Skip to main content

Potential for Hematopoietic Growth Factor Antagonists in Oncology

  • Chapter
Hematopoietic Growth Factors in Oncology

Abstract

Hematopoietic growth factors (HGFs) have long been implicated in the development and progression of malignancies. Their pleiotropic effect on cells of different tissues means that in principle they have the capacity to stimulate a wide variety of functions that can contribute to a malignant phenotype. Stimulation of cell proliferation can accelerate tumor cell growth and mass, whereas inhibition of apoptosis may give a malignant clone a distinct survival advantage over normal cells. Similarly, certain growth factors can influence angiogenesis, potentially regulating tumor neovascularization, and effects on adhesion phenomena may facilitate tumor-cell migration and metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sundaresan S, Roberts PE, King KL, Sliwkowski MX, Mather JP. Biological response to ErbB ligands in nontransformed cell lines correlates with a specific pattern of receptor expression. Endocrinology 1998; 139: 4756–4764.

    Article  PubMed  CAS  Google Scholar 

  2. Heaney ML, Golde DW. Soluble cytokine receptors. Blood 1996; 87: 847–857.

    PubMed  CAS  Google Scholar 

  3. Brown CB, Beaudry P, Dickinson Laing T, Shoemaker S, Kaushansky K. In vitro characterization of the human recombinant soluble granulocyte-macrophage colony-stimulating factor receptor. Blood 1995; 85: 1488–1495.

    PubMed  CAS  Google Scholar 

  4. Aiello LP, Pierce EA, Foley ED, et al. Suppression of retinal neovascularization in vitro by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 1995; 92: 10457–10461.

    Article  PubMed  CAS  Google Scholar 

  5. Aderka D. The potential biological and clinical significance of the soluble tumor necrosis factor receptors. Cytokine Growth Factor Rev 1996; 7: 231–240.

    Article  PubMed  CAS  Google Scholar 

  6. Standiford Ti. Anti-inflammatory cytokines and cytokine antagonists. Curr Pharm Des 2000; 6: 633–649.

    Article  Google Scholar 

  7. Nicola NA, Wycherley K, Boyd AW, Layton JE, Cary D, Metcalf D. Neutralizing and nonneutralizing monoclonal antibodies to the human granulocyte-macrophage colony-stimulating factor receptor a-chain. Blood 1993; 82: 1724–1731.

    PubMed  CAS  Google Scholar 

  8. Sun Q, Jones K, McClure B, et al. Simultaneous antagonism of interleukin-5, granulocyte-macrophage colony-stimulating factor, and interleukin-3 stimulation of human eosinophils by targetting the common cytokines binding site of their receptors. Blood 1999; 94: 1943–1951.

    PubMed  CAS  Google Scholar 

  9. Goldstein NI, Prewett M, Zuklys K, Rockwell P, Mendelson J. Biological efficacy if a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res 1995; 1: 1311–1318.

    PubMed  CAS  Google Scholar 

  10. Ciardello F. An update of new targets for cancer treatment: receptor-mediated signals. Ann Oncol 2002; 13: 29–38.

    Article  Google Scholar 

  11. Presta L, Chen H, O’Connor SJ, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumours and other disorders. Cancer Res 1997; 57: 4593–4599.

    PubMed  CAS  Google Scholar 

  12. Moreau P, Harousseau J-L, Wijdenes J, Morineau N, Milpied N, Bataille R. A combination of antiinterleukin 6 murine monoclonal antibody with dexamethasone and high-dose melphalan induces high complete response rates in advanced multiple myeloma. Br J Haematol 2000; 109: 661–664.

    Article  PubMed  CAS  Google Scholar 

  13. Hirata T, Shimazaki C, Sumikuma T, et al. Humanized anti-interleukin-6 receptor monoclonal antibody induced apoptosis of fresh and cloned human myeloma cells in vitro. Leuk Res 2003; 27: 343–349.

