Skip to main content

Animal Models of Hematopoietic Growth Factor Perturbations in Physiology and Pathology

  • Chapter
Hematopoietic Growth Factors in Oncology

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 164 Accesses

Abstract

The clinical use of hematopoietic growth factors (HGFs) is built on nearly 20 years of in vitro studies followed by preclinical animal studies. These laboratory and animal studies, undertaken before first use in humans, provided the basis for expectations of what the biologic effects in humans would be.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33: 401–406.

    Article  PubMed  CAS  Google Scholar 

  2. Sarvella PA, Russell LB. Steel, a new dominant gene in the mouse. J Hered 1956; 47: 123–128.

    Google Scholar 

  3. Bennett D. Developmental analysis of a mutation with pleiotropic effects in the mouse. J Morphol 1956; 98: 199–234.

    Article  Google Scholar 

  4. Peters J, Selley R, Cocking Y. Mouse gene list. Mouse Genomics 1995; 93: 184–357.

    Google Scholar 

  5. Russell ES. Hereditary anemias of the mouse: a review for geneticists. Adv Genet 1979; 20: 357–459.

    Article  PubMed  CAS  Google Scholar 

  6. Anderson DM, Lyman SD, Baird A, et al. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell 1990; 63: 235–243.

    Article  PubMed  CAS  Google Scholar 

  7. Huang E, Nocka K, Beier DR, et al. The hematopoietic growth factor KL is encoded by the SI locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 1990; 63: 225–233.

    Article  PubMed  CAS  Google Scholar 

  8. Zsebo KM, Williams DA, Geissler EN, et al. Stem cell factor is encoded at the SI locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 1990; 63: 213–224.

    Article  PubMed  CAS  Google Scholar 

  9. Metcalf D. Lineage commitment of hemopoietic progenitor cells in developing blast cell colonies: influence of colony-stimulating factors. Proc Natl Acad Sci USA 1991; 88: 11310–11314.

    Article  PubMed  CAS  Google Scholar 

  10. de Aberle SB. A study of the hereditary anemia of mice. Am JAnat 1927; 40: 219–247.

    Article  Google Scholar 

  11. Little CC, Cloudman AM. The occurrence of a dominant spotting mutation in the house mouse. Proc Natl Acad Sci USA 1937; 23: 535–537.

    Article  PubMed  CAS  Google Scholar 

  12. Nocka K, Tan JC, Chiu E, et al. Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, W° W41 and W. EMBO J 1990; 9: 1805–1813.

    PubMed  CAS  Google Scholar 

  13. Marks SC, Lane PW. Osteopetrosis, a new recessive skeletal mutation on chromosome 12 of the mouse. JHered 1976; 67: 11–18.

    Google Scholar 

  14. Yoshida H, Hayashi S, Kunisada T, et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990; 345: 442–444.

    Article  PubMed  CAS  Google Scholar 

  15. Marks SC Jr. Morphological evidence of reduced bone resorption in osteopetrotic (op) mice. Am J Anat 1982; 163: 157–167.

    Article  PubMed  Google Scholar 

  16. Felix R, Cecchini MG, Fleisch H. Macrophage colony stimulating factor restores in vivo bone resorption in the op/op osteopetrotic mouse. Endocrinology 1990; 127: 2592–2594.

    Article  PubMed  CAS  Google Scholar 

  17. Shibata Y, Zsengeller Z, Otake K, Palaniyar N, Trapnell BC. Alveolar macrophage deficiency in osteopetrotic mice deficient in macrophage colony-stimulating factor is spontaneously corrected with age and associated with matrix metalloproteinase expression and emphysema. Blood 2001; 98: 2845–2852.

    Article  PubMed  CAS  Google Scholar 

  18. Takahashi K, Umeda S, Shultz LD, Hayashi S, Nishikawa S. Effects of macrophage colony-stimulating factor (M-CSF) on the development, differentiation, and maturation of marginal metallophilic macrophages and marginal zone macrophages in the spleen of osteopetrosis (op) mutant mice lacking functional M-CSF activity. J Leukoc Biol 1994; 55: 581–588.

    PubMed  CAS  Google Scholar 

  19. Usuda H, Naito M, Umeda S, Takahashi K, Shultz LD. Ultrastructure of macrophages and dendritic cells in osteopetrosis (op) mutant mice lacking macrophage colony-stimulating factor (M-CSF/CSF1) activity. J Submicrosc Cytol Pathol 1994; 26: 111–119.

    PubMed  CAS  Google Scholar 

  20. Wiktor-Jedrzejczak WW, Ahmed A, Szczylik C, Skelly RR. Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation. J Exp Med 1982; 156: 1516–1527.

    Article  PubMed  CAS  Google Scholar 

  21. Wiktor-Jedrzejczak W, Ratajczak MZ, Ptasznik A, Sell KW, Ahmed-Ansari A, Ostertag W. CSF-1 deficiency in the op/op mouse has differential effects on macrophage populations and differentiation stages. Exp Hematol 1992; 20: 1004–1010.

    PubMed  CAS  Google Scholar 

  22. Pollard JW, Hunt JS, Wiktor-Jedrzejczak W, Stanley ER. A pregnancy defect in the osteopetrotic (op/op) mouse demonstrates the requirement for CSF-1 in female fertility. Dev Biol 1991; 148: 273–283.

    Article  PubMed  CAS  Google Scholar 

  23. Pollard JW, Hennighausen L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci USA 1994; 91: 9312–9316.

    Article  PubMed  CAS  Google Scholar 

  24. Dai XM, Ryan GR, Hapel AJ, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 2002; 99: 111–120.

    Article  PubMed  CAS  Google Scholar 

  25. Schooley JC, Garcia JF. Immunochemical studies of human urinary erythropoietin. Proc Soc Exp Biol Med 1962; 109: 325–328.

    Google Scholar 

  26. Schooley JC, Garcia JF. Some properties of serum obtained from rabbits immunized with human urinary erythropoietin. Blood 1965; 25: 204–217.

    Google Scholar 

  27. Schooley JC, Garcia JF, Cantor LN, Havens VW. A summary of some studies on erythropoiesis using anti-erythropoietin immune serum. Ann NYAcad Sci 1968; 149: 266–280.

    Article  Google Scholar 

  28. Coscarella A, Liddi R, Di Loreto M, et al. The rhGM-CSF-EPO hybrid protein MEN 11300 induces anti-EPO antibodies and severe anaemia in rhesus monkeys. Cytokine 1998; 10: 964–969.

    Article  PubMed  CAS  Google Scholar 

  29. Wu H, Liu X, Jaenisch R, Lodish HF. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 1995; 83: 59–67.

    Article  PubMed  CAS  Google Scholar 

  30. Wu H, Lee SH, Gao J, Liu X, Iruela-Arispe ML. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 1999; 126: 3597–3605.

    PubMed  CAS  Google Scholar 

  31. Jegalian AG, Acurio A, Dranoff G, Wu H. Erythropoietin receptor haploinsufficiency and in vivo interplay with granulocyte-macrophage colony-stimulating factor and interleukin 3. Blood 2002; 99: 2603–2605.

    Article  PubMed  CAS  Google Scholar 

  32. Burns S, Arcasoy MO, Li L, et al. Purification and characterization of the yeast-expressed erythropoietin mutant Epo (R103A), a specific inhibitor of human primary hematopoietic cell erythropoiesis. Blood 2002; 99: 4400–4405.

    Article  PubMed  CAS  Google Scholar 

  33. Motojima H, Kobayashi T, Shimane M, Kamachi S, Fukushima M. Quantitative enzyme immunoassay for human granulocyte colony stimulating factor (G-CSF). J Immunol Methods 1989; 118: 187–192.

    Article  PubMed  CAS  Google Scholar 

  34. Omori F, Okamura S, Hayashi S, Yamaga S, Hirota Y, Niho Y. Measurement of human granulocyte-macrophage colony-stimulating factor (GM-CSF) by enzyme-linked immunosorbent assay. Biotherapy 1989; 1: 161–167.

    Article  PubMed  CAS  Google Scholar 

  35. Shirafuji N, Asano S, Matsuda S, Watari K, Takaku F, Nagata S. A new bioassay for human granulocyte colony-stimulating factor (hG-CSF) using murine myeloblastic NFS-60 cells as targets and estimation of its levels in sera from normal healthy persons and patients with infectious and hematological disorders. Exp Hematol 1989; 17: 116–119.

    PubMed  CAS  Google Scholar 

  36. Lee MY, Fevold KL, Dorshkind K, Fukunaga R, Nagata S, Rosse C. In vivo and in vitro suppression of primary B lymphocytopoiesis by tumor-derived and recombinant granulocyte colony-stimulating factor. Blood 1993; 82: 2062–2068.

    PubMed  CAS  Google Scholar 

  37. Nelson S. Role of granulocyte colony-stimulating factor in the immune response to acute bacterial infection in the nonneutropenic host: an overview. Clin Infect Dis 1994; 18: S197 - S204.

    Article  PubMed  Google Scholar 

  38. Hammond WP, Csiba E, Canin A, et al. Chronic neutropenia. A new canine model induced by human granulocyte colony-stimulating factor. J Clin Invest 1991; 87: 704–710.

    Article  PubMed  CAS  Google Scholar 

  39. Coccia MA, Hartley C, Sutherland W, et al. Prolonged neutropenia in a novel mouse granulocyte colony-stimulating factor neutralizing auto-immunoglobulin G mouse model. Exp Hematol 2001; 29: 59–67.

    Article  PubMed  CAS  Google Scholar 

  40. Lieschke GJ, Grail D, Hodgson G, et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 1994; 84: 1737–1746.

    PubMed  CAS  Google Scholar 

  41. Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 1996; 5: 491–501.

    Article  PubMed  CAS  Google Scholar 

  42. Basu S, Hodgson G, Katz M, Dunn AR. Evaluation of role of G-CSF in the production, survival, and release of neutrophils from bone marrow into circulation. Blood 2002; 100: 854–861.

    Article  PubMed  CAS  Google Scholar 

  43. Basu S, Hodgson G, Zhang HH, Katz M, Quilici C, Dunn AR. “Emergency” granulopoiesis in GCSF-deficient mice in response to Candida albicans infection. Blood 2000; 95: 3725–3733.

    PubMed  CAS  Google Scholar 

  44. Zhan Y, Lieschke GJ, Grail D, Dunn AR, Cheers C. Essential roles for granulocyte-macrophage colony-stimulating factor (GM-CSF) and G-CSF in the sustained hematopoietic response of Listeria monocytogenes-infected mice. Blood 1998; 91: 863–869.

    PubMed  CAS  Google Scholar 

  45. Zhan Y, Basu S, Lieschke GJ, Grail D, Dunn AR, Cheers C. Functional deficiencies of peritoneal cells from gene-targeted mice lacking G-CSF or GM-CSF. J Leukoc Biol 1999; 65: 256–264.

    PubMed  CAS  Google Scholar 

  46. Mannering SI, Zhan Y, Gilbertson B, Lieschke GJ, Cheers C. T lymphocytes from granulocyte colony-stimulating factor-/- mice produce large quantities of interferon-gamma in a chronic infection model. Immunology 2000; 101: 132–139.

    Article  PubMed  CAS  Google Scholar 

  47. Liu F, Poursine-Laurent J, Link DC. The granulocyte colony-stimulating factor receptor is required for the mobilization of murine hematopoietic progenitors into peripheral blood by cyclophosphamide or interleukin-8 but not flt-3 ligand. Blood 1997; 90: 2522–2528.

    PubMed  CAS  Google Scholar 

  48. Betsuyaku T, Liu F, Senior RM, et al. A functional granulocyte colony-stimulating factor receptor is required for normal chemoattractant-induced neutrophil activation. J Clin Invest 1999; 103: 825–832.

    Article  PubMed  CAS  Google Scholar 

  49. Liu F, Poursine-Laurent J, Link DC. Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 2000; 95: 3025–3031.

    PubMed  CAS  Google Scholar 

  50. Semerad CL, Poursine-Laurent J, Liu F, Link DC. A role for G-CSF receptor signaling in the regulation of hematopoietic cell function but not lineage commitment or differentiation. Immunity 1999; 11: 153–161.

    Article  PubMed  CAS  Google Scholar 

  51. Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC. G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity 2002; 17: 413–423.

    Article  PubMed  CAS  Google Scholar 

  52. DeLamarter JF, Mermod JJ, Liang CM, Eliason JF, Thatcher DR. Recombinant murine GM-CSF from E. coli has biological activity and is neutralized by a specific antiserum. EMBO J 1985; 4: 2575–2581.

    Google Scholar 

  53. Abrams JS, Roncarolo MG, Yssel H, Andersson U, Gleich GJ, Silver JE. Strategies of anti-cytokine monoclonal antibody development: immunoassay of IL-10 and IL-5 in clinical samples. Immunol Rev 1992; 127: 5–24.

    Article  PubMed  CAS  Google Scholar 

  54. Sander B, Hoiden I, Andersson U, Moller E, Abrams JS. Similar frequencies and kinetics of cytokine producing cells in murine peripheral blood and spleen. Cytokine detection by immunoassay and intracellular immunostaining. J Immunol Methods 1993; 166: 201–214.

    Article  PubMed  CAS  Google Scholar 

  55. Tiegs G, Barsig J, Matiba B, Uhlig S, Wendel A. Potentiation by granulocyte macrophage colony-stimulating factor of lipopolysaccharide toxicity in mice. J Clin Invest 1994; 93: 2616–2622.

    Article  PubMed  CAS  Google Scholar 

  56. Yang YH, Hamilton JA. Dependence of interleukin-l-induced arthritis on granulocyte-macrophage colony-stimulating factor. Arthritis Rheum 2001; 44: 111–119.

    Article  PubMed  Google Scholar 

  57. Cook AD, Braine EL, Campbell IK, Rich MJ, Hamilton JA. Blockade of collagen-induced arthritis post-onset by antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF): requirement for GM-CSF in the effector phase of disease. Arthritis Res 2001; 3: 293–298.

    Article  PubMed  CAS  Google Scholar 

  58. Hercus TR, Bagley CJ, Cambareri B, et al. Specific human granulocyte-macrophage colony-stimulating factor antagonists. Proc Natl Acad Sci USA 1994; 91: 5838–5842.

    Article  PubMed  CAS  Google Scholar 

  59. Olver IN, Hercus T, Lopez A, et al. A phase I study of the GM-CSF antagonist E21R. Cancer Chemother Pharmacol 2002; 50: 171–178.

    Article  PubMed  CAS  Google Scholar 

  60. Dranoff G, Crawford AD, Sadelain M, et al. Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science 1994; 264: 713–716.

    Article  PubMed  CAS  Google Scholar 

  61. Stanley E, Lieschke GJ, Grail D, et al. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci USA 1994; 91: 5592–5596.

    Article  PubMed  CAS  Google Scholar 

  62. Zhan Y, Cheers C. Haemopoiesis in mice genetically lacking granulocyte-macrophage colony stimulating factor during chronic infection with Mycobacterium avium. Immunol Cell Biol 2000; 78: 118–123.

    Article  CAS  Google Scholar 

  63. Metcalf D, Robb L, Dunn AR, Mifsud S, Di Rago L. Role of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in the development of an acute neutrophil inflammatory response in mice. Blood 1996; 88: 3755–3764.

    PubMed  CAS  Google Scholar 

  64. Wynn AA, Miyakawa K, Miyata E, Dranoff G, Takeya M, Takahashi K. Role of granulocyte/ macrophage colony-stimulating factor in zymocel-induced hepatic granuloma formation. Am J Pathol 2001; 158: 131–145.

    Article  PubMed  CAS  Google Scholar 

  65. Kitching AR, Ru H, X, Turner AL, Tipping PG, Dunn AR, Holdsworth SR. The requirement for granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in leukocyte-mediated immune glomerular injury. J Am Soc Nephrol 2002; 13: 350–358.

    CAS  Google Scholar 

  66. Seymour JF, Lieschke GJ, Grail D, Quilici C, Hodgson G, Dunn AR. Mice lacking both granulocyte colony-stimulating factor (CSF) and granulocyte-macrophage CSF have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amyloidosis, and reduced long-term survival. Blood 1997; 90: 3037–3049.

    PubMed  CAS  Google Scholar 

  67. Huffman JA, Hull WM, Dranoff G, Mulligan RC, Whitsett JA. Pulmonary epithelial cell expression of GM-CSF corrects the alveolar proteinosis in GM-CSF-deficient mice. J Clin Invest 1996; 97: 649–655.

    Article  PubMed  CAS  Google Scholar 

  68. Nishinakamura R, Nakayama N, Hirabayashi Y, et al. Mice deficient for the IL-3/GM-CSF/IL-5 beta c receptor exhibit lung pathology and impaired immune response, while beta IL3 receptor-deficient mice are normal. Immunity 1995; 2: 211–222.

    Article  PubMed  CAS  Google Scholar 

  69. Robb L, Drinkwater CC, Metcalf D, et al. Hematopoietic and lung abnormalities in mice with a null mutation of the common beta subunit of the receptors for granulocyte-macrophage colony-stimulating factor and interleukins 3 and 5. Proc Natl Acad Sci USA 1995; 92: 9565–9569.

    Article  PubMed  CAS  Google Scholar 

  70. Reed JA, Ikegami M, Robb L, Begley CG, Ross G, Whitsett JA. Distinct changes in pulmonary surfactant homeostasis in common beta-chain-and GM-CSF-deficient mice. Am J Physiol Lung Cell Mol Physiol 2000; 278: L1164 - L1171.

    PubMed  CAS  Google Scholar 

  71. Yoshida T, Ikuta K, Sugaya H, et al. Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5R alpha-deficient mice. Immunity 1996; 4: 483–494.

    Article  PubMed  CAS  Google Scholar 

  72. Nishinakamura R, Wiler R, Dirksen U, et al. The pulmonary alveolar proteinosis in granulocyte macrophage colony-stimulating factor/interleukins 3/5 beta c receptor-deficient mice is reversed by bone marrow transplantation. J Exp Med 1996; 183: 2657–2662.

    Article  PubMed  CAS  Google Scholar 

  73. Cooke KR, Nishinakamura R, Martin TR, et al. Persistence of pulmonary pathology and abnormal lung function in IL-3/GM-CSF/IL-5 beta c receptor-deficient mice despite correction of alveolar proteinosis after BMT. Bone Marrow Transplant 1997; 20: 657–662.

    Article  PubMed  CAS  Google Scholar 

  74. Scott CL, Roe L, Curtis J, et al. Mice unresponsive to GM-CSF are unexpectedly resistant to cutaneous Leishmania major infection. Microbes Infect 2000; 2: 1131–1138.

    Article  PubMed  CAS  Google Scholar 

  75. Nandurkar HH, Robb L, Tarlinton D, Barnett L, Kontgen F, Begley CG. Adult mice with targeted mutation of the interleukin-11 receptor (IL11Ra) display normal hematopoiesis. Blood 1997; 90: 2148–2159.

    PubMed  CAS  Google Scholar 

  76. Robb L, Li R, Hartley L, Nandurkar HH, Koentgen F, Begley CG. Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nat Med 1998; 4: 303–308.

    Article  PubMed  CAS  Google Scholar 

  77. Betz UA, Bloch W, van den BM, et al. Postnatally induced inactivation of gp130 in mice results in neurological, cardiac, hematopoietic, immunological, hepatic, and pulmonary defects. J Exp Med 1998; 188: 1955–1965.

    Article  PubMed  CAS  Google Scholar 

  78. Shaughnessy SG, Walton KJ, Deschamps P, Butcher M, Beaudin SM. Neutralization of interleukin11 activity decreases osteoclast formation and increases cancellous bone volume in ovariectomized mice. Cytokine 2002; 20: 78–85.

    Article  PubMed  CAS  Google Scholar 

  79. Liu F, Poursine-Laurent J, Wu HY, Link DC. Interleukin-6 and the granulocyte colony-stimulating factor receptor are major independent regulators of granulopoiesis in vivo but are not required for lineage commitment or terminal differentiation. Blood 1997; 90: 2583–2590.

    PubMed  CAS  Google Scholar 

  80. Kaushansky K, Fox N, Lin NL, Liles WC. Lineage-specific growth factors can compensate for stem and progenitor cell deficiencies at the postprogenitor cell level: an analysis of doubly TPO- and GCSF receptor-deficient mice. Blood 2002; 99: 3573–3578.

    Article  PubMed  CAS  Google Scholar 

  81. Lantz CS, Boesiger J, Song CH, et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 1998; 392: 90–93.

    Article  PubMed  CAS  Google Scholar 

  82. Mach N, Lantz CS, Galli SJ, et al. Involvement of interleukin-3 in delayed-type hypersensitivity. Blood 1998; 91: 778–783.

    PubMed  CAS  Google Scholar 

  83. Gillessen S, Mach N, Small C, Mihm M, Dranoff G. Overlapping roles for granulocyte-macrophage colony-stimulating factor and interleukin-3 in eosinophil homeostasis and contact hypersensitivity. Blood 2001; 97: 922–928.

    Article  PubMed  CAS  Google Scholar 

  84. Li S, Gillessen S, Tomasson MH, Dranoff G, Gilliland DG, Van Etten RA. Interleukin 3 and granulocyte-macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL. Blood 2001; 97: 1442–1450.

    Article  PubMed  CAS  Google Scholar 

  85. Tomasson MH, Williams IR, Li S, et al. Induction of myeloproliferative disease in mice by tyrosine kinase fusion oncogenes does not require granulocyte-macrophage colony-stimulating factor or interleukin-3. Blood 2001; 97: 1435–1441.

    Article  PubMed  CAS  Google Scholar 

  86. Nishinakamura R, Miyajima A, Mee PJ, Tybulewicz VL, Murray R. Hematopoiesis in mice lacking the entire granulocyte-macrophage colony-stimulating factor/interleukin-3/interleukin-5 functions. Blood 1996; 88: 2458–2464.

    PubMed  CAS  Google Scholar 

  87. Lieschke GJ, Stanley E, Grail D, et al. Mice lacking both macrophage-and granulocyte-macrophage colony-stimulating factor have macrophages and coexistent osteopetrosis and severe lung disease. Blood 1994; 84: 27–35.

    PubMed  CAS  Google Scholar 

  88. Nilsson SK, Lieschke GJ, Garcia-Wijnen CC, et al. Granulocyte-macrophage colony-stimulating factor is not responsible for the correction of hematopoietic deficiencies in the maturing op/op mouse. Blood 1995; 86: 66–72.

    PubMed  CAS  Google Scholar 

  89. Gainsford T, Nandurkar H, Metcalf D, Robb L, Begley CG, Alexander WS. The residual megakaryocyte and platelet production in c-mpl-deficient mice is not dependent on the actions of interleukin-6, interleukin-11, or leukemia inhibitory factor. Blood 2000; 95: 528–534.

    PubMed  CAS  Google Scholar 

  90. Dunn CJ, Markham A. Epoetin beta. A review of its pharmacological properties and clinical use in the management of anaemia associated with chronic renal failure. Drugs 1996; 51: 299–318.

    Article  PubMed  CAS  Google Scholar 

  91. Markham A, Bryson HM. Epoetin alfa. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in nonrenal applications. Drugs 1995; 49: 232–254.

    Article  PubMed  CAS  Google Scholar 

  92. Joy MS. Darbepoetin alfa: a novel erythropoiesis-stimulating protein. Ann Pharmacother 2002; 36: 1183–1192.

    Article  PubMed  CAS  Google Scholar 

  93. Wrighton NC, Farrell FX, Chang R, et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 1996; 273: 458–464.

    Article  PubMed  CAS  Google Scholar 

  94. Taglialatela R, Della CF. Human and recombinant erythropoietin stimulate erythropoiesis in the goldfish Carassius auratus. Eur J Histochem 1997; 41: 301–304.

    CAS  Google Scholar 

  95. Semenza GL, Traystman MD, Gearhart JD, Antonarakis SE. Polycythemia in transgenic mice expressing the human erythropoietin gene. Proc Natl Acad Sci USA 1989; 86: 2301–2305.

    Article  PubMed  CAS  Google Scholar 

  96. Semenza GL, Dureza RC, Traystman MD, Gearhart JD, Antonarakis SE. Human erythropoietin gene expression in transgenic mice: multiple transcription initiation sites and cis-acting regulatory elements. Mol Cell Biol 1990; 10: 930–938.

    PubMed  CAS  Google Scholar 

  97. Semenza GL, Koury ST, Nejfelt MK, Gearhart JD, Antonarakis SE. Cell-type-specific and hypoxiainducible expression of the human erythropoietin gene in transgenic mice. Proc Natl Acad Sci USA 1991; 88: 8725–8729.

    Article  PubMed  CAS  Google Scholar 

  98. Villeval JL, Metcalf D, Johnson GR. Fatal polycythemia induced in mice by dysregulated erythropoietin production by hematopoietic cells. Leukemia 1992; 6: 107–115.

    PubMed  CAS  Google Scholar 

  99. Lord BI, Molineux G, Pojda Z, Souza LM, Mermod JJ, Dexter TM. Myeloid cell kinetics in mice treated with recombinant interleukin-3, granulocyte colony-stimulating factor (CSF), or granulocyte-macrophage CSF in vivo. Blood 1991; 77: 2154–2159.

    PubMed  CAS  Google Scholar 

  100. Roberts AW, Metcalf D. Granulocyte colony-stimulating factor induces selective elevations of progenitor cells in the peripheral blood of mice. Exp Hematol 1994; 22: 1156–1163.

    PubMed  CAS  Google Scholar 

  101. Lee MY, Fukunaga R, Lee TJ, Lottsfeldt JL, Nagata S. Bone modulation in sustained hematopoietic stimulation in mice. Blood 1991; 77: 2135–2141.

    PubMed  CAS  Google Scholar 

  102. Lord BI, Woolford LB, Molineux G. Kinetics of neutrophil production in normal and neutropenic animals during the response to filgrastim (r-metHu G-CSF) or filgrastim SD/01 (PEG-r-metHu GCSF). Clin Cancer Res 2001; 7: 2085–2090.

    PubMed  CAS  Google Scholar 

  103. Molineux G, Kinstler O, Briddell B, Hartley C, McElroy P, Kerzic P, et al. A new form of filgrastim with sustained duration in vivo and enhanced ability to mobilize PBPC in both mice and humans. Exp Hematol 1999; 27: 1724–1734.

    Article  PubMed  CAS  Google Scholar 

  104. Chang JM, Metcalf D, Gonda TJ, Johnson GR. Long-term exposure to retrovirally expressed granulocyte-colony-stimulating factor induces a nonneoplastic granulocytic and progenitor cell hyperplasia without tissue damage in mice. J Clin Invest 1989; 84: 1488–1496.

    Article  PubMed  CAS  Google Scholar 

  105. Metcalf D, Begley CG, Williamson DJ, et al. Hemopoietic responses in mice injected with purified recombinant murine GM-CSF. Exp Hematol 1987; 15: 1–9.

    PubMed  CAS  Google Scholar 

  106. Pojda Z, Molineux G, Dexter TM. Effects of long-term in vivo treatment of mice with purified murine recombinant GM-CSF. Exp Hematol 1989; 17: 1100–1104.

    PubMed  CAS  Google Scholar 

  107. Lang RA, Metcalf D, Cuthbertson RA, et al. Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell 1987; 51: 675–686.

    Article  PubMed  CAS  Google Scholar 

  108. Cuthbertson RA, Lang RA. Developmental ocular disease in GM-CSF transgenic mice is mediated by autostimulated macrophages. Dev Biol 1989; 134: 119–129.

    Article  PubMed  CAS  Google Scholar 

  109. Lang RA, Cuthbertson RA, Dunn AR. TNF alpha, IL-1 alpha and bFGF are implicated in the complex disease of GM-CSF transgenic mice. Growth Factors 1992; 6: 131–138.

    Article  PubMed  CAS  Google Scholar 

  110. Cuthbertson RA, Lang RA, Coghlan JP. Macrophage products IL-1 alpha, TNF alpha and bFGF may mediate multiple cytopathic effects in the developing eyes of GM-CSF transgenic mice. Exp Eye Res 1990; 51: 335–344.

    Article  PubMed  CAS  Google Scholar 

  111. Johnson GR, Gonda TJ, Metcalf D, Hariharan IK, Cory S. A lethal myeloproliferative syndrome in mice transplanted with bone marrow cells infected with a retrovirus expressing granulocyte-macrophage colony stimulating factor. EMBO J 1989; 8: 441–448.

    PubMed  CAS  Google Scholar 

  112. Du X, Williams DA. Interleukin-11: review of molecular, cell biology, and clinical use. Blood 1997; 89: 3897–3908.

    PubMed  CAS  Google Scholar 

  113. Turner KJ, Clark SC. Interleukin-11: Biological and clinical perspectives. In: Mertelsmann R, Herrmann F, eds., Hematopoietic Growth Factors in Clinical Applications. New York: Marcel Decker. 1995: 315–336.

    Google Scholar 

  114. Hawley RG, Fong AZ, Ngan BY, de Lanux VM, Clark SC, Hawley TS. Progenitor cell hyperplasia with rare development of myeloid leukemia in interleukin 11 bone marrow chimeras. J Exp Med 1993; 178: 1175–1188.

    Article  PubMed  CAS  Google Scholar 

  115. Paul SR, Hayes LL, Palmer R, et al. Interleukin-11 expression in donor bone marrow cells improves hematological con.itution in lethally irradiated recipient mice. Exp Hematol 1994; 22: 295–301.

    PubMed  CAS  Google Scholar 

  116. Takeuchi Y, Watanabe S, Ishii G, et al. Interleukin-1 l as a stimulatory factor for bone formation prevents bone loss with advancing age in mice. J Biol Chem 2002; 277: 49011–49018.

    Article  PubMed  CAS  Google Scholar 

  117. Tang W, Geba GP, Zheng T, et al. Targeted expression of IL-11 in the murine airway causes lymphocytic inflammation, bronchial remodeling, and airways obstruction. J Clin Invest 1996; 98: 2845–2853.

    Article  PubMed  CAS  Google Scholar 

  118. Ray P, Tang W, Wang P, et al. Regulated overexpression of interleukin 11 in the lung. Use to dissociate development-dependent and -independent phenotypes. J Clin Invest 1997; 100: 2501–2511.

    Google Scholar 

  119. Waxman AB, Einarsson O, Seres T, et al. Targeted lung expression of interleukin-11 enhances murine tolerance of 100% oxygen and diminishes hyperoxia-induced DNA fragmentation. J Clin Invest 1998; 101: 1970–1982.

    Article  PubMed  CAS  Google Scholar 

  120. Barrios L, Poletti OH, Agustini MI. The influence of recombinant human granulocyte colony-stimulating factor on granulopoiesis in mice recovering from cyclophosphamide treatment. Methods Find Exp Clin Pharmacol 2000; 22: 275–280.

    Article  PubMed  CAS  Google Scholar 

  121. Nohynek GJ, Plard JP, Wells MY, Zerial A, Roquet F. Comparison of the potency of glycosylated and nonglycosylated recombinant human granulocyte colony-stimulating factors in neutropenic and nonneutropenic CD rats. Cancer Chemother Pharmacol 1997; 39: 259–266.

    Google Scholar 

  122. de Haan G, Engel C, Dontje B, Loeffler M, Nijhof W. Hemotoxicity by prolonged etoposide administration to mice can be prevented by simultaneous growth factor therapy. Cancer Res 1995; 55: 324–329.

    Google Scholar 

  123. Henry CJ, Buss MS, Potter KA, Wardrop KJ. Mitoxantrone and cyclophosphamide combination chemotherapy for the treatment of various canine malignancies. J Am Anim Hosp Assoc 1999; 35: 236–239.

    Google Scholar 

  124. Watanabe Y, Kiriyama M, Oe J, Kikuchi R, Mizufune Y, Matsumoto M. Pharmacodynamic activity (leukopoietic effect) of recombinant human granulocyte colony-stimulating factor (rhG-CSF) after rectal administration in rabbits with leukopenia induced by cyclophosphamide. Biol Pharm Bull 1996; 19: 1064–1067.

    Article  PubMed  CAS  Google Scholar 

  125. Misaki M, Ueyama Y, Tsukamoto G, Matsumura T. Timing of recombinant human granulocyte colony-stimulating factor administration on neutropenia induced by cyclophosphamide in normal mice. Br J Cancer 1998; 77: 884–889.

    Article  PubMed  CAS  Google Scholar 

  126. Hattori K, Orita T, Oheda M, Tamura M, Ono M. Comparative study of the effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on generation and mobilization of neutrophils in cyclophosphamide-treated neutropenic mice. In Vivo 1996; 10: 319–327.

    PubMed  CAS  Google Scholar 

  127. Ono M, Matsumoto M, Matsubara S, Tomioka S, Asano S. Protective effect of human granulocyte colony-stimulating factor on bacterial and fungal infections in neutropenic mice. Behring Inst Mitt 1988; 216–221.

    Google Scholar 

  128. Onyeji CO, Nicolau DP, Nightingale CH, Bow L. Modulation of efficacies and pharmacokinetics of antibiotics by granulocyte colony-stimulating factor in neutropenic mice with multidrug-resistant Enterococcus faecalis infection. J Antimicrob Chemother 2000; 46: 429–436.

    Article  PubMed  CAS  Google Scholar 

  129. Buisman AM, Langermans JA, van Furth R. Effect of granulocyte colony-stimulating factor on the course of infection with gram-positive bacteria in mice during granulocytopenia induced by sublethal irradiation or cyclophosphamide. J Infect Dis 1996; 174: 417–421.

    Article  PubMed  CAS  Google Scholar 

  130. Fine JS, Cai XY, Justice L, et al. A specific stimulator of granulocyte colony-stimulating factor accelerates recovery from cyclophosphamide-induced neutropenia in the mouse. Blood 1997; 90: 795–802.

    PubMed  CAS  Google Scholar 

  131. Hofer M, Pospisil M, Weiterova L, et al. Combination of drugs elevating extracellular adenosine with granulocyte colony-stimulating factor promotes granulopoietic recovery in the murine bone marrow after 5-fluorouracil treatment. Physiol Res 2001; 50: 521–524.

    PubMed  CAS  Google Scholar 

  132. Douer D, Sagi O, Shaked N, Witz IP, Ramot B. Response to recombinant murine GM-CSF in melphalan treated mice. Blood 1987; 70: 133a.

    Google Scholar 

  133. Monroy RL, Skelly RR, MacVittie TJ, et al. The effect of recombinant GM-CSF on the recovery of monkeys transplanted with autologous bone marrow. Blood 1987; 70: 1696–1699.

    PubMed  CAS  Google Scholar 

  134. Nienhuis AW, Donahue RE, Karlsson S, et al. Recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) shortens the period of neutropenia after autologous bone marrow transplantation in a primate model. J Clin Invest 1987; 80: 573–577.

    Article  PubMed  CAS  Google Scholar 

  135. Buisman AM, Langermans JA, van Furth R. Effect of granulocyte-macrophage colony-stimulating factor on the number of leucocytes and course of Listeria monocytogenes infection in naive and leucocytopenic mice. Immunology 1998; 93: 73–79.

    Article  PubMed  CAS  Google Scholar 

  136. Naidu NV, Reddi OS. Effect of post-treatment with erythropoietin(s) on survival and erythropoietic recovery in irradiated mice. Nature 1967; 214: 1223–1224.

    Article  PubMed  CAS  Google Scholar 

  137. Reissmann KR, Samorapoompichit S. Effect of erythropoietin on early recovery of erythropoiesis in mice after sublethal dose of 5-fluorouracil. Proc Soc Exp Biol Med 1968; 128: 898–901.

    PubMed  CAS  Google Scholar 

  138. Spivak JL. Recombinant human erythropoietin and the anemia of cancer. Blood 1994; 84: 997–1004.

    PubMed  CAS  Google Scholar 

  139. Thews O, Kelleher DK, Vaupel P. Erythropoietin restores the anemia-induced reduction in cyclophosphamide cytotoxicity in rat tumors. Cancer Res 2001; 61: 1358–1361.

    PubMed  CAS  Google Scholar 

  140. Silver DF, Piver MS. Effects of recombinant human erythropoietin on the antitumor effect of cisplatin in SCID mice bearing human ovarian cancer: a possible oxygen effect. Gynecol Oncol 1999; 73: 280–284.

    Article  PubMed  CAS  Google Scholar 

  141. Stuben G, Thews O, Pottgen C, Knuhmann K, Vaupel P, Stuschke M. Recombinant human erythropoietin increases the radiosensitivity of xenografted human tumours in anaemic nude mice. J Cancer Res Clin Oncol 2001; 127: 346–350.

    Article  PubMed  CAS  Google Scholar 

  142. Thews O, Koenig R, Kelleher DK, Kutzner J, Vaupel P. Enhanced radiosensitivity in experimental tumours following erythropoietin treatment of chemotherapy-induced anaemia. Br J Cancer 1998; 78: 752–756.

    Article  PubMed  CAS  Google Scholar 

  143. Golab J, Olszewska D, Mroz P, et al. Erythropoietin restores the antitumor effectiveness of photo-dynamic therapy in mice with chemotherapy-induced anemia. Clin Cancer Res 2002; 8: 1265–1270.

    PubMed  CAS  Google Scholar 

  144. Mittelman M, Neumann D, Peled A, Kanter P, Haran-Ghera N. Erythropoietin induces tumor regression and antitumor immune responses in murine myeloma models. Proc Natl Acad Sci USA 2001; 98: 5181–5186.

    Article  PubMed  CAS  Google Scholar 

  145. Du XX, Keller D, Goldman S, Williams DA. Functional effects of interleukin-l1 treatment in vivo following bone marrow transplantation (BMT) and combined modality therapy in mice. Exp Hematol 1992; 20: 768.

    Google Scholar 

  146. Opal SM, Jhung JW, Keith JC, et al. Recombinant human interleukin-11 in experimental Pseudomonas aeruginosa sepsis in immunocompromised animals. J Infect Dis 1998; 178: 1205–1208.

    Article  PubMed  CAS  Google Scholar 

  147. de Haan G, Donte B, Engel C, Loeffler M, Nijhof W. Prophylactic pretreatment of mice with hematopoietic growth factors induces expansion of primitive cell compartments and results in protection against 5-fluorouracil-induced toxicity. Blood 1996; 87: 4581–4588.

    PubMed  Google Scholar 

  148. Opal SM, Jhung JW, Keith JC, Jr., Goldman SJ, Palardy JE, Parejo NA. Additive effects of human recombinant interleukin-11 and granulocyte colony-stimulating factor in experimental gram-negative sepsis. Blood 1999; 93: 3467–3472.

    PubMed  CAS  Google Scholar 

  149. Dong F, Brynes RK, Tidow N, Welte K, Lowenberg B, Touw IR Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med 1995; 333: 487–493.

    Article  PubMed  CAS  Google Scholar 

  150. Tidow N, Pilz C, Teichmann B, et al. Clinical relevance of point mutations in the cytoplasmic domain of the granulocyte colony-stimulating factor receptor gene in patients with severe congenital neutropenia. Blood 1997; 89: 2369–2375.

    PubMed  CAS  Google Scholar 

  151. Hermans MH, Ward AC, Antonissen C, Karis A, Lowenberg B, Touw IP. Perturbed granulopoiesis in mice with a targeted mutation in the granulocyte colony-stimulating factor receptor gene associated with severe chronic neutropenia. Blood 1998; 92: 32–39.

    PubMed  CAS  Google Scholar 

  152. Hermans MH, Antonissen C, Ward AC, Mayen AE, Ploemacher RE, Touw IP. Sustained receptor activation and hyperproliferation in response to granulocyte colony-stimulating factor (G-CSF) in mice with a severe congenital neutropenia/acute myeloid leukemia-derived mutation in the GCSF receptor gene. J Exp Med 1999; 189: 683–692.

    Article  PubMed  CAS  Google Scholar 

  153. McLemore ML, Poursine-Laurent J, Link DC. Increased granulocyte colony-stimulating factor responsiveness but normal resting granulopoiesis in mice carrying a targeted granulocyte colony-stimulating factor receptor mutation derived from a patient with severe congenital neutropenia. J Clin Invest 1998; 102: 483–492.

    Article  PubMed  CAS  Google Scholar 

  154. Horwitz M, Benson KF, Person RE, Aprikyan AG, Dale DC. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet 1999; 23: 433–436.

    Article  PubMed  CAS  Google Scholar 

  155. Dale DC, Person RE, Bolyard AA, et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 2000; 96: 2317–2322.

    PubMed  CAS  Google Scholar 

  156. Grenda DS, Johnson SE, Mayer JR, et al. Mice expressing a neutrophil elastase mutation derived from patients with severe congenital neutropenia have normal granulopoiesis. Blood 2002; 100: 3221–3228.

    Article  PubMed  CAS  Google Scholar 

  157. de la Chapelle A, Traskelin AL, Juvonen E. Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc Natl Acad Sci USA 1993; 90: 4495–4499.

    Article  PubMed  Google Scholar 

  158. Prchal JT, Crist WM, Goldwasser E, Perrine G, Prchal JF. Autosomal dominant polycythemia. Blood 1985; 66: 1208–1214.

    PubMed  CAS  Google Scholar 

  159. Divoky V, Liu Z, Ryan TM, Prchal JF, Townes TM, Prchal JT. Mouse model of congenital polycythemia: homologous replacement of murine gene by mutant human erythropoietin receptor gene. Proc Natl Acad Sci USA 2001; 98: 986–991.

    Article  PubMed  CAS  Google Scholar 

  160. Trapnell BC, Whitsett JA. GM-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu Rev Physiol 2002; 64: 775–802.

    Article  PubMed  CAS  Google Scholar 

  161. Frossard JL, Saluja AK, Mach N, et al. In vivo evidence for the role of GM-CSF as a mediator in acute pancreatitis-associated lung injury. Am J Physiol Lung Cell Mol Physiol 2002; 283: L541 - L548.

    PubMed  CAS  Google Scholar 

  162. McQualter JL, Darwiche R, Ewing C, et al. Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J Exp Med 2001; 194: 873–882.

    Article  PubMed  CAS  Google Scholar 

  163. Campbell IK, Rich MJ, Bischof RJ, Dunn AR, Grail D, Hamilton JA. Protection from collagen-induced arthritis in granulocyte-macrophage colony-stimulating factor-deficient mice. J Immunol 1998; 161: 3639–3644.

    PubMed  CAS  Google Scholar 

  164. Metcalf D. Hemopoietic Colonies: In Vitro Cloning of Normal and Leukemic Cells. Berlin, New York: Springer-Verlag. 1977.

    Google Scholar 

  165. Brannan CI, Perkins AS, Vogel KS, et al. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 1994; 8: 1019–1029.

    Article  PubMed  CAS  Google Scholar 

  166. Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA. Tumour predisposition in mice heterozygous for a targeted mutation in Nfl. Nat Genet 1994; 7: 353–361.

    Article  PubMed  CAS  Google Scholar 

  167. Largaespada DA, Brannan CI, Jenkins NA, Copeland NG. Nfl deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat Genet 1996; 12: 137–143.

    Article  PubMed  CAS  Google Scholar 

  168. Zhang YY, Vik TA, Ryder JW, et al. Nfl regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines. J Exp Med 1998; 187: 1893–1902.

    Article  PubMed  CAS  Google Scholar 

  169. Bollag G, Clapp DW, Shih S, et al. Loss of NFl results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet 1996; 12: 144–148.

    Article  PubMed  CAS  Google Scholar 

  170. Birnbaum RA, O’Marcaigh A, Wardak Z, et al. Nfl and GM-CSF interact in myeloid leukemogenesis. Mol Cell 2000; 5: 189–195.

    Article  PubMed  CAS  Google Scholar 

  171. Lieschke GJ, Pandolfi PP, Varma S. PLZF-RARa transgenic mice lacking G-CSF, but no those lacking GM-CSF, fail to develop lethal acute myeloid leukemia and live a normal lifespan. Blood 2002; 100: 189a.

    Google Scholar 

  172. Stewart CL, Kaspar P, Brunet U, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 1992; 359: 76–79.

    Article  PubMed  CAS  Google Scholar 

  173. Escary JL, Perreau J, Dumenil D, Ezine S, Brulet P. Leukaemia inhibitory factor is necessary for maintenance of haematopoietic stem cells and thymocyte stimulation. Nature 1993; 363: 361–364.

    Article  PubMed  CAS  Google Scholar 

  174. Zheng H, Fletcher D, Kozak W, et al. Resistance to fever induction and impaired acute-phase response in interleukin-1 beta-deficient mice. Immunity 1995; 3: 9–19.

    Article  PubMed  CAS  Google Scholar 

  175. Schorle H, Holtschke T, Hunig T, Schimpl A, Horak I. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 1991; 352: 621–624.

    Article  PubMed  CAS  Google Scholar 

  176. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 1993; 75: 203–205.

    Article  Google Scholar 

  177. Cockayne DA, Bodine DM, Cline A, Nienhuis AW, Dunbar CE. Transgenic mice expressing anti-sense interleukin-3 RNA develop a B-cell lymphoproliferative syndrome or neurologic dysfunction. Blood 1994; 84: 2699–2710.

    PubMed  CAS  Google Scholar 

  178. Kopf M, Le Gros G, Bachmann M, Lamers MC, Bluethmann H, Kohler G. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 1993; 362: 245–248.

    Article  PubMed  CAS  Google Scholar 

  179. von der Weid T, Kopf M, Kohler G, Langhorne J. The immune response to Plasmodium chabaudi malaria in interleukin-4-deficient mice. Eur J Immunol 1994; 24: 2285–2293.

    Article  PubMed  Google Scholar 

  180. Vajdy M, Kosco-Vilbois MH, Kopf M, Kohler G, Lycke N. Impaired mucosal immune responses in interleukin 4-targeted mice. J Exp Med 1995; 181: 41–53.

    Article  PubMed  CAS  Google Scholar 

  181. Kopf M, Brombacher F, Hodgkin PD, et al. IL-S-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 1996; 4: 15–24.

    Article  PubMed  CAS  Google Scholar 

  182. Fattori E, Cappelletti M, Costa P, et al. Defective inflammatory response in interleukin 6-deficient mice. J Exp Med 1994; 180: 1243–1250.

    Article  PubMed  CAS  Google Scholar 

  183. Kopf M, Baumann H, Freer G, et al. Impaired immune and acute-phase responses in interleukin-6deftcient mice. Nature 1994; 368: 339–342.

    Article  PubMed  CAS  Google Scholar 

  184. Ramsay AJ, Husband AJ, Ramshaw IA, et al. The role of interleukin-6 in mucosal IgA antibody responses in vivo. Science 1994; 264: 561–563.

    Article  PubMed  CAS  Google Scholar 

  185. Bernad A, Kopf M, Kulbacki R, Weich N, Koehler G, Gutierrez-Ramos JC. Interleukin-6 is required in vivo for the regulation of stem cells and committed progenitors of the hematopoietic system. Immunity 1994; 1: 725–731.

    Article  PubMed  CAS  Google Scholar 

  186. Poli V, Balena R, Fattori E, et al. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J 1994; 13: 1189–1196.

    PubMed  CAS  Google Scholar 

  187. von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE, Murray R. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 1995; 181: 1519–1526.

    Article  Google Scholar 

  188. Bunting S, Widmer R, Lipari T, et al. Normal platelets and megakaryocytes are produced in vivo in the absence of thrombopoietin. Blood 1997; 90: 3423–3429.

    PubMed  CAS  Google Scholar 

  189. Carver-Moore K, Broxmeyer HE, Luoh SM, et al. Low levels of erythroid and myeloid progenitors in thrombopoietin-and c-mpl-deficient mice. Blood 1996; 88: 803–808.

    PubMed  CAS  Google Scholar 

  190. Bernstein SE. New mutants: 2. Steel Dickie. Mouse News Lett 1960; 23: 33–34.

    Google Scholar 

  191. Hara T, Ichihara M, Takagi M, Miyajima A. Interleukin-3 (IL-3) poor-responsive inbred mouse strains carry the identical deletion of a branch point in the IL-3 receptor alpha subunit gene. Blood 1995; 85: 2331–2336.

    PubMed  CAS  Google Scholar 

  192. Ichihara M, Hara T, Takagi M, Cho LC, Gorman DM, Miyajima A. Impaired interleukin-3 (IL-3) response of the A/J mouse is caused by a branch point deletion in the IL-3 receptor alpha subunit gene. EMBO J 1995; 14: 939–950.

    PubMed  CAS  Google Scholar 

  193. Miyajima I, Levitt L, Hara T, et al. The murine interleukin-3 receptor alpha subunit gene: chromosomal localization, genomic structure, and promoter function. Blood 1995; 85: 1246–1253.

    PubMed  CAS  Google Scholar 

  194. Morris CF, Salisbury J, Kobayashi M, Townsend PV, Hapel AJ. Interleukin 3 alone does not support the proliferation of bone marrow cells from A/J mice: a novel system for studying the synergistic activities of IL-3. Br J Haematol 1990; 74: 131–137.

    Article  PubMed  CAS  Google Scholar 

  195. de Sauvage FJ, Luoh S-M, Carver-Moore K, et al. Deficiencies in early and late stages of megakaryocytopiesis in TPO-KO mice. Blood 1995; 86: 255a.

    Google Scholar 

  196. Gurney AL, Carver-Moore K, de Sauvage FJ, Moore MW. Thrombocytopenia in c-mpl-deficient mice. Science 1994; 265: 1445–1447.

    Article  PubMed  CAS  Google Scholar 

  197. Kimura S, Roberts AW, Metcalf D, Alexander WS. Hematopoietic stem cell deficiencies in mice lacking c-Mpl, the receptor for thrombopoietin. Proc Natl Acad Sci USA 1998; 95: 1195–1200.

    Article  PubMed  CAS  Google Scholar 

  198. Peschon JJ, Morrissey PJ, Grabstein KH, et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 1994; 180: 1955–1960.

    Article  PubMed  CAS  Google Scholar 

  199. Itohara S, Mombaerts P, Lafaille J, et al. T cell receptor delta gene mutant mice: independent generation of alpha beta T cells and programmed rearrangements of gamma delta TCR genes. Cell 1993; 72: 337–348.

    Article  PubMed  CAS  Google Scholar 

  200. Mombaerts P, Clarke AR, Hooper ML, Tonegawa S. Creation of a large genomic deletion at the T-cell antigen receptor beta-subunit locus in mouse embryonic stem cells by gene targeting. Proc Natl Acad Sci USA 1991; 88: 3084–3087.

    Article  PubMed  CAS  Google Scholar 

  201. Mombaerts P, Clarke AR, Rudnicki MA, et al. Mutations in T-cell antigen receptor genes alpha and beta block thymocyte development at different stages. Nature 1992; 360: 225–231.

    Article  PubMed  CAS  Google Scholar 

  202. Mombaerts P, Mizoguchi E, Grusby MJ, Glimcher LH, Bhan AK, Tonegawa S. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell 1993; 75: 274–282.

    Article  PubMed  CAS  Google Scholar 

  203. Cao X, Shores EW, Hu-Li J, et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 1995; 2: 223–238.

    Article  PubMed  CAS  Google Scholar 

  204. Suzuki H, Kundig TM, Furlonger C, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 1995; 268: 1472–1476.

    Article  PubMed  CAS  Google Scholar 

  205. Cacalano G, Lee J, Kikly K, et al. Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science 1994; 265: 682–684.

    Article  PubMed  CAS  Google Scholar 

  206. Moore MW, Cacalano G, Wood WI. Neutrophilia in mice that lack the murine IL-8 receptor homolog. Science 1995; 269: 591.

    Article  Google Scholar 

  207. Shuster DE, Kehrli ME, Jr., Ackermann MR. Neutrophilia in mice that lack the murine IL-8 receptor homolog. Science 1995; 269: 1590–1591.

    Article  PubMed  CAS  Google Scholar 

  208. Fujisawa M, Kobayashi Y, Okabe T, Takaku F, Komatsu Y, Itoh S. Recombinant human granulocyte colony-stimulating factor induces granulocytosis in vivo. Jpn J Cancer Res 1986; 77: 866–869.

    PubMed  CAS  Google Scholar 

  209. Moore MA, Warren DJ. Synergy of interleukin 1 and granulocyte colony-stimulating factor: in vivo stimulation of stem-cell recovery and hematopoietic regeneration following 5–1Iuorouracil treatment of mice. Proc Natl Acad Sci USA 1987; 84: 7134–7138.

    Article  PubMed  CAS  Google Scholar 

  210. Molineux G, Pojda Z, Dexter TM. A comparison of hematopoiesis in normal and splenectomized mice treated with granulocyte colony-stimulating factor. Blood 1990; 75: 563–569.

    PubMed  CAS  Google Scholar 

  211. Pojda Z, Molineux G, Dexter TM. Hemopoietic effects of short-term in vivo treatment of mice with various doses of rhG-CSF. Exp Hematol 1990; 18: 27–31.

    PubMed  CAS  Google Scholar 

  212. O’Keeffe M, Hochrein H, Vremec D, et al. Effects of administration of progenipoietin 1, Flt-3 ligand, granulocyte colony-stimulating factor, and pegylated granulocyte-macrophage colony-stimulating factor on dendritic cell subsets in mice. Blood 2002; 99: 2122–2130.

    Article  PubMed  Google Scholar 

  213. Gearing AJ, Metcalf D, Moore JG, Nicola NA. Elevated levels of GM-CSF and IL-1 in the serum, peritoneal and pleural cavities of GM-CSF transgenic mice. Immunology 1989; 67: 216–220.

    PubMed  CAS  Google Scholar 

  214. Metcalf D, Moore JG. Divergent disease patterns in granulocyte-macrophage colony-stimulating factor transgenic mice associated with different transgene insertion sites. Proc Natl Acad Sci USA 1988; 85: 7767–7771.

    Article  PubMed  CAS  Google Scholar 

  215. Daro E, Pulendran B, Brasel K, et al. Polyethylene glycol-modified GM-CSF expands CDI lb (high) CD11c (high) but not CD1 lb (low) CD11c (high) murine dendritic cells in vivo: a comparative analysis with FIt3 ligand. J Immunol 2000; 165: 49–58.

    PubMed  CAS  Google Scholar 

  216. Ikegami M, Ueda T, Hull W, et al. Surfactant metabolism in transgenic mice after granulocyte macrophage-colony stimulating factor ablation. Am J Physiol 1996; 270: L650 — L658.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lieschke, G.J. (2004). Animal Models of Hematopoietic Growth Factor Perturbations in Physiology and Pathology. In: Morstyn, G., Foote, M., Lieschke, G.J. (eds) Hematopoietic Growth Factors in Oncology. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-747-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-747-5_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9847-9

  • Online ISBN: 978-1-59259-747-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics