys Acta 1997;1344:38–46.PubMedCrossRefGoogle Scholar
  89. 89.
    Liu B, Maher RJ, De Jonckheere JP, et al. 12(S)-HETE increases the motility of prostate tumor cells through selective activation of PKC alpha. Adv Exp Med Biol 1997;400B:707–718.Google Scholar
  90. 90.
    Dethlefsen SM, Shepro D, D’Amore PA. Arachidonic acid metabolites in bFGF-, PDGF-, and serum-stimulated vascular cell growth. Exp Cell Res 1994;212:262–273.PubMedCrossRefGoogle Scholar
  91. 91.
    Chopra H, Timar J, Chen YQ, et al. The lipoxygenase metabolite 12(S)-HETE induces a cytoskeleton-dependent increase in surface expression of integrin alpha IIb beta 3 on melanoma cells. Int J Cancer 1991;49:774–786.PubMedCrossRefGoogle Scholar
  92. 92.
    Tang DG, Honn KV. 12-Lipoxygenase, 12(S)-HETE, and cancer metastasis. Ann NY Acad Sci 1994;744:199–215.PubMedCrossRefGoogle Scholar
  93. 93.
    Ghosh J, Myers CE. Central role of arachidonate 5-lipoxygenase in the regulation of cell growth and apoptosis in human prostate cancer cells. Adv Exp Med Biol 1999;469:577–582.PubMedCrossRefGoogle Scholar
  94. 94.
    Myers CE, Ghosh J. Lipoxygenase inhibition in prostate cancer. Eur Urol 1999;35:395–398.PubMedCrossRefGoogle Scholar
  95. 95.
    Moody TW, Leyton J, Martinez A, et al. Lipoxygenase inhibitors prevent lung carcinogenesis and inhibit non-small cell lung cancer growth. Exp Lung Res 1998;24:617–628.PubMedCrossRefGoogle Scholar
  96. 96.
    Rioux N, Castonguay A. Prevention of NNK-induced lung tumorigenesis in A/J mice by acetylsalicylic acid and NS-398. Cancer Res 1998;58:5354–5360.PubMedGoogle Scholar
  97. 97.
    Rioux N, Castonguay A. Inhibitors of lipoxygenase: a new class of cancer chemopreventive agents. Carcinogenesis 1998;19:1393–1400.PubMedCrossRefGoogle Scholar
  98. 98.
    Avis I, Hong SH, Martinez A, et al. Five-lipoxygenase inhibitors can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions. FASEB J 2001;15:2007–2009.PubMedGoogle Scholar
  99. 99.
    McCormick DL, Spicer AM. Nordihydroguaiaretic acid suppression of rat mammary carcinogenesis induced by Nmethyl-N-nitrosourea. Cancer Lett 1987;37:139–146.PubMedCrossRefGoogle Scholar
  100. 100.
    Kitagawa H, Noguchi M. Comparative effects of piroxicam and esculetin on incidence, proliferation, and cell kinetics of mammary carcinomas induced by 7,12dimethylbenz [a] anthracene in rats on high- and low-fat diets. Oncology 1994;51:401–410.PubMedCrossRefGoogle Scholar
  101. 101.
    Avis IM, Jett M, Boyle T, et al. Growth control of lung cancer by interruption of 5-lipoxygenase-mediated growth factor signaling. J Clin Investig 1996;97:806–813.PubMedCrossRefGoogle Scholar
  102. 102.
    Kulkarni AP. Lipoxygenase-a versatile biocatalyst for biotransformation of endobiotics and xenobiotics. Cell Mol Life Sci 2001;58:1805–1825.PubMedCrossRefGoogle Scholar
  103. 103.
    Chaudry A, McClinton S, Moffat LE, Wahle KW. Essential fatty acid distribution in the plasma and tissue phospholipids of patients with benign and malignant prostatic disease. Br J Cancer 1991;64:1157–1160.PubMedCrossRefGoogle Scholar
  104. 104.
    Chaudry AA, Wahle KW, McClinton S, Moffat LE. Arachidonic acid metabolism in benign and malignant prostatic tissue in vitro: effects of fatty acids and cyclooxygenase inhibitors. Int J Cancer 1994;57:176–180.PubMedCrossRefGoogle Scholar
  105. 105.
    Rose DP, Connolly JM. Effects of fatty acids and eicosanoid synthesis inhibitors on the growth of two human prostate cancer cell lines. Prostate 1991;18:243–254.PubMedCrossRefGoogle Scholar
  106. 106.
    Anderson KM, Seed T, Ondrey F, Harris JE. The selective 5lipoxygenase inhibitor A63162 reduces PC3 proliferation and initiates morphologic changes consistent with secretion. Anticancer Res 1994;14:1951–1960.PubMedGoogle Scholar
  107. 107.
    Liu XH, Connolly JM, Rose DP. The 12-lipoxygenase gene-transfected MCF-7 human breast cancer cell line exhibits estrogen-independent, but estrogen and omega-6 fatty acid-stimulated proliferation in vitro, and enhanced growth in athymic nude mice. Cancer Lett 1996;109:223–230.PubMedCrossRefGoogle Scholar
  108. 108.
    Reddy N, Everhart A, Eling T, Glasgow W. Characterization of a 15-lipoxygenase in human breast carcinoma BT-20 cells: stimulation of 13-HODE formation by TGF alpha/EGF. Biochem Biophys Res Commun 1997;231:111–116.PubMedCrossRefGoogle Scholar
  109. 109.
    Matsunaga K, Yoshimi N, Yamada Y, et al. Inhibitory effects of nabumetone, a cyclooxygenase-2 inhibitor, and esculetin, a lipoxygenase inhibitor, on N-methyl-Nnitrosourea-induced mammary carcinogenesis in rats. Jpn J Cancer Res 1998;89:496–501.PubMedCrossRefGoogle Scholar
  110. 110.
    Djuric SW, Collins PW, Jones PH, et al. 7-[3-(4-acetyl-3methoxy-2-propylphenoxy)propoxy] -3,4-dihydro-8propyl-2H-1-benzopyran-2-carboxylic acid: an orally active selective leukotriene B4 receptor antagonist. J Med Chem 1989;32:1145–1147.PubMedCrossRefGoogle Scholar
  111. 111.
    Tsai BS, Keith RH, Villani-Price D, et al. The in vitro pharmacology of SC-51146: a potent antagonist of leukotriene B4 receptors. J Pharmacol Exp Ther 1994:268:1499–1505.PubMedGoogle Scholar
  112. 112.
    Liu B, Marnett LJ, Chaudhary A, et al. Biosynthesis of 12(S)-hydroxyeicosatetraenoic acid by B16 amelanotic melanoma cells is a determinant of their metastatic potential. Lab Investig 1994;70:314–323.PubMedGoogle Scholar
  113. 113.
    Anderson KM, Seed T, Jajeh A, et al. An in vivo inhibitor of 5-lipoxygenase, MK886, at micromolar concentration induces apoptosis in U937 and CML cells. Anticancer Res 1996:16:2589–2599.PubMedGoogle Scholar
  114. 114.
    Anderson KM, Levin J, Jajeh A, et al. Induction of apoptosis in blood cells from a patient with acute myelogenous leukemia by SC41661A, a selective inhibitor of 5-lipoxygenase. Prostaglandins Leukot Essent Fatty Acids 1993;48:323–326.PubMedCrossRefGoogle Scholar
  115. 115.
    Snyder DS, Desforges JF. Lipoxygenase metabolites of arachidonic acid modulate hematopoiesis. Blood 1986;67:1675–1679.PubMedGoogle Scholar
  116. 116.
    Snyder DS, Castro R, Desforges JF. Antiproliferative effects of lipoxygenase inhibitors on malignant human hematopoietic cell lines. Exp Hematol 1989;17:6–9.PubMedGoogle Scholar
  117. 117.
    Lazarus SC, Lee T, Kemp JP, et al. Safety and clinical efficacy of zileuton in patients with chronic asthma. Am J Manag Care 1998;4:841–848.PubMedGoogle Scholar
  118. 118.
    Kelloff GJ, Boone CW, Steele VE, et al. Mechanistic considerations in chemopreventive drug development. J Cell Biochem Suppl 1994;20:1–24.PubMedCrossRefGoogle Scholar
  119. 119.
    Jonat C, Rahmsdorf HJ, Park KK, et al. Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 1990;62:1189–1204.PubMedCrossRefGoogle Scholar
  120. 120.
    Wattenberg L. Chalcones, myo-inositol and other novel inhibitors of pulmonary carcinogenesis. J Cell Biochem Suppl 1995;22:162–168.PubMedCrossRefGoogle Scholar
  121. 121.
    Wattenberg LW, Estensen RD. Studies of chemopreventive effects of budenoside on benzo[a]pyrene-induced neoplasia of the lung of female A/J mice. Carcinogenesis 1997;18:2015–2017.PubMedCrossRefGoogle Scholar
  122. 122.
    Wattenberg LW, Wiedmann TS, Estensen RD, et al. Chemoprevention of pulmonary carcinogenesis by aerosolized budesonide in female A/J mice. Cancer Res 1997;57:5489–5492.PubMedGoogle Scholar
  123. 123.
    Wattenberg LW, Wiedmann TS, Estensen RD, et al. Chemoprevention of pulmonary carcinogenesis by brief exposures to aerosolized budesonide or beclomethasone dipropionate and by the combination of aerosolized budesonide and dietary myo-inositol. Carcinogenesis 2000;21:179–182.PubMedCrossRefGoogle Scholar
  124. 124.
    Zhao Y, Agarwal VR, Mendelson CR, Simpson ER. Estrogen biosynthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP, leading to activation of promoter II of the CYP19 (aromatase) gene. Endocrinology 1996;137:5739–5742.PubMedCrossRefGoogle Scholar
  125. 125.
    Rao CV, Indranie C, Simi B, et al. Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor. Cancer Res 2002;62:165–170.PubMedGoogle Scholar
  126. 126.
    Torrance CJ, Jackson PE, Montgomery E, et al. Combinatorial chemoprevention of intestinal neoplasia. Nat Med 2000;6:1024–1028.PubMedCrossRefGoogle Scholar
  127. 127.
    Reddy BS, Nayini J, Tokumo K, et al. Chemoprevention of colon carcinogenesis by concurrent administration of piroxicam, a nonsteroidal antiinflammatory drug with D,L-alphadifluoromethylornithine, an ornithine decarboxylase inhibitor, in diet. Cancer Res 1990;50:2562–2568.PubMedGoogle Scholar
  128. 128.
    Rao CV, Tokumo K, Rigotty J, et al. Chemoprevention of colon carcinogenesis by dietary administration of piroxicam, alpha-difluoromethylornithine, 16 alpha-fluoro-5-androsten17-one, and ellagic acid individually and in combination. Cancer Res 1991;51:4528–4534.PubMedGoogle Scholar
  129. 129.
    Fiorucci S, Meli R, Bucci M, Cirino G. Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in antiinflammatory therapy? Biochem Pharmacol 2001;62:1433–1438.PubMedCrossRefGoogle Scholar
  130. 130.
    Williams JL, Borgo S, Hasan I, et al. Nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) alter the kinetics of human colon cancer cell lines more effectively than traditional NSAIDs: implications for colon cancer chemoprevention. Cancer Res 2001;61:3285–3289.PubMedGoogle Scholar
  131. 131.
    Rigas B, Williams JL. NO-releasing NSAIDs and colon cancer chemoprevention: a promising novel approach (Review). Int J Oncol 2002;20:885–890.PubMedGoogle Scholar
  132. 132.
    Bak AW, McKnight W, Li P, et al. Cyclooxygenase-independent chemoprevention with an aspirin derivative in a rat model of colonic adenocarcinoma. Life Sci 1998;62:L-73.CrossRefGoogle Scholar
  133. 133.
    Wechter WJ, Kantoci D, Murray ED Jr., et al. R-flurbiprofen chemoprevention and treatment of intestinal adenomas in the APC(Min)/+ mouse model: implications for prophylaxis and treatment of colon cancer. Cancer Res 1997;57:4316–4324.PubMedGoogle Scholar
  134. 134.
    Wechter WJ, Leipold DD, Murray ED Jr., et al. E-7869 (R-flurbiprofen) inhibits progression of prostate cancer in the TRAMP mouse. Cancer Res 2000;60:2203–2208.PubMedGoogle Scholar
  135. 135.
    Han S, Wada RK, Sidell N. Differentiation of human neuroblastoma by phenylacetate is mediated by peroxisome proliferator-activated receptor gamma. Cancer Res 2001;61:3998–4002.PubMedGoogle Scholar
  136. 136.
    Yoshimatsu K, Golijanin D, Paty PB, et al. Inducible microsomal prostaglandin E synthase is overexpressed in colorectal adenomas and cancer. Clin Cancer Res 2001;7:3971–3976.PubMedGoogle Scholar
  137. 137.
    Watanabe K, Kawamori T, Nakatsugi S, et al. Inhibitory effect of a prostaglandin E receptor subtype EP(1) selective antagonist, ONO-8713, on development of azoxymethaneinduced aberrant crypt foci in mice. Cancer Lett 2000;156:57–61.PubMedCrossRefGoogle Scholar
  138. 138.
    Kawamori T, Uchiya N, Nakatsugi S, et al. Chemopreventive effects of ONO-8711, a selective prostaglandin E receptor EP(1) antagonist, on breast cancer development. Carcinogenesis 2001;22:2001–2004.PubMedCrossRefGoogle Scholar
  139. 139.
    Shureiqi I, Chen D, Lee JJ, et al. 15-LOX-1: a novel molecular target of nonsteroidal anti-inflammatory drug-induced apoptosis in colorectal cancer cells. J Natl Cancer Inst 2000;92:1136–1142.PubMedCrossRefGoogle Scholar
  140. 140.
    Shureiqi I, Chen D, Lotan R, Yang P, Newman RA, Fischer SM, et al. 15-Lipoxygenase-1 mediates nonsteroidal antiinflammatory drug-induced apoptosis independently of cyclooxygenase-2 in colon cancer cells. Cancer Res 2000;60:6846–6850.PubMedGoogle Scholar
  141. 141.
    Cormier RT, Hong KH, Halberg RB, et al. Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nat Genet 1997;17:88–91.PubMedCrossRefGoogle Scholar
  142. 142.
    Hong KH, Bonventre JC, O’Leary E, et al. Deletion of cytosolic phospholipase A(2) suppresses Apc(Min)-induced tumorigenesis. Proc Natl Acad Sci USA 2001;98:3935–3939.PubMedCrossRefGoogle Scholar
  143. 143.
    Gately S. The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Rev 2000;19:19–27.PubMedCrossRefGoogle Scholar
  144. 144.
    Williams CS, Tsujii M, Reese J, et al. Host cyclooxygenase2 modulates carcinoma growth. J Clin Investig 2000;105:1589–1594.PubMedCrossRefGoogle Scholar
  145. 145.
    Leung WK, To KF, Ng YP, et al. Association between cyclooxygenase-2 overexpression and missense p53 mutations in gastric cancer. Br J Cancer 2001;84:335–339.PubMedCrossRefGoogle Scholar
  146. 146.
    Crosby CG, DuBois RN. The cyclooxygenase-2 pathway as a target for treatment or prevention of cancer. Expert Opin Emerging Drugs 2003;8:1–7.CrossRefGoogle Scholar
  147. 147.
    Pai R, Szabo IL, Giap AQ, et al. Nonsteroidal anti-inflammatory drugs inhibit re-epithelialization of wounded gastric monolayers by interfering with actin, Src, FAK, and tensin signaling. Life Sci 2001;69:3055–3071.PubMedCrossRefGoogle Scholar
  148. 148.
    Mann M, Sheng H, Shao J, et al. Targeting cyclooxygenase 2 and HER-2/neu pathways inhibits colorectal carcinoma growth. Gastroenterology 2001;120:1713–1719.PubMedCrossRefGoogle Scholar
  149. 149.
    Howe LR, Subbaramaiah K, Patel J, et al. Celecoxib, a selective cyclooxygenase 2 inhibitor, protects against human epidermal growth factor receptor 2 (HER-2)/neu-induced breast cancer. Cancer Res 2002;62:5405–5407.PubMedGoogle Scholar
  150. 150.
    Sheng H, Shao J, DuBois RN. Akt/PKB activity is required for Ha-Ras-mediated transformation of intestinal epithelial cells. J Biol Chem 2001;276:14,498–14,504.Google Scholar
  151. 151.
    Miller C, Zhang M, He Y, et al. Transcriptional induction of cyclooxygenase-2 gene by okadaic acid inhibition of phosphatase activity in human chondrocytes: co-stimulation of AP-1 and CRE nuclear binding proteins. J Cell Biochem 1998;69:392–413.PubMedCrossRefGoogle Scholar
  152. 152.
    Guo YS, Hellmich MR, Wen XD, Townsend CM, Jr. Activator protein-1 transcription factor mediates bombesin-stimulated cyclooxygenase-2 expression in intestinal epithelial cells. J Biol Chem 2001;276:22,941–22,947.Google Scholar
  153. 153.
    Subbaramaiah K, Cole PA, Dannenberg AJ. Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent and -independent mechanisms. Cancer Res 2002;62:2522–2530.PubMedGoogle Scholar
  154. 154.
    Subbaramaiah K, Lin DT, Hart JC, Dannenberg AJ. Peroxisome proliferator-activated receptor gamma ligands suppress the transcriptional activation of cyclooxygenase-2. Evidence for involvement of activator protein-1 and CREBbinding protein/p300. J Biol Chem 2001;276:12,440–12,448.CrossRefGoogle Scholar
  155. 155.
    You Z, Saims D, Chen S, et al. Wnt signaling promotes oncogenic transformation by inhibiting c-Myc-induced apoptosis. J Cell Biol 2002;157:429–440.PubMedCrossRefGoogle Scholar
  156. 156.
    Subbaramaiah K, Marmao TP, Dixon DA, Dannenberg AJ. Regulation of cyclooxygenase-2 mRNA stability by taxanes. Evidence for involvement of p38, MAPKAPK-2. and HuR @ . J Biol Chem 2003.Google Scholar
  157. 157.
    Mukhopadhyay D, Houchen CW, Kennedy S, et al. Coupled mRNA stabilization and translational silencing of cyclooxygenase-2 by a novel RNA binding protein, CUGBP2. Mol Cell 2003;11:113–126.PubMedCrossRefGoogle Scholar
  158. 158.
    Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci USA 1997;94:4312–4317.PubMedCrossRefGoogle Scholar
  159. 159.
    He TC, Chan TA, Vogelstein B, Kinzler KW. PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 1999;99:335–345.PubMedCrossRefGoogle Scholar
  160. 160.
    Gupta RA, Tan J, Krause WF, et al. Prostacyclin-mediated activation of peroxisome proliferator-activated receptor delta in colorectal cancer. Proc Natl Acad Sci USA 2000;97:13,275–13,280.CrossRefGoogle Scholar
  161. 161.
    Soslow RA, Dannenberg AJ, Rush D, et al. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 2000;89:2637–2645.PubMedCrossRefGoogle Scholar
  162. 162.
    Nettelbeck DM, Rivera AA, Davydova J, et al. Cyclooxygenase-2 promoter for tumour-specific targeting of adenoviral vectors to melanoma. Melanoma Res 2003;13:287–292.PubMedCrossRefGoogle Scholar
  163. 163.
    Denkert C, Kobel M, Berger S, et al. Expression of cyclooxygenase 2 in human malignant melanoma. Cancer Res 2001;61:303–308.PubMedGoogle Scholar
  164. 164.
    Uotila PJ, Erkkola RU, Klemi PJ. The expression of cyclooxygenase-1 and -2 in proliferative endometrium and endometrial adenocarcinoma. Ann Med 2002;34:428–433.PubMedCrossRefGoogle Scholar
  165. 165.
    Tong BJ, Tan J, Tajeda L, et al. Heightened expression of cyclooxygenase-2 and peroxisome proliferator- activated receptor-delta in human endometrial adenocarcinoma. Neoplasia 2000;2:483–490.PubMedCrossRefGoogle Scholar
  166. 166.
    Landen CN Jr., Mathur SP, Richardson MS, Creasman WT. Expression of cyclooxygenase-2 in cervical, endometrial, and ovarian malignancies. Am J Obstet Gynecol 2003;188:1174–1176.PubMedCrossRefGoogle Scholar
  167. 167.
    Maitra A, Ashfaq R, Gunn CR, et al. Cyclooxygenase 2 expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia: an immunohistochemical analysis with automated cellular imaging. Am J Clin Pathol 2002;118:194–201.PubMedCrossRefGoogle Scholar
  168. 168.
    Ding XZ, Tong WG, Adrian TE. Cyclooxygenases and lipoxygenases as potential targets for treatment of pancreatic cancer. Pancreatology 2001;1:291–299.PubMedCrossRefGoogle Scholar
  169. 169.
    Furukawa F, Nishikawa A, Lee IS, et al. A cyclooxygenase-2 inhibitor, nimesulide, inhibits postinitiation phase of Nnitrosobis(2-oxopropyl)amine-induced pancreatic carcinogenesis in hamsters. Int J Cancer 2003;104:269–273.PubMedCrossRefGoogle Scholar
  170. 170.
    Gunning WT, Kramer PM, Steele VE, Pereira MA. Chemoprevention by lipoxygenase and leukotriene pathway inhibitors of vinyl carbamate-induced lung tumors in mice. Cancer Res 2002;62:4199–4201.PubMedGoogle Scholar
  171. 171.
    Wenger FA, Kilian M, Achucarro P, et al. Effects of Celebrex and Zyflo on BOP-induced pancreatic cancer in Syrian hamsters. Pancreatology 2002;2:54–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Gary B. Gordon
  • Gary J. Kelloff
  • Caroline C. C. Sigman

There are no affiliations available

Personalised recommendations