    Article  PubMed  CAS  Google Scholar 

  14. Cohen RB, Dittrich KA. Anti-TNF therapy and malignancy-a critical review. Can J Gastroenterol 2001; 15: 376–384.

    PubMed  CAS  Google Scholar 

  15. De Benedetti F, Pignatti P, Vivarelli M, et al. In vivo neutralization of human IL-6 (hIL-6) achieved by immunization of hIL-6-transgenic mice with a hIL-6 receptor antagonist. J Immunol 2001; 166: 4334–4340.

    PubMed  Google Scholar 

  16. Yanofsky SD, Baldwin DN, Butler JH, et al. High affinity type I interleukin 1 receptor antagonists discovered by screening recombinant peptide libraries. Proc Natl Acad Sci USA 1996; 93: 7381–7386.

    Article  PubMed  CAS  Google Scholar 

  17. Fairbrother WJ, Christinger HW, Cochran AG, et al. Novel peptides selected to bind vascular endothelial growth factor target the receptor-binding site. Biochemistry 1998; 37: 17754–17764.

    Article  PubMed  CAS  Google Scholar 

  18. Binetruy-Tournaire R, Demangel C, Malavaud B, et al. Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J 2000; 19: 1525–1533.

    CAS  Google Scholar 

  19. Sporeno E, Savino R, Ciapponi L, et al. Human interleukin-6 receptor super-antagonists with high potency and wide spectrum on multiple myeloma cells. Blood 1996; 87: 4510–4519.

    PubMed  CAS  Google Scholar 

  20. Hercus TR, Bagley CJ, Cambareri B, et al. Specific human granulocyte-macrophage colony-stimulating factor antagonists. Proc Natl Acad Sci USA 1994; 91: 5838–5842.

    Article  PubMed  CAS  Google Scholar 

  21. Siemeister G, Schirner M, Reusch P, Barleon B, Mamie D, Martiny-Baron G. An antagonistic vascular endothelial growth factor (VEGF) variant inhibits VEGF-stimulated receptor autophosphorylation and proliferation of human endothelial cells. Proc Natl Acad Sci USA 1998; 95: 4625–4629.

    Article  PubMed  CAS  Google Scholar 

  22. Leenders W, Lubsen N, van Altena M, et al. Design of a variant of vascular endothelial growth factor-A (VEGF-A) antagonizing KDR/Flk-1 and Flt-1. Lab Invest 2002; 82: 473–481.

    Article  PubMed  CAS  Google Scholar 

  23. Boesen TP, Soni B, Schwartz TW, Halkier T. Single-chain vascular endothelial growth factor variant with antagonist activity. J Biol Chem 2002; 277: 40335–40341.

    Article  PubMed  CAS  Google Scholar 

  24. Arend WP, Malyak M, Guthridge CJ, Gabay C. Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol 1998; 16: 27–55.

    Article  PubMed  CAS  Google Scholar 

  25. Arend WE The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev 2002; 13: 323–340.

    Article  PubMed  CAS  Google Scholar 

  26. Hao D, Rowinsky EK. Inhibiting signal transduction: recent advances in the development of receptor tyrosine kinase and Ras inhibitors. Cancer Invest 2002; 20: 387–404.

    Article  PubMed  CAS  Google Scholar 

  27. Baselga J. Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 2002; 7: 4: 2–8.

    Article  PubMed  CAS  Google Scholar 

  28. Fong TA, Shawver LK, Sun L, et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999; 59: 99–106.

    PubMed  CAS  Google Scholar 

  29. Guthridge MA, Stomski FC, Barry EF, et al. Site specific serine phosphorylation of the IL-3 receptor is required for hemopoietic cell survival. Mol Cell 2000; 6: 99–108.

    PubMed  CAS  Google Scholar 

  30. Guglielmi C, Arcese W, Hermans J, et al. Risk assessment in patients with Ph+ chronic myelogenous leukemia at first relapse after allogeneic stem cell transplant: an EBMT retrospective analysis. The Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood 2000; 95: 3328–3334.

    PubMed  CAS  Google Scholar 

  31. Hansen JA, Gooley TA, Martin PJ, et al. Bone marrow transplants from unrelated donors for patients with chronic myeloid leukemia. N Engl J Med 1998; 338: 962–968.

    Article  PubMed  CAS  Google Scholar 

  32. Scott CL, Hughes DA, Cary D, Nicola NA, Begley CG, Robb L. Functional analysis of mature hematopoietic cells from mice lacking the be chain of the granulocyte-macrophage colony-stimulating factor receptor. Blood 1998; 92: 4119–4127.

    PubMed  CAS  Google Scholar 

  33. Ben Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 1986; 233: 212–214.

    Article  Google Scholar 

  34. Pendergast AM, Quilliam LA, Cripe LD, et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993; 75: 175–185.

    PubMed  CAS  Google Scholar 

  35. Pear WS, Miller JP, Xu L, et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998; 92: 3780–3792.

    PubMed  CAS  Google Scholar 

  36. Zhang X, Ren R. Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 1998; 92: 3829–2840.

    PubMed  CAS  Google Scholar 

  37. Jiang X, Lopez A, Holyoake T, Eaves A, Eaves C. Autocrine production and action of IL-3 and GCSF in chronic myeloid leukaemia. Proc Natl Acad Sci USA 1999; 96: 12804–12809.

    Article  PubMed  CAS  Google Scholar 

  38. Bollag G, Clapp DW, Shih S, et al. Loss of Nfl results in activation of the Ras signalling pathway and leads to aberrant growth in haemopoietic cells. Nat Genet 1996; 12: 144–148.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang Y-Y, Vik TA, Ryder JW, et al. Nfl regulates hematopoietic progenitor cell growth and Ras signalling in response to multiple cytokines. J Exp Med 1998; 187: 1893–1902.

    Article  PubMed  CAS  Google Scholar 

  40. Largaespada DA, Shaughnessy JD, Jenkins NA, Copeland NG. Retroviral integration at the Evi-2 locus in BXH-2 myeloid leukemia cell lines disrupts Nfl expression without changes in steady-state Ras-GTP levels. J Virol 1995; 69: 5095–5102.

    PubMed  CAS  Google Scholar 

  41. Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    Article  PubMed  CAS  Google Scholar 

  42. Golub TR, Barker GF, Lovett M, Gilliland DG. Fusion of PDGF receptor 13 to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994; 77: 307–316.

    Article  PubMed  CAS  Google Scholar 

  43. Carroll M, Tomasson MH, Barker GF, Golub TR, Gilliland DG. The TEL/platelet-derived growth factor 13 receptor (PDGF13R) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGFbR kinase-dependent signaling pathways. Proc Natl Acad Sci USA 1996; 93: 14845–14850.

    Article  PubMed  CAS  Google Scholar 

  44. Moore S, Haylock DN, Levesque JP, et al. Stem cell factor as a single agent induces selective proliferation of the Philadelphia chromosome positive fraction of chronic myeloid leukemia CD34+ cells. Blood 1998; 92: 2461–2470.

    PubMed  CAS  Google Scholar 

  45. Emanuel PD, Bates LJ, Castleberry RP, Gualtieri RJ, Zuckerman KS. Selective hypersensitivity to granulocyte-macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood 1991; 77: 925–929.

    PubMed  CAS  Google Scholar 

  46. Estrov Z, Grunberger T, Chan HSL, Freedman MH. Juvenile chronic myelogenous leukemia: characterization of the disease using cell cultures. Blood 1986; 67: 1382–1387.

    PubMed  CAS  Google Scholar 

  47. Everson MP, Brown CB, Lilly MB. Interleukin-6 and granulocyte-macrophage colony-stimulating factor are candidate growth factors for chronic myelomonocytic leukemia cells. Blood 1989; 74: 1472–1476.

    PubMed  CAS  Google Scholar 

  48. Geissler K, Ohler L, Födinger M, et al. Interleukin 10 inhibits growth and granulocyte/macrophage colony-stimulating factor production in chronic myelomonocytic leukemia cells. J Exp Med 1996; 184: 1377–1384.

    Google Scholar 

  49. Oehler L, Foedinger M, Koeller M, et al. Interleukin-10 inhibits spontaneous colony-forming unit growth from human peripheral blood mononuclear cells by suppression of endogenous granulocyte-macrophage colony-stimulating factor release. Blood 1997; 89: 1147–1153.

    PubMed  CAS  Google Scholar 

  50. Ramshaw H, Bardy P, Lee M, Lopez A. Chronic myelomonocytic leukemia requires granulocyte-macrophage colony-stimulating factor for growth in vitro and in vivo. Exp Hematol 2002; 30: 1124.

    Article  PubMed  CAS  Google Scholar 

  51. Young DC, Griffin JD. Autocrine secretion of GM-CSF in acute myeloblastic leukemia. Blood 1986; 68: 1178–1181.

    PubMed  CAS  Google Scholar 

  52. Oster W, Cicco NA, Klein H, et al. Participation of the cytokines interleukin 6, tumor necrosis factor-alpha, and interleukin 1-beta secreted by acute myelogenous leukemia blasts in autocrine and paracrine leukemia growth control. J Clin Invest 1989; 84: 451–457.

    Article  PubMed  CAS  Google Scholar 

  53. Lowenberg B, van Putten WL, Touw IP, Delwel R, Santini V. Autonomous proliferation of leukemic cells in vitro as a determinant of prognosis in adult acute myeloid leukemia. N Engl J Med 1993; 328: 614–619.

    Article  PubMed  CAS  Google Scholar 

  54. Emanuel PD, Bates U, Zhu S-W, Castleberry RP, Gualtieri RJ, Zuckerman KS. The role of monocyte-derived hemopoietic growth factors in the regulation of myeloproliferation in juvenile chronic myelogenous leukemia. Exp Hematol 1991; 19: 1017–1024.

    PubMed  CAS  Google Scholar 

  55. Geissler K, Hinterberger W, Bettelheim P, Haas O, Lechner K. Colony growth characteristics in chronic myelomonocytic leukemia. Leuk Res 1988; 12: 373–377.

    Article  PubMed  CAS  Google Scholar 

  56. Seymour JF, Cortes JE. Chronic myelomonocytic leukemia. In: Talpaz M, Kantarjian HM, eds., Medical Management of Chronic Myelogenous Leukemia. New York, NY: Dekker, 1998: 43–76.

    Google Scholar 

  57. Butcher C, D’Andrea RJ. Molecular aspects of polycythemia vera (review). Int J Mol Med 2000; 6: 243–252.

    PubMed  CAS  Google Scholar 

  58. Elbaz O, Mahmoud LA. Tumor necrosis factor and human acute leukemia. Leuk Lymphoma 1994; 12: 191–195.

    Article  PubMed  CAS  Google Scholar 

  59. Raza A, Mundle S, Shetty V, et al. Novel insights into the biology of myelodysplastic syndromes: excessive apoptosis and the role of cytokines. Int J Hematol 1996; 63: 265–278.

    Article  PubMed  CAS  Google Scholar 

  60. Freedman MH, Cohen A, Grunberger T, et al. Central role of tumour necrosis factor, GM-CSF, and interleukin-1 in the pathogenesis of juvenile chronic myelogenous leukaemia. Br J Haematol 1992; 80: 40–48.

    Article  PubMed  CAS  Google Scholar 

  61. Raza A. Anti-TNF therapies in rheumatoid arthritis, Crohn’s disease, sepsis, and myelodysplastic syndromes. Microsc Res Tech 2000; 50: 229–235.

    Article  PubMed  CAS  Google Scholar 

  62. Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood 1991; 77:1627–1652.

    Google Scholar 

  63. Wetzler M, Kurzrock R, Estrov Z, et al. Altered levels of interleukin-1 beta and interleukin-1 receptor antagonist in chronic myelogenous leukemia: clinical and prognostic correlates. Blood 1994; 84: 3142–3147.

    PubMed  CAS  Google Scholar 

  64. Sakai K, Hattori T, Matsuoka M, et al. Autocrine stimulation of interleukin 1 beta in acute myelogenous leukemia cells. J Exp Med 1987; 166: 1597–1602.

    Article  PubMed  CAS  Google Scholar 

  65. Kurzrock R. Cytokine deregulation in cancer. Biomed Pharmacother 2001; 55: 543–547.

    Article  PubMed  CAS  Google Scholar 

  66. Estrov Z, Kurzrock R, Talpaz M. Role of interleukin-1 inhibitory molecules in therapy of acute and chronic myelogenous leukemia. Leuk Lymphoma 1993; 10: 407–418.

    Article  PubMed  CAS  Google Scholar 

  67. de Hon FD, Ehlers M, Rose-John S, et al. Development of an interleukin (IL) 6 receptor antagonist that inhibits IL-6-dependent growth of human myeloma cells. J Exp Med 1994; 180: 2395–2400.

    Article  PubMed  Google Scholar 

  68. Renne C, Kallen KJ, Mullberg J, Jostock T, Grotzinger J, Rose-John S. A new type of cytokine receptor antagonist directly targeting gp130. J Biol Chem 1998; 273: 27213–27219.

    Article  PubMed  CAS  Google Scholar 

  69. Yoshida K, Taga T, Saito M, et al. Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci USA 1996; 93: 407–411.

    Article  PubMed  CAS  Google Scholar 

  70. Van Zaanen HC, Lokhorst HM, Aarden LA, et al. Chimaeric anti-interleukin 6 monoclonal antibodies in the treatment of advanced multiple myeloma: a phase I dose-escalating study. Br J Haematol 1998; 102: 783–790.

    Article  PubMed  Google Scholar 

  71. Nishimoto N, Sasai M, Shima Y, et al. Improvement in Castleman’s disease by humanized anti-interleukin-6 receptor antibody therapy. Blood 2000; 95: 56–61.

    PubMed  CAS  Google Scholar 

  72. Montero-Julian FA, Brailly H, Sautes C, et al. Characterization of soluble gp130 released by melanoma cell lines: a polyvalent antagonist of cytokines from the interleukin 6 family. Clin Cancer Res 1997; 3: 1443–1451.

    PubMed  CAS  Google Scholar 

  73. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344: 1038–1042.

    Article  PubMed  CAS  Google Scholar 

  74. Sawyers CL, Hochhaus A, Feldman E, et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002; 99: 3530–3539.

    Article  PubMed  CAS  Google Scholar 

  75. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 2000; 289: 1938–1942.

    Article  PubMed  CAS  Google Scholar 

  76. Druker BJ, Lydon NB. Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest 2000; 105: 3–7.

    Article  PubMed  CAS  Google Scholar 

  77. Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  PubMed  CAS  Google Scholar 

  78. Thiesing JT, Ohno-Jones S, Kolibaba KS, Druker BJ. Efficacy of STI571, an abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against bcr-abl-positive cells. Blood 2000; 96: 3195–3199.

    PubMed  CAS  Google Scholar 

  79. Capdeville R, Silberman S, Dimitrijevic S. Imatinib: the first 3 years. Eur J Cancer 2002; 38: S77 - S82.

    Article  PubMed  Google Scholar 

  80. Gambacorti-Passerini CB, Gunby RH, Piazza R, Galietta A, Rostagno R, Scapozza L. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol 2003; 4: 75–85.

    Article  PubMed  Google Scholar 

  81. Gambacorti-Passerini C, le Coutre P, Mologni L, et al. Inhibition of the ABL kinase activity blocks the proliferation of BCR/ABL+ leukemic cells and induces apoptosis. Blood Cells Mol Dis 1997; 23: 380–394.

    Article  PubMed  CAS  Google Scholar 

  82. Dorsey JF, Cunnick JM, Lanehart R, et al. Interleukin-3 protects Bcr-Abl-transformed hematopoietic progenitor cells from apoptosis induced by Bcr-Abl tyrosine kinase inhibitors. Leukemia 2002; 16: 1589–1595.

    Article  PubMed  CAS  Google Scholar 

  83. McClure BJ, Hercus TR, Cambareri BA, et al. Molecular assembly of the ternary granulocyte-macrophage colony-stimulating factor receptor complex. Blood 2003; 101: 1308–1315.

    Article  PubMed  CAS  Google Scholar 

  84. Iversen PO, Rodwell RL, Pitcher L, Taylor KM, Lopez AF. Inhibition of proliferation and induction of apoptosis in juvenile myelomonocytic leukemic cells by the granulocyte-macrophage colony-stimulating factor analogue E21R. Blood 1996; 88: 2634–2639.

    PubMed  CAS  Google Scholar 

  85. Iversen PO, Lewis ID, Turczynowicz S, et al. Inhibition of granulocyte-macrophage colony-stimulating factor prevents dissemination and induces remission of juvenile myelomonocytic leukemia in engrafted immunodeficient mice. Blood 1997; 90: 4910–4917.

    PubMed  CAS  Google Scholar 

  86. Nishinakamura R, Nakayama N, Hirabayashi Y, et al. Mice deficient for the IL-3/GM-CSF/IL-5 be receptor exhibit lung pathology and impaired immune response, while bIL3 receptor-deficient mice are normal. Immunity 1995; 2: 211–222.

    Article  PubMed  CAS  Google Scholar 

  87. Olver IN, Hercus T, Lopez A, et al. A phase I study of the GM-CSF antagonist E21R. Cancer Chemother Pharmacol 2002; 50: 171–178.

    Article  PubMed  CAS  Google Scholar 

  88. Bernard F, Thomas C, Emile JF, et al. Transient hematologic and clinical effect of E21R in a child with end-stage juvenile myelomonocytic leukemia. Blood 2002; 99: 2615–2616.

    Article  PubMed  CAS  Google Scholar 

  89. Saily M, Koistinen P, Zheng A, Savolainen E-R. Signaling through interleukin-6 receptor supports blast cell proliferation in acute myeloblastic leukemia. Eur J Haematol 1998; 61: 190–196.

    Article  PubMed  CAS  Google Scholar 

  90. Chauhan D, Pandey P, Hideshima T, et al. SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells. J Biol Chem 2000; 275: 27845–27850.

    PubMed  CAS  Google Scholar 

  91. Chatterjee M, Honemann D, Lentzsch S, et al. In the presence of bone marrow stromal cells human multiple myeloma cells become independent of the IL-6/gp130/STAT3 pathway. Blood 2002; 100: 3311–3318.

    Article  PubMed  CAS  Google Scholar 

  92. Honemann D, Chatterjee M, Savino R, et al. The IL-6 receptor antagonist SANT-7 overcomes bone marrow stromal cell-mediated drug resistance of multiple myeloma cells. Int J Cancer 2001; 93: 674–680.

    Article  PubMed  CAS  Google Scholar 

  93. Tassone P, Galea E, Forciniti S, Tagliaferri P, Venuta S. The IL-6 receptor super-antagonist Sant7 enhances antiproliferative and apoptotic effects induced by dexamethasone and zoledronic acid on multiple myeloma cells. Int J Oncol 2002; 21: 867–873.

    PubMed  CAS  Google Scholar 

  94. Ranson M, Hammond LA, Ferry D, et al. ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol 2002; 20: 2240–2250.

    Article  PubMed  CAS  Google Scholar 

  95. Hainsworth JD, Litchy S, Burris HA, et al. Rituximab as first-line and maintenance therapy for patients with indolent non-hodgkin’s lymphoma. J Clin Oncol 2002; 20: 4261–4267.

    Article  PubMed  CAS  Google Scholar 

  96. Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20: 719–726.

    Article  PubMed  CAS  Google Scholar 

  97. Croom KF, Perry CM. Imatinib, mesylate: in the treatment of gastrointestinal stromal tumours. Drugs 2003; 63: 513–522.

    Article  PubMed  CAS  Google Scholar 

  98. Edmonson JH, Marks RS, Buckner JC, Mahoney MR. Contrast of response to dacarbazine, mitomycin, doxorubicin, and cisplatin (DMAP) plus GM-CSF between patients with advanced malignant gastrointestinal stromal tumors and patients with other advanced leiomyosarcomas. Cancer Invest 2002; 20: 605–612.

    Article  PubMed  CAS  Google Scholar 

  99. Herbst RS, Langer CJ. Epidermal growth factor receptors as a target for cancer treatment: the emerging role of IMC-C225 in the treatment of lung and head and neck cancers. Semin Oncol 2002; 29: 27–36.

    Article  PubMed  CAS  Google Scholar 

  100. Baselga J, Yano K, Giaccone G, et al. Initial results from a phase II trial of ZD 1839 (Iressa), as second-and third-line monotherapy for patients with advanced non-small cell lung cancer (IDEAL 1). Clin Cancer Res 2001; 7: 3780S (abstract 630A).

    Google Scholar 

  101. Natale RB, Skarin A, Maddox A-M, et al. Improvement in symptoms and quality of life for advanced non-small cell lung cancer patients recieving ZD 1839 (`Iressa’) in IDEAL2. Proc Am Soc Clin Oncol 2002; 21: 292a (abstract 1167).

    Google Scholar 

  102. Stopeck A, Sheldon M, Vahedian M, Cropp G, Gosalia R, Hannah A. Results of a phase I dose-escalating study of the antiangiogenic agent, SU5416, in patients with advanced malignancies. Clin Cancer Res 2002; 8: 2798–2805.

    PubMed  CAS  Google Scholar 

  103. Smith PC, Hobisch A, Lin DL, Culig Z, Keller ET. Interleukin-6 and prostate cancer progression. Cytokine Growth Factor Rev 2001; 12: 33–40.

    Article  PubMed  CAS  Google Scholar 

  104. Okamoto M, Lee C, Oyasu R. Autocrine effect of androgen on proliferation of an androgen responsive prostatic carcinoma cell line, LNCAP: role of interleukin-6. Endocrinology 1997; 138: 5071–5074.

    Article  PubMed  CAS  Google Scholar 

  105. Okamoto M, Lee C, Oyasu R. Interleukin-6 as a paracrine and autocrine growth factor in human pro-static carcinoma cells in vitro. Cancer Res 1997; 57: 141–146.

    PubMed  CAS  Google Scholar 

  106. Steiner H, Godoy-Tundidor S, Rogatsch H, et al. Accelerated in vivo growth of prostate tumors that up-regulate interleukin-6 is associated with reduced retinoblastoma protein expression and activation of the mitogen-activated protein kinase pathway. Am J Pathol 2003; 162: 655–663.

    Article  PubMed  CAS  Google Scholar 

  107. Borsellino N, Bonavida B, Ciliberto G, Toniatti C, Travali S, D’Alessandro N. Blocking signaling through the Gp130 receptor chain by interleukin-6 and oncostatin M inhibits PC-3 cell growth and sensitizes the tumor cells to etoposide and cisplatin-mediated cytotoxicity. Cancer 1999; 85: 134–144.

    Article  PubMed  CAS  Google Scholar 

  108. Chen T, Wang LH, Farrar WL. Interleukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res 2000; 60: 2132–2135.

    PubMed  CAS  Google Scholar 

  109. Lin DL, Whitney MC, Yao Z, Keller ET. Interleukin-6 induces androgen responsiveness in prostate cancer cells through up-regulation of androgen receptor expression. Clin Cancer Res 2001; 7: 1773–1781.

    PubMed  CAS  Google Scholar 

  110. Purohit A, Singh A, Ghilchik MW, Serlupi-Crescenzi O, Reed MJ. Inhibition of IL-6+IL-6 soluble receptor-stimulated aromatase activity by the IL-6 antagonist, Sant 7, in breast tissue-derived fibroblasts. Br J Cancer 2003; 88: 630–635.

    Article  PubMed  CAS  Google Scholar 

  111. Baldwin GC, Gasson JC, Kaufman SE, et al. Nonhematopoietic tumor cells express functional GMCSF receptors. Blood 1989; 73: 1033–1037.

    PubMed  CAS  Google Scholar 

  112. Rivas CI, Vera JC, Delgado-Lopez F, et al. Expression of granulocyte-macrophage colony-stimulating factor receptors in human prostate cancer. Blood 1998; 91: 1037–1043.

    PubMed  CAS  Google Scholar 

  113. Dieras V, Beuzeboc P, Laurence V, Pierga JY, Pouillart P. Interaction between Herceptin and taxanes. Oncology 2001; 61: 43–49.

    Article  PubMed  Google Scholar 

  114. Giaconne G, Johnson DH, Maegold C, et al. A phase III clinical trial of ZD 1839 (`Iressa’) in combination with gemcitabine and cisplatin in chemotherapy-naive patients with advanced non-small cell lung cancer (INTACT 1). Ann Oncol 2003; 13: 3 (abstract 40).

    Google Scholar 

  115. Klement G, Baruchel S, Rak J, et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 2000; 105: R15 — R24.

    Article  PubMed  CAS  Google Scholar 

  116. Inoue K, Slaton JW, Davis DW, et al. Treatment of human metastatic transitional cell carcinoma of the bladder in a murine model with the anti-vascular endothelial growth factor receptor monoclonal antibody DC101 and paclitaxel. Clin Cancer Res 2000; 6: 2635–2643.

    PubMed  CAS  Google Scholar 

  117. Zhang L, Yu D, Hicklin DJ, Hannay JA, Ellis LM, Pollock RE. Combined anti-fetal liver kinase 1 monoclonal antibody and continuous low-dose doxorubicin inhibits angiogenesis and growth of human soft tissue sarcoma xenografts by induction of endothelial cell apoptosis. Cancer Res 2002; 62: 2034–2042.

    PubMed  CAS  Google Scholar 

  118. Bruns CJ, Shrader M, Harbison MT, et al. Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice. Int J Cancer 2002; 102: 101–108.

    Article  PubMed  CAS  Google Scholar 

  119. Moasser MM, Basso A, Averbuch SD, Rosen N. The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells. Cancer Res 2001; 61: 7184–7188.

    PubMed  CAS  Google Scholar 

  120. Camirand A, Lu Y, Pollak M. Co-targeting HER2/ErbB2 and insulin-like growth factor-1 receptors causes synergistic inhibition of growth in HER2-overexpressing breast cancer cells. Med Sci Monit 2002; 8:BR521—BR526.

    Google Scholar 

  121. Shaheen RM, Ahmad SA, Liu W, et al. Inhibited growth of colon cancer carcinomatosis by antibodies to vascular endothelial and epidermal growth factor receptors. Br J Cancer 2001; 85: 584–589.

    Article  PubMed  CAS  Google Scholar 

  122. Jung YD, Mansfield PF, Akagi M, et al. Effects of combination anti-vascular endothelial growth factor receptor and anti-epidermal growth factor receptor therapies on the growth of gastric cancer in a nude mouse model. Eur J Cancer 2002; 38: 1133–1140.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ramshaw, H.S., Hercus, T.R., Olver, I.N., Lopez, A.F. (2004). Potential for Hematopoietic Growth Factor Antagonists in Oncology. In: Morstyn, G., Foote, M., Lieschke, G.J. (eds) Hematopoietic Growth Factors in Oncology. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-747-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-747-5_22

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9847-9

  • Online ISBN: 978-1-59259-747-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics