Skip to main content

Targeted Drug Delivery to Tumor Cells Using Colloidal Carriers

  • Chapter

Abstract

Advances in biotechnology and medicine have provided an opportunity for the development of a number of carrier systems for tumor-targeted delivery of anticancer drugs and genes. Tumors are an uncontrolled mass of proliferations of a single malignant cell arising from mutations, which are either inherited or caused by environmental factors (1). In order to reach the tumor cells, systemically administered drugs have to overcome a number of obstacles, which may include rapid metabolism and clearance of drugs from the body, physiological barriers in transportation of the drugs from the site of administration to the tumor cells, drug resistance, and toxicity of the anticancer drugs to normal cells (2–4). The high interstitial pressure and absence of lymphatic drainage were also reported to cause problems in distribution of the drug in the solid tumor (5).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seymour WL. Systemic cancer therapy using polymer-based prodrugs and progenes. In: Dumitriu S, ed. Polymeric Biomaterials, 2nd edition, New York, NY, Marcel-Dekker, Inc., 2001, pp. 843–850.

    Google Scholar 

  2. Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nature 2001; 7: 987–989.

    Article  CAS  Google Scholar 

  3. Teicher BA. Drug Resistance in Oncology. New York, NY, Marcel Dekker, 1994.

    Google Scholar 

  4. Yuan F. Transvascular drug delivery in solid tumors. Semin Radiat Oncol 1998; 8: 164–175.

    Article  PubMed  CAS  Google Scholar 

  5. Jain RK. Delivery of molecular and cellular medicine to solid tumors. Microcirculation 1997; 4: 1–23.

    Article  PubMed  CAS  Google Scholar 

  6. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219: 983–985.

    Article  PubMed  CAS  Google Scholar 

  7. Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1306–1309.

    Article  PubMed  CAS  Google Scholar 

  8. Maeda H, Matsumura Y, Kato H. Purification and identification of (hydroxypropyl) bradykinin in ascitic fluid from a patient with gastric cancer. J Biol Chem 1988; 263: 16051–16054.

    PubMed  CAS  Google Scholar 

  9. Maeda H, Noguchi Y, Sato K, Akaike T. Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor. J Cancer Res 1994; 85: 331–334.

    CAS  Google Scholar 

  10. Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992; 267: 10931–10934.

    PubMed  CAS  Google Scholar 

  11. Munn LL, Koenig GC, Jain RK, Melder RJ. Kinetics of adhesion molecule expression and spatial organization using targeted sampling fluorimetry. Biotechniques 1995; 19: 622–631.

    PubMed  CAS  Google Scholar 

  12. Jain RK. Transport of molecules across tumor vasculature. Cancer Metas Rev 1987; 6: 559–593.

    Article  CAS  Google Scholar 

  13. Jain RK, Safabakhsh N, Sckell Y, et al. Endothelial cell death angiogenesis, and micro vascular function following castration in an androgen-dependent tumor: role of VEGF. Proc Natl Acad Sci USA 1998; 95: 10820–10825.

    Article  PubMed  CAS  Google Scholar 

  14. Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 1989; 49: 4373–4384.

    PubMed  CAS  Google Scholar 

  15. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, micro vascular hyperpermeability and angiogenesis. Am J Pathol 1995; 146: 1029–1039.

    PubMed  CAS  Google Scholar 

  16. Kohn S, Nagy JA, Dvorak AM. Pathways of macromolecular tracer transport across venules and small veins: structural basis for hyperpermeability of tumor blood vessels. Lab Invest 1992; 67: 596–607.

    PubMed  CAS  Google Scholar 

  17. Dvorak AM, Kohn S, Morgan ES. The vesiculo-vacuolar organelles (VVO): a distinct endothelial cell structure that provides transcellular pathway for macromolecular extravasation. J Leukoc Biol 1996; 59: 100–115.

    PubMed  CAS  Google Scholar 

  18. Feng D, Nagy JA, Hipp J. Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine and seratonin. J Exp Med 1996; 183: 1981–1986.

    Article  PubMed  CAS  Google Scholar 

  19. Roberts WG, Palade GE. Increased vascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 1995; 108: 2369–2379.

    PubMed  CAS  Google Scholar 

  20. Roberts WG, Palade GE. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res 1997; 57: 765–772.

    PubMed  CAS  Google Scholar 

  21. Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 1989; 6: 193–210.

    PubMed  CAS  Google Scholar 

  22. Maeda H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Delivery Rev 1991; 6: 181–202.

    Article  CAS  Google Scholar 

  23. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumorotropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 1986; 46: 6387–6392.

    PubMed  CAS  Google Scholar 

  24. Muggia F. Doxorubicin-polymer conjugates: further demonstration of the concept of enhanced permeability and retention. Clin Cancer Res 1999; 5: 7–8.

    PubMed  CAS  Google Scholar 

  25. Duncan R. Drug-polymer conjugates: potential for improved chemotherapy. Anticancer Drugs 1992; 3: 175–210.

    Article  PubMed  CAS  Google Scholar 

  26. Duncan, R. Selective endocytosis. In: Robinson JR, ed. Sustained and Controlled Drug Delivery Systems. New York, Marcel Dekker, 1987, pp. 581–621.

    Google Scholar 

  27. Luo Y, Prestwich GD. Cancer-targeted polymeric drugs. Curr Cancer Drug Targets 2002; 2: 209–226.

    Article  PubMed  CAS  Google Scholar 

  28. Kopecek J, Bazilova H. Poly[N-(2-hydroxypropyl) methacrylamide] 1. Radical polymerization and copolymerization. Eur Polym 1973; 9: 7–14.

    Article  CAS  Google Scholar 

  29. Seymour WL, Duncan R, Kopecekova P, Kopecek J. Daunomycin and adriamycin-N-(2hydroxypropyl) methacrylamide copolymer conjugates: toxicity reduction by improved drug-delivery. Cancer Treatment Rev 1987; 14: 319–327.

    Article  CAS  Google Scholar 

  30. Vasey PA, Kaye SB, Morrison R, et al. Phase I clinical and pharmacokinetic study of PK1 [N(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Clin Cancer Res 1999; 5: 83–94.

    PubMed  CAS  Google Scholar 

  31. Merum Terwogt JM, Ten Bokkel Huinink WW, Shellens JH, et al. Phase I clinical and pharmacokinetic study of PNU166945, a novel polymer-conjugated prodrug of paclitaxel. Anticancer Drugs 2001; 12: 315–323.

    Article  CAS  Google Scholar 

  32. Caiolfa VR, Zamal M, Fiorini A, et al. Polymer bound camptothecin: initial biodistribution and antitumor activity studies. J Control Release 2000; 65: 105–120.

    Article  PubMed  CAS  Google Scholar 

  33. Gianasi, E., Wasil, M., Evagorou, E.G., Keddle, A., Wilson G, Duncan R. HPMA copolymer platinates as novel antitumor agents: in vitro properties, pharmacokinetics and antitumor activity. Eur J Cancer 1999; 3: 994–1002.

    Article  Google Scholar 

  34. Etrych T, Jelinkova M, Rihova B, Ulbrich K. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties. J Control Release 2001 ); 73: 89–102.

    Article  PubMed  CAS  Google Scholar 

  35. Cassidy J, Duncan R, Morrison GJ, et al. Activity of N-(2-hydroxypropyl) methacrylamide copolymers containing daunomycin against rat tumor model. Biochem Pharmacol 1989; 38: 875–879.

    Article  PubMed  CAS  Google Scholar 

  36. Duncan R, Kopecekova P, Strohalm J, et al. Anticancer agents coupled to N-(2-hydroxypropyl) methacrylamide copolymers. II. Evaluation of daunomycin conjugates in vivo against L1210 leukemia. Br J Cancer 1988; 57: 147–156.

    Article  PubMed  CAS  Google Scholar 

  37. Kasuya Y, Lu ZR, Kopecekova P, et al. Synthesis and characterization of HPMA copolymeraminopropylgeldanamycin conjugates. J Control Release 2001; 74: 203–211.

    Article  PubMed  CAS  Google Scholar 

  38. Omelyanenko V, Kopecekova P, Gentry C, Kopecek, J. Targetable HPMA copolymeradriamycin conjugates. Recognition, internalization and subcellular fate. J Control Release 1998; 53: 25–37.

    Article  PubMed  CAS  Google Scholar 

  39. Satchi R, Connors TA, Duncan R. PDEPT: polymer-directed enzyme prodrug therapy.;I.HPMA copolymer-cathepsin B and PK1 as a model combination. Br J Cancer 2001; 85: 1070–1076.

    Article  PubMed  CAS  Google Scholar 

  40. Searle F, Gac-Breton S, Keane R, et al. N-(2-hydroxypropyl) methacrylamide copolymer-6(3-aminopropyl)-elliciptine conjugates. Synthesis, in vitro, and preliminary in vivo evaluation. Bioconjug Chem 2001; 12: 711–718.

    Article  PubMed  CAS  Google Scholar 

  41. Tijerina M, Kopecekova J, Kopecek J. The effects of subcellular localization of N-(2hydroxypropyl) methacrylamide copolymer-Mce6 conjugates in a human ovarian carcinoma. J Control Release 2001; 74: 269–273.

    Article  PubMed  CAS  Google Scholar 

  42. Seymour LW. Passive tumor targeting of soluble macromolecules and drug conjugates. Crit Rev Ther Drug Carrier Syst 1992; 9: 135–187.

    PubMed  CAS  Google Scholar 

  43. Kuromizu K, Tsunasawa S, Maeda H, et al. Reexamination of the primary structure of an antitumor protein, neocarzinostatin. Arch Biochem Biophys 1986; 246: 199–205.

    Article  PubMed  CAS  Google Scholar 

  44. Kuromizu K, Abe O, Maeda H. Location of the disulfide bonds in the antitumor protein, neocarzinostatin. Arch Biochem Biophys 1991; 286: 569–573.

    Article  PubMed  CAS  Google Scholar 

  45. Maeda H, Takeshita J, Yamashita A. Lymphotropic accumulation of an antitumor antibiotic protein neocarzinostatin. Eur J Cancer 1980; 16: 723–731.

    Article  PubMed  CAS  Google Scholar 

  46. Maeda H, Matsumura Y. New tactics and basic mechanisms of targeting chemotherapy in solid tumors. In: Kimura K, Carter SK, Ota K, Pinedo HM, eds. Cancer Chemotherapy: Challenges for the Future. Tokyo, Excerpta Medica, 1989, pp. 239–260.

    Google Scholar 

  47. Konno T, Maeda H. Targeting chemotherapy of hepatocellular carcinoma: arterial administration of SMANCS/Lipiodol. In: Okada K, Ishak KG, eds. Neoplasms of the Liver. New York, NY, Springer-Verlag, 1987, pp. 276–291.

    Google Scholar 

  48. Konno T. Targeting anticancer chemotherapy for primary and secondary liver cancer using arterially administered oily anticancer agents. In: Kimura K, ed. Cancer Chemotherapy: Challenges for the Future. Tokyo, Excerpta Medica, 1987, pp. 299–311.

    Google Scholar 

  49. Hirano T, Ohashi S, Morimoto S, et al. Synthesis of antitumor-active conjugates of adriamycin or daunomycin with the copolymer of divinyl ether and maleic anhydride. Makromol Chem 1986; 187: 2815–2824.

    Article  CAS  Google Scholar 

  50. Zalipsky S. Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates. Bioconjug Chem 1995; 6: 150–165.

    Article  PubMed  CAS  Google Scholar 

  51. Greenwald RB, Gilbert CW, Pendri A, et al. Drug delivery systems: water soluble taxol 2’poly(ethylene glycol) ester prodrugs: design and in vivo effectiveness. J Med Chem 1996; 39: 424–431.

    Article  PubMed  CAS  Google Scholar 

  52. Pendri A, Conover CD, Greenwald RB. Antitumor activity of paclitaxel-2’-glycinate conjugated to poly(ethylene glycol): a water-soluble prodrug. Anti-Cancer Drug Design 1998; 13: 387–395.

    PubMed  CAS  Google Scholar 

  53. Minko T, Paranjpe PV, Qiu B, et al. Enhancing the anticancer efficacy of camptothecin using biotinylated poly(ethylene glycol) conjugates in sensitive and multidrug-resistant human ovarian carcinoma cells. Cancer Chemother Pharmacol 2002; 50: 143–150.

    Article  PubMed  CAS  Google Scholar 

  54. Calceti P, Monfardini C, Sartore L, et al. Preparation and properties of monomethoxy poly(ethylene glycol) doxorubicin conjugates linked by an amino acid or a peptide spacer. Farmaco 1993; 48: 919–932.

    Google Scholar 

  55. Keating MJ, Holmes R, Lermer S, Ho DH. Asparginase and PEG asparginase-past, present and future. Leuk Lymphoma 1993; 10: 153–157.

    Article  PubMed  Google Scholar 

  56. Ho DH, Brown NS, Yen A, et al. Clinical pharmacology of polyethylene glycol-asparginase. Drug Metab Disposit 1986; 14: 349–352.

    CAS  Google Scholar 

  57. Kurtzberg J, Moore JO, Scudiery D, Franklin A. A phase II study of polyethylene glycol (PEG) conjugated L-asparginase in patients with refractory acute leukemia’s. Proc AACR 1988; 29: 213.

    Google Scholar 

  58. Duncan R, Spreafico F. Polymer conjugates. Pharmacokinetic considerations for design and development. Clin Pharmacokinet 1994; 27: 290–306.

    Article  PubMed  CAS  Google Scholar 

  59. Sawa T, Wu J, Akaike T, Maeda H. Tumor-targeting chemotherapy by a xanthine oxidasepolymerconjugate that generates oxygen-free radicals in tumor tissue. Cancer Res 2000; 60: 666–671.

    PubMed  CAS  Google Scholar 

  60. Li C. Foly(L-glutamic acid)-anticancer drug conjugates. Adv Drug Delivery Rev 2002; 54 (5): 695.

    Article  CAS  Google Scholar 

  61. Singer JW, Bhatt R, Tulinsky J, et al. Water-soluble poly(L-glutamic acid)-gly-camptothecin conjugates enhance camptothecin stability and efficacy in vivo. J Control Rel 2001; 74: 243–247.

    Article  CAS  Google Scholar 

  62. Luo Y, Prestwich GD. Hyaluronic acid-N-Hydroxysuccinate: a useful intermediate for bioconjugation. Bioconjug Chem 2001; 12: 1085–1088.

    Article  PubMed  CAS  Google Scholar 

  63. Luo Y, Bernshaw NJ, Lu ZR, et al. Targeted delivery of doxorubicin by HPMA copolymerhyaluronan bioconjugates. Pharm Res 2002; 19: 396–402.

    Article  PubMed  CAS  Google Scholar 

  64. Luo Y, Prestwich GD. Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate. Bioconjug Chem 1999; 10: 755–763.

    Article  PubMed  CAS  Google Scholar 

  65. Okuno S, Harada M, Yano S, et al. Complete regression of xenografted human carcinomas by camptothecin analogue-carboxymethyl dextran conjugate. Cancer Res 2000; 60: 2988–2995.

    PubMed  CAS  Google Scholar 

  66. Avichezer D, Schechter B, Arnon R. Functional polymers in drug delivery: carrier-supported CDDP (cisplatin) complexes of polycarboxylates-effect on human ovarian carcinoma. React Funct Polym 1998; 36: 59–69.

    Article  CAS  Google Scholar 

  67. Bernstein A, Hurwitz E, Maron R, et al. Higher antitumor efficacy of daunomycin when linked to dextran: in vivo and in vitro studies. J Natl Cancer Inst 1978; 60: 379–384.

    PubMed  CAS  Google Scholar 

  68. Hejazi R, Amiji MM. Chitosan based delivery systems: physicochemical properties and pharmaceutical applications. In: Dumitriu S, ed. Biomaterials. Qubec, Marcel Dekker, 2001, pp. 213–237.

    Google Scholar 

  69. Sato M, Onishi H, Takahara J, et al. In vivo drug release and antitumor characteristics of water soluble conjugates of mitomycin C with glycol-chitosan and N-succinyl-chitosan. Biol Pharm Bull 1996; 19 (9): 1170–1177.

    Article  PubMed  CAS  Google Scholar 

  70. Swarts JC, Swarts DM, Neuse EW, et al. Polyaspartamides as water-soluble drug carriers. part 1: Antineoplastic activity of ferrocene-containing polyaspartamide conjugates. Anticancer Res 2001; 21: 2033–2037.

    PubMed  CAS  Google Scholar 

  71. Reddy BS, Damayanthi Y, Lown JW. Design synthesis and in vitro cytotoxicity studies of novel pyrrolo [2,1-c] [1,4] benzodiazepine (PBD)-polyamide conjugates and 2, 2’-PBD dimers. Anti-Cancer Drug Design 2000; 15 (3): 225–238.

    CAS  Google Scholar 

  72. Kreuter J. Drug targeting with nanoparticles. Eur J Drug Metab Pharmacokinet 1994; 3: 253–256.

    Article  Google Scholar 

  73. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Delivery Rev 2002154: 631–651.

    Google Scholar 

  74. Couvreur P, Dubernet C, Puisieux F. Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm 1995; 41: 2–13.

    CAS  Google Scholar 

  75. Yoo HS, Lee KH, Oh JE, Park TG. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J Control Release 2000; 68: 419–431.

    Article  PubMed  CAS  Google Scholar 

  76. Feng SS, Huang GF, Mu L. Nanospheres of biodegradable polymers: a system for clinical administration of an anticancer drug paclitaxel (Taxol). Ann Acad Med Singapore 2000; 29: 633–639.

    PubMed  CAS  Google Scholar 

  77. Avgoustakis K, Beletsi A, Panagi Z, et al. PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release 2002; 79: 123–135.

    Article  PubMed  CAS  Google Scholar 

  78. Quintanar-Guerrero D, Fessi H, Allemann E, Dolker. Influence of stabilizing agents and preparative variables on the formation of poly(D, L-lactic acid) nanoparticles by an emulsification-diffusion technique. Int J Pharm 1996; 143: 133–141.

    Article  CAS  Google Scholar 

  79. Hirosue S, Muller BG, Mulligan RC, Langer R. Plasmid DNA encapsulation and release from solvent diffusion nanospheres. J Control Release 2001; 70: 231–242.

    Article  PubMed  CAS  Google Scholar 

  80. Cohen H, Levy RJ, Gao J, et a1. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther 2000; 7: 1896–1905.

    Article  PubMed  CAS  Google Scholar 

  81. Maruyama A, Ishihara T, Kim JS, et al. Nanoparticles DNA carrier with poly(L-lysine) grafted polysaccharide copolymer and poly(D,L-lactic acid). Bioconjug Chem 1997; 8: 735–742.

    Article  PubMed  CAS  Google Scholar 

  82. Couvreur P, Grislain L, Lenaerts V, et al. Biodegradable polymeric nanoparticles as drug carrier for antitumor agents. In: Guiot P, Couvreur P. eds. Polymeric Nanoparticles and Microspheres. Boca Raton, FL, CRC Press, 1986, pp. 27–93.

    Google Scholar 

  83. Couvreur P, Kante, B, Roland M, Speiser P. Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release characteristics in a calf serum medium. J Pharm Sci 1979; 68: 1521.

    Article  PubMed  CAS  Google Scholar 

  84. Brasseur F, Couvreur P, Kante B, et al. Actinomycin-D adsorbed on polymethylcyanoacrylate nanoparticles: increased efficiency against experimental tumor. Eur J Cancer 1980; 16: 1441.

    Article  PubMed  CAS  Google Scholar 

  85. Soma CE, Dubernet C, Barratt G, et al. Ability of doxorubicin-loaded nanoparticles to overcome multidrug resistance of tumor cells after their capture by macrophages. Pharm Res 1999; 16: 1710–1716.

    Article  PubMed  CAS  Google Scholar 

  86. Verdun C, Brasseur F, Vrancks H, et al. Tissue distribution of doxorubicin associated with polyisohexylcyanoacrylate nanoparticles. Cancer Chemother Pharmacol 1990; 26: 13–18.

    Article  PubMed  CAS  Google Scholar 

  87. Simeonova M, Ilarionova M, Ivanova T, et al. Nanoparticles as drug carriers for vinblastine. Acute toxicity of vinblastine in a free form and associated to polybutylcyanoacrylate nanoparticles. Bulgarian Acd Sci Acta Phy et Phram Bulg 1991; 17: 43–48.

    CAS  Google Scholar 

  88. Cuvier C, Roblot-Treupel L, Millot JM, et al. Doxorubicin-loaded nanospheres bypass tumor cell multidrug resistance. Biochem Pharmacol 1992; 44: 509–517.

    Article  PubMed  CAS  Google Scholar 

  89. Bennis S, Chapey C, Couvreur P, Roberts J. Enhanced cytotoxicity of doxorubicin encapsulated in poly-isohexylcyanoacrylate nanospheres against multidrug resistant tumor cells in culture. Eur J Cancer 1994; 30A: 89–93.

    Article  Google Scholar 

  90. Gulyaev AE, Gelperina SE, Skidan IN, et al. Significant transport of doxorubicin into brain with polysorbate 80-coated nanoparticles. Pharm Res 1999; 16: 1564–1569.

    Article  PubMed  CAS  Google Scholar 

  91. Ilium 1, Davis SS. The organ uptake of intravenously administered colloidal particles can be altered using a non-ionic surfactant (poloxamer 338). FEBS Lett 1984; 167: 79–82.

    Article  PubMed  Google Scholar 

  92. Reszka R, Beck P, Fichtner I, et al. Body distribution of free, liposomal and nanoparticleassociated mitoxantrone in B 16-melanoma-bearing mice. J Pharmacol Exp Ther 1997; 280: 232–237.

    PubMed  CAS  Google Scholar 

  93. Beck P, Kreuter J, Reszka R, Fichtner I. Influence of polybutylcyanoacrylate nanoparticles and liposomes on the efficacy and toxicity of the anticancer drug mitoxantrone in murine tumor models. J Microencapsul 1993; 10: 101–114.

    Article  PubMed  CAS  Google Scholar 

  94. Zobel HP, Junghans M, Maienschein V, et al. Enhanced antisense efficacy of oligonucleotides adsorbed to monomethylaminoethylmethacrylate methylmethacrylate copolymer nanoparticles. Eur J Pharm Biopharm 2000; 49: 203–210.

    Article  PubMed  CAS  Google Scholar 

  95. Zimmer A. Antisense oligonucleotide delivery with polyhexylcyanoacrylate nanoparticles as carriers. Methods: Comp Meth Enzymol 1999; 18: 286–295.

    Article  CAS  Google Scholar 

  96. Nakada Y, Fattal E, Foulquier M, Couvreur P. Pharmacokinetics and biodistribution of oligonucleotide adsorbed onto poly(isobutylcyanoacrylate) nanoparticles after intravenous administration in mice. Pharm Res 1996; 13: 38–43.

    Article  PubMed  CAS  Google Scholar 

  97. Fattal E, Vauthier C, Aynie I, et al. Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. J Control Release 1998; 53: 137–143.

    Article  PubMed  CAS  Google Scholar 

  98. Schwab G, Chavany C, Duroux I, et al. Antisense oligonucleotides adsorbed to polyalkylcyanoacrylate nanoparticles specifically inhibit mutated Ha-ras-mediated cell proliferation and tumorigenicity in nude mice. Proc Natl Acad Sci USA 1994; 91: 10460–10464.

    Article  PubMed  CAS  Google Scholar 

  99. Kattan J, Droz JP, Couvreur P, et al. Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles. Invest New Drugs 1992; 10: 191–199.

    Article  PubMed  CAS  Google Scholar 

  100. Janes KA, Fresneau MP, Marazuela A, Fabra A. chitosan nanoparticles as delivery systems for doxorubicin. J Control Release 2001; 73: 255–267.

    Article  PubMed  CAS  Google Scholar 

  101. Mitra S, Gaur U, Ghosh PC, Maitra AN. Tumor targeted delivery of encapsulated dextrandoxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release 2001; 74: 317–323.

    Article  PubMed  CAS  Google Scholar 

  102. Kabbaj M, Phillips NC. Anticancer activity of mycobacterial DNA: effect of formulation as chitosan nanoparticles. J Drug Target 2001; 9: 317–328.

    Article  PubMed  CAS  Google Scholar 

  103. Mao H, Roy K, Troung-Le VL, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis characterization and transfection efficiency. J Control Rel 2001; 70: 399–421.

    Article  CAS  Google Scholar 

  104. Farrugia CA, Groves JM. Gelatin behaviour in dilute aqueous solution: designing a nanoparticulate formulation. J Pharm Pharmacol 1999; 51: 643–649.

    Article  PubMed  CAS  Google Scholar 

  105. Truong-Le Vi., Walsh SM, Schweibert E, et al. Gene transfer by DNA gelatin nanospheres. Arch Biochem Biophys 1999; 361: 47–56.

    Article  PubMed  CAS  Google Scholar 

  106. Truong-Le VL, August JT, Leong KW. Controlled gene delivery by DNA-gelatin nanospheres. Hum Gene Ther 1998; 9: 1709–1717.

    Article  PubMed  CAS  Google Scholar 

  107. Coester C, Kreuter J, Briesen HV, Langer K. Preparation of avidin-labelled gelatin nanoparticles as carriers for biotinylated peptide nucleic acid (PNA). Int J Pharm 2000; 196: 147–149.

    Article  PubMed  CAS  Google Scholar 

  108. Kaul G, Amiji MM. Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm Res 2002; 19: 1062–1068.

    Article  Google Scholar 

  109. Kaul G, Potineni A, Lynn DM, et al. Surface-modified polymeric nanoparticles for tumor-targeted delivery. surFacts Biomaterials 2002; 7: 1–5.

    Google Scholar 

  110. Sharma D, Chelvi TP, Kaur J, et al. Novel taxol formulation: polyvinylpyrrolidine nanoparticle-encapsulated taxol for drug delivery in cancer therapy. Oncol Res 1996; 8: 281–286.

    PubMed  CAS  Google Scholar 

  111. Kim SY, Lee YM. Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(epsilon-caprolactone) as novel anticancer drug carriers. Biomaterials 2001; 22: 1697–1704.

    Article  PubMed  CAS  Google Scholar 

  112. Oh I, Lee K Kwon HY, Lee YB, et al. Release of adriamycin from poly(gamma-benzyl-Lglutamate)/poly(ethylene oxide) nanoparticles. Int J Pharm 1999; 181: 107–115.

    Article  PubMed  CAS  Google Scholar 

  113. Potineni A, Lynn DM, Langer R, Amiji MM. Poly(ethylene oxide)-modified poly(ß-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. J Control Release 2003; 86: 223–234.

    Article  PubMed  CAS  Google Scholar 

  114. Thunemann AF. Polyethyleneimine complexes with retinoic acid: structure, release profile and nanoparticles. Macromolecules 2000; 33: 6878–6885.

    Article  CAS  Google Scholar 

  115. Bangham AD, Standish MM, Warkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13: 238–252.

    Article  PubMed  CAS  Google Scholar 

  116. Chrai SS, Ahmad I. Liposomes (a review). Part one: manufacturing issues. BioPharm (2001);Nov:10–13.

    Google Scholar 

  117. Juliano RL, Stamp D. Interactions of drugs with lipid membranes. Characteristics of liposomes containing polar or non-polar antitumor drugs. Biochim Biophys Acta 1979; 586: 137–145.

    Article  CAS  Google Scholar 

  118. Robert KY, Zee-Cheng, Cheng CC. Delivery of Anticancer drugs. Meth Find Exp Clin Pharmacol 1989; 11: 439–529.

    Google Scholar 

  119. Oku N, Tokudome Y, Asai T, Tsukada H. Evaluation of drug targeting strategies and liposomal trafficking. Curr Pharmaceut Design 2000; 6: 1669–1691.

    Article  CAS  Google Scholar 

  120. Gregoriadis G, Neerunjun ED. Treatment of tumor bearing mice with liposome-entrapped actinomycin D prolongs their survival. Res Commun Chem Pathol Pharmacol 1975; 10: 351–362.

    PubMed  CAS  Google Scholar 

  121. Kaye SB, Ryman BE. The fate of liposome-entrapped actinomycin-D in vivo and its therapeutic effect in a solid murine tumor. Biochem Soc Trans 1980; 8: 107–108.

    PubMed  CAS  Google Scholar 

  122. Rahman A, Kessler A, More N. Liposomal protection of adriamycin induced cardiotoxicity in mice. Cancer Res 1980; 40: 1532–1537.

    PubMed  CAS  Google Scholar 

  123. Shinozawa S, Maki Y, Oda T. Tissue distribution and antitumor effect of liposome entrapped doxorubicin (adriamycin) in Ehrlich ascites solid tumor bearing mice. Acta Med Okayama 1981; 35: 395–405.

    PubMed  CAS  Google Scholar 

  124. Gabizon A, Dagan A, Goren D, et al. Liposomes as in vivo carriers of adriamycin: Reduced cardiac uptake and preserved antitumor activity in mice. Cancer Res 1982; 42: 4734–4739.

    PubMed  CAS  Google Scholar 

  125. Yatvin MB, Muhlensiepen H, Porschen W, et al. Selective delivery of liposome associated cis-dichloro-diammineplatinum (II) by heat and its influence on tumor uptake and growth. Cancer Res 1981; 41: 1602–1607.

    PubMed  CAS  Google Scholar 

  126. Fitchner I, Reszka R, Elbe B, Arndt D. Therapeutic evaluation of liposome encapsulated daunoblastin in murine tumor models. Neoplasma 1981; 28: 141–149.

    Google Scholar 

  127. Kimelberg HK, Atchison ML. Effects of entrapment of liposomes on the distribution, degradation and effectiveness of methotrexate on its chemotherapeutic efficacy in solid rodent tumors. Ann NY Acad Sci 1978; 308: 395–409.

    Article  PubMed  CAS  Google Scholar 

  128. Kosloski MJ, Rosen F, Miliholland RJ, Papahadjopoulos D. Effect of lipid vesicle (liposome) encapsulation of methotrexate on its chemotherapeutic efficacy in solid rodent tumors. Cancer Res 1978; 38: 2848–2853.

    PubMed  CAS  Google Scholar 

  129. Weinstein JN, Magin RL, Cysyk RL, Zaharko DS. Treatment of solid L1210 murine tumors with local hyperthermia and temperature sensitive liposomes containing methotrexate. Cancer Res 1980; 40: 1388–1395.

    PubMed  CAS  Google Scholar 

  130. Patel KR, Jonah MM, Rahman YE. In vitro uptake and therapeutic application of liposome-encapsulated methotrexate in mouse hepatoma. Eur J Cancer Clin Oncol 1982; 18: 833–843.

    Article  PubMed  CAS  Google Scholar 

  131. Forssen EA, Proffitt RT. Design and development of long circulating liposomal daunorubicin for in vivo targeting of solid tumors: DaunoXome®. In: Woodle M, Storm G. eds. Long Circulating Liposomes: Old Drugs, New Therapeutics. New York, NY, Springer-Verlag and Landes Bioscience, 1998, pp. 74–96.

    Google Scholar 

  132. Forssen EA, Coulter DM, Proffitt RT. Selective in vivo localization of daunorubicin small unilamellar vesicles in solid tumors. Cancer Res 1992; 52: 3255–3261.

    PubMed  CAS  Google Scholar 

  133. Forssen EA. Ross ME. DaunoXome treatment of solid tumors: preclinical and clinical investigations. J Liposome Res 1994; 4: 481–512.

    Article  Google Scholar 

  134. Money-Kyrle JF, Bates F, Ready J, et al. Liposomal daunorubicin in advanced Kaposi’s sarcoma: a phase II study. Clin Oncol 1993; 5: 367–371.

    Article  CAS  Google Scholar 

  135. Presant CA, Scolaro M, Kennedy P, et al. Liposomal daunorubicin treatment of HIV-associated Kaposi’s sarcoma. Lancet 1993; 341: 1242–1243.

    Article  PubMed  CAS  Google Scholar 

  136. Gill PS, Wernz J, Scadden DT, et al. Randomized phase III trial of liposomal daunorubicin (DaunoXome) versus doxorubicin, bleomycin, vincristine, (ABV) in AIDS-related Kaposi’s sarcoma. J Clin Oncol 1996; 14: 2353–2364.

    PubMed  CAS  Google Scholar 

  137. Campbell R, Balasubramanian SV, Straubinger RM. Influence of cationic lipids on the stability and membrane properties of paclitaxel-containing liposomes. J Pharm Sci 2001; 90: 1091–1105.

    Article  PubMed  CAS  Google Scholar 

  138. Thierry AR, Rahman R, Dritschilo A. A new procedure for the preparation of liposomal doxorubicin: biological activity in multidrug-resistant tumor cells. Cancer Chemother Pharmacol 1994; 35: 84–88.

    Article  PubMed  CAS  Google Scholar 

  139. Gokhale PC, Radhakrishnan B, Husain SR, et al. An improved method of encapsulation of doxorubicin in liposomes: pharmacological, toxicological and therapeutic evaluation. Br J Cancer 1996; 74: 43–48.

    Article  PubMed  CAS  Google Scholar 

  140. Freeman AI, Mayhew E. Targeted drug delivery. Cancer 1986; 58: 573–583.

    Article  PubMed  CAS  Google Scholar 

  141. Rustum Y, Dave C, Mayhew E, Papahadjopoulos D. Anti-tumor effects of liposome-entrapped cytosine arabinoside against mouse L1210 leukemia: Role of liposome type and route of administration. Cancer Res 1979; 39: 1390–1395.

    CAS  Google Scholar 

  142. Gabizon A. Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Adv Drug Deliv Rev 1995; 16: 285–294.

    Article  CAS  Google Scholar 

  143. Dass CR, Walker TL, Burton MA, Decruz EE. Enhanced anticancer therapy mediated by specialized liposomes. J Pharm Pharmacol 1997; 49: 972–975.

    Article  PubMed  CAS  Google Scholar 

  144. Furgeson DY, Cohen RN, Mahato RL, Kim SW. Novel water insoluble lipoparticulates for gene delivery. Pharm Res 2002; 19: 382–390.

    Article  PubMed  CAS  Google Scholar 

  145. Anwer K, Kao G, Proctor B, Rolland A, Sullivan S. Optimization of cationic lipid/DNA complexes for systemic gene transfer to tumor lesions. J Drug Target 2000; 8: 125–135.

    Article  PubMed  CAS  Google Scholar 

  146. Meyer O, Kirpotin D, Hong K, et al. Cationic liposomes coated with polyethylene glycol as carriers for oligonucleotides. J Biol Chem 1998; 273: 15621–15627.

    Article  PubMed  CAS  Google Scholar 

  147. Birchall JC, Kellaway IW, Millis SN. Physico-chemical characterization and transfection efficiency of lipid-based gene delivery complexes. Int J Pharm 1999; 183: 195–207.

    Article  PubMed  CAS  Google Scholar 

  148. Whitmore M, Li S, Huang L. LPD lipoplex initiates a potent cytokine response and inhibits tumor growth. Gene Ther 1999; 6: 1867–1875.

    Article  PubMed  CAS  Google Scholar 

  149. Reimer DL, Kong S, Monck M, et al. Liposomal lipid and plasmid DNA delivery to B 16/BL6 tumors after intraperitoneal administration of cationic liposome DNA aggregates. J Pharmacol Exp Ther 1999; 289 (2): 807–815.

    PubMed  CAS  Google Scholar 

  150. Dass CR. Biochemical and biophysical characteristics of lipoplexes pertinent to solid tumor gene therapy. Int J Pharm 2002; 241: 1–25.

    Article  PubMed  CAS  Google Scholar 

  151. Allen TM. StealthTM liposomes: Avoiding reticuloendothelial uptake in liposomes. In: Lopez Berestain G, Fidler IJ, eds. Liposomes in the Therapy of Infectious Diseases and Cancer. New York, NY, Allen R. Liss, 1989, pp. 405–441.

    Google Scholar 

  152. Papahadjopoulos D, Allen TM, Gabizon A, et al. Sterically stabilized liposomes-improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 1991; 88: 1 1460.

    Google Scholar 

  153. Blume G, Ceve G. Liposomes for the sustained release in vivo. Biochim Biophys Acta 1990; 1029: 91.

    Article  PubMed  CAS  Google Scholar 

  154. Torchilin VP, Papisov MI. Why do polyethylene glycol-coated liposomes circulate so long? J Liposome Res 1994; 4: 725–739.

    Article  Google Scholar 

  155. Torchilin VP. How do polymers prolong circulation time of liposomes. J Liposome Res 1996; 6: 99–116.

    Article  CAS  Google Scholar 

  156. Torchilin VP, Omelyanenko V, Papisov MI, et al. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposomes longevity. Bichem et Biophys Acta 1994; 1195: 11–20.

    Article  CAS  Google Scholar 

  157. Pang SNJ. Final report on the safety assessment of polyethylene glycols (PEGS)-6, -8, -32, -75, -150, -14M, -20M. J. Am College Toxicol 1992; 12: 429–456.

    Google Scholar 

  158. Yamaoka T, Tabata T, Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration in mice. J Pharm Sci 1994; 83: 601–606.

    Article  PubMed  CAS  Google Scholar 

  159. Zalipsky S. Chemistry of polyethylene conjugates with biologically active molecules. Adv Drug Deliv Rev 1995; 16: 157–182.

    Article  CAS  Google Scholar 

  160. Klibanov AL, Maruyama A, Torchilin VP, Huang L. Ampjipathic polyethylene glycols effectively prolong the circulation time of liposomes. FEBS Lett 1990; 268: 235–237.

    Article  PubMed  CAS  Google Scholar 

  161. Torchilin VP, Shtilman M, Trubetskoy VS, et al. Ampiphilic vinyl polymers effectively prolong liposome circulation time in vivo. Bichem Biophys Acta 1994; 1195: 181–184.

    Article  CAS  Google Scholar 

  162. Ning ZW, Daphane D, Rudoll TL, et al. Increased microvascular permeability contributes to prefrential accumulation of stealth liposomes in tumor tissue. Cancer Res 1993; 53: 3765–3770.

    Google Scholar 

  163. Zhou XJ, Rahman R. Preclinical and clinical pharmacology of vinca alkaloids. Drugs 1992; 44: 1.

    Article  PubMed  CAS  Google Scholar 

  164. Layton D, Trouet A. A comparison of the therapeutic effect of free and liposomally encapsulated vincristine in leukemic mice. Eur J Cancer 1980; 16: 945.

    Article  PubMed  CAS  Google Scholar 

  165. Allen TM, Newman MS, Woodle M, et al. Pharmacokinetics and antitumor activity of vincristine encapsulated in sterically stabilized liposomes. Int J Cancer 1995; 62: 199–204.

    Article  PubMed  CAS  Google Scholar 

  166. Mayer LD, Bally MB, Laughery H, et al. Liposomal vincristine preparations which exhibit decreased drug toxicity and increased activity against murine L1210 leukemia. Cancer Res 1990; 50: 575.

    PubMed  CAS  Google Scholar 

  167. Vaage J, Donovon D, Mayhew E, et al. Therapy of mouse mammary carcinomas with vincristine and doxorubicin encapsulated in sterically stabilized liposomes. Int J Cancer 1993; 54: 959.

    Article  PubMed  CAS  Google Scholar 

  168. Ceh B, Winterhalter M, Fredrik P, et al. stealth liposomes: from theory to product. Adv Drug Deliv Rev 1997; 24: 165–177.

    Article  CAS  Google Scholar 

  169. Vaage J, Donovon D, Mayhew E. Therapy of human ovarian carcinoma xenografts using doxorubicin encapsulated in sterically stabilized liposomes. Cancer 1993; 72: 3671–3675.

    Article  PubMed  CAS  Google Scholar 

  170. Vaage J, Donovon D, Uster P. Tumor uptake of doxorubicin in polyethylene glycol-coated liposomes and therapeutic effect against a xenografted human pancreatic carcinoma. Br J Cancer 1997; 75: 482–486.

    Article  PubMed  CAS  Google Scholar 

  171. Vaage J, Barbera-Guillem E, Abra R. Tissue distribution and therapeutic effect of intravenous free or encapsulated liposomal doxorubicin on human prostate carcinoma xenografts. Cancer 1994; 3: 1478–1484.

    Article  Google Scholar 

  172. Northfelt DW, Dezube BJ, Thommes JA. PEGylated-liposomal doxorubicin versus doxorubicin, bleomycin and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol 1998; 16: 2445–2451.

    PubMed  CAS  Google Scholar 

  173. Lyass O, Uziely B, Ben-Yosef R. Correlation of toxicity with pharmacokinetics of PEGylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer 2000; 89 (5): 1037–1047.

    Article  PubMed  CAS  Google Scholar 

  174. Working P. Preclinical studies of lipid complexes and liposomal drugs. AMPHOTECTM DOXILTM and SPI-077. In: Lasic DD, Papahadjopoulos D, eds. Medical Applications of Liposomes. Amsterdam, Elsevier, 1998, pp. 605–624.

    Google Scholar 

  175. Newman MS, Colbem GT, Working P, et al. Comparitive pharmacokinetics, tissue distribution and therapeutic efficiency of cisplatin encapsulated in long circulating pegylated liposomes (SPI-077) in tumor bearing mice. Cancer Chemother Pharmacol 1999; 46: 155–165.

    Google Scholar 

  176. Maruyama K. Enhancement of doxorubicin by encapsulating in long circulating thermosensitive liposomes combined with local hyperthermia. In: Woodle MD, Storm G. eds. Long Circulating Liposomes: Old Drugs, New Therapeutics. New York, Springer-Verlag and Landes Bioscience, 1998; pp. 97–109.

    Google Scholar 

  177. Slepushkin VA, Simoes S, Dazin P, et al. Sterically stabilized pH-sensitive liposomes. Intracellular delivery of aqueous contents and prolonged circulation in vivo. J Biol Chem 1996; 272: 2382–2388.

    Google Scholar 

  178. Baillie AJ, Florence AT, Hume LR, et al. The preparation and properties of niosomes-nonionic surfactant vesicles. J Pharm Pharmacol 1985; 37 (12): 863–868.

    Article  PubMed  CAS  Google Scholar 

  179. Uchegbu IF, Double JA, Turton JA, Florence AT. Distribution, metabolism and tumoricidal activity of doxorubicin administered in sorbitan monostearate (Span 60) niosomes in the mouse. Pharm Res 1995; 12 (7): 1019–1024.

    Article  PubMed  CAS  Google Scholar 

  180. Parthasarathi G, Udupa N, Umadevi P, Pillai GK. Niosome encapsulated Vincristine sulfate: improved anticancer activity with reduced toxicity in mice. J Drug Target 1994; 2: 173–182.

    Article  PubMed  CAS  Google Scholar 

  181. Hao Y, Zhao F, Li N, et al. Studies on high encapsulation of colchicine by a niosome system. Int J Pharm 2002; 244: 73–80.

    Article  PubMed  CAS  Google Scholar 

  182. Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 2001; 73: 137–172.

    Article  PubMed  CAS  Google Scholar 

  183. Yokoyama M, Miyauchi M, Yamada N, et al. Polymer micelles as novel drug carrier: Adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. J Control Release 1990; 11: 269–278.

    Article  CAS  Google Scholar 

  184. Rapoport N, Herron JN, Pitt WG, Pitina L. Micellar delivery of doxorubicin and its paramagnetic analogue ruboxyl, to HL-60 cells: effect of micelle structure and ultrasound on the intracellular drug uptake. J Control Release 1999; 58: 153–162.

    Article  PubMed  CAS  Google Scholar 

  185. Winnik FM, Davidson AR, Hamer GK, Kitano H. Amphiphilic poly(N-isopropylacrylamide) prepared by using a lipophilic radical initiator: synthesis and solution properties in water. Macromolecules 1992; 25: 1876–1880.

    Article  CAS  Google Scholar 

  186. Kwon GS, Yokoyama M, Okano T, et al. Biodistribution of micelle-forming polymer-drug conjugates. Pharm Res 199310: 970–974.

    Google Scholar 

  187. Cortesi R, Esposito E, Maietti A, et al. Formulation study for the antitumor drug camptothecin: liposomes, micellar solutions and microemulsion. Int J Pharm 1997; 159: 95–105.

    Article  CAS  Google Scholar 

  188. Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations. Int J Pharm 2002; 235: 179–192.

    Article  PubMed  CAS  Google Scholar 

  189. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2001; 47 (1): 113–131.

    Article  PubMed  CAS  Google Scholar 

  190. Yokoyama M, Fukushima S, Uehara R, et al. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J Control Release 1998; 50: 79–92.

    Article  PubMed  CAS  Google Scholar 

  191. Yokoyama M, Miyauchi M, Yamada N, et al. Characterization and anticancer activity of the micelle forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)poly(aspartic acid) block copolymer. Cancer Res 1990; 50: 1693–1700.

    PubMed  CAS  Google Scholar 

  192. Yokoyama M, Satoh A, Sakurai Y, et al. Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size. J Control Release 1998; 55: 219–229.

    Article  PubMed  CAS  Google Scholar 

  193. Yokoyama M, Okano T, Sakurai Y, et al. Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res 1991; 51: 3229–3236.

    PubMed  CAS  Google Scholar 

  194. Nishiyama N, Kataoka K. Preparation and characterization of size-controlled polymeric micelle containing cis-dichlorodiammineplatinum (II) in the core. J Control Release 2001; 74: 83–94.

    Article  PubMed  CAS  Google Scholar 

  195. Mizumura Y, Matsumura Y, Hamaguchi T, et al. Cisplatin incorporated polymeric micelles eliminate nephrotoxicity, while maintaining antitumor activity. Jpn J Cancer Res 2001; 92 (3): 328–336.

    Article  PubMed  CAS  Google Scholar 

  196. Nakanishi T, Fukushima S, Okamoto K, et al. Development of polymer micelle carrier system for doxorubicin. J Control Release 2001; 74: 295–302.

    Article  PubMed  CAS  Google Scholar 

  197. Yokoyama M, Okano T, Sakurai Y, Kataoka K. Improved synthesis of adriamycin-conjugated poly(ethylene oxide)-poly(aspartic acid) block copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin. J Control Release 1994; 32: 269–277.

    Article  CAS  Google Scholar 

  198. Kataoka K, Kwon GS, Yokoyama M, et al. Block copolymer micelles as vehicles for drug delivery. J Control Release 1993; 24: 119–132.

    Article  CAS  Google Scholar 

  199. Kataoka K, Matsumoto T, Yokoyama M, et al. Doxorubicin-loaded poly(ethylene glycol)poly(beta-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release 2000; 64: 143–153.

    Article  PubMed  CAS  Google Scholar 

  200. Kwon GS, Naito M, Yokoyama M, et al. Block copolymer micelles for drug delivery: loading and release of doxorubicin. J Control Release 1997; 48: 195–201.

    Article  CAS  Google Scholar 

  201. Kwon GS, Naito M, Yokoyama M, et al. Physical entrapment of adriamycin in AB block copolymer micelles. Pharm Res 1995; 12 (2): 192–195.

    Article  PubMed  CAS  Google Scholar 

  202. Kwon GS, Naito M, Yokoyama M, et al. Micelles based on AB block copolymers of poly(ethylene oxide) and poly(ß-benzyl L-aspartate). Langmuir 1993; 9: 945–949.

    Article  CAS  Google Scholar 

  203. Kabanov AV, Batrakova EV, Melik-Nubarov NS, et al. A new class of drug carriers: micelles of poly(oxyethylene)-poly(oxypropylene) block copolymers as micro containers for drug targeting from blood in brain. J Control Release 1992; 22: 141–158.

    Article  CAS  Google Scholar 

  204. Venne A, Li S, Mandeville R, et al. Hyper sensitizing effect of pluoronic L61 on cytotoxic activity, transport and subcellular distribution of doxorubicin in multi-drug resistant cells. Cancer Res 1996; 56: 3626–3629.

    PubMed  CAS  Google Scholar 

  205. Rapoport N, Munshi N, Pitina L, Pitt WG. Pluronic micelles as vehicles for tumor-specific delivery of two anticancer drugs to HL-60 cells using acoustic activation. Polymer Reprints 1997; 38: 620–621.

    CAS  Google Scholar 

  206. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 2002; 54 (5): 759–779.

    Article  PubMed  CAS  Google Scholar 

  207. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 2002; 82: 189–212.

    Article  PubMed  CAS  Google Scholar 

  208. Batrakova EV, Dorodnych TY, Klinskii EY, et al. Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. Br J Cancer 1996; 74: 1545–1552.

    Article  PubMed  CAS  Google Scholar 

  209. Yoo HS, Park TG. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J Control Release 2001; 70 (1–2): 63–70.

    Article  PubMed  CAS  Google Scholar 

  210. Zhang X, Jackson JK, Burt HM. Development of amphiphilic diblock copolymers as micellar carriers of taxol. Int J Pharm 1996; 132: 195–206.

    Article  CAS  Google Scholar 

  211. Kim SC, Kim DW, Shim YH, et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release 2001; 72: 191–202.

    Article  PubMed  CAS  Google Scholar 

  212. Zhang X, Burt HM, Von Hoff D, et al. An investigation of the antitumor activty and biodistribution of polymeric micellar paclitaxel. Cancer Chemother Pharmacol 1997; 40: 81–86.

    Article  PubMed  CAS  Google Scholar 

  213. Jeong YI, Nah JW, Lee HC, et al. Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly(gamma-benzyl L-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. Int J Pharm 1999; 188: 49–58.

    Article  PubMed  CAS  Google Scholar 

  214. Gao Z, Lukyanov AN, Singhal A, Torchillin VP. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett 2002; 2 (9): 979–982.

    Article  CAS  Google Scholar 

  215. Trubetskoy VS, Torchilin VP. Use of polyoxyethylene-lipid conjugates as long circulating carriers for delivery of therapeutic and diagnostic agents. Adv Drug Deliv Rev 1995; 16: 311–320.

    Article  CAS  Google Scholar 

  216. Weissig V, Whiteman KR, Torchilin VP. Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice. Pharm Res 1998; 15: 1552–1556.

    Article  PubMed  CAS  Google Scholar 

  217. Lukyanov AN, Gao Z, Mazzola L, Torchilin VP. Polyethylene glycol-diacyllipid micelles demonstrate increased accumulation in subcutaneous tumors in mice. Pharm Res 2002; 19: 1424–1429.

    Article  PubMed  CAS  Google Scholar 

  218. Kohori F, Sakai K, Aoyagi T, et al. Control of adriamycin cytotoxic activity using thermally responsive polymeric micelles composed of poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide). Colloids Surfaces B: Biointerfaces 1999; 16: 195–205.

    Article  CAS  Google Scholar 

  219. Cammas S, Suzuki K, Sone Y, et al. Thermo-responsive polymer nanoparticles with a core shell micelle structure as site-specific drug carriers. J Control Release 1997; 48: 157–164.

    Article  CAS  Google Scholar 

  220. Chung JE, Yokoyama M, Yamato M, et al. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J Control Release 1999; 62: 115–127.

    Article  PubMed  CAS  Google Scholar 

  221. Kohori F, Yokoyama M, Sakai K, Okano T. Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems. J Control Release 2002; 78: 155–163.

    Article  PubMed  CAS  Google Scholar 

  222. Chung JE, Yokoyama M, Suzuki K, et al. Reversibly thermo-responsive alkyl terminated poly(N-isopropylacrylamide) core shell micellar structures. Colloids Surfaces B: Biointerfaces 1997; 9: 37–48.

    Article  CAS  Google Scholar 

  223. Miwa A, Ishibe A, Nakano M, et al. Development of novel chitosan derivatives as micellar carriers of taxol. Pharm Res 1998; 15: 1844–1850.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kommareddy, S., Amiji, M. (2004). Targeted Drug Delivery to Tumor Cells Using Colloidal Carriers. In: Lu, D.R., Øie, S. (eds) Cellular Drug Delivery. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-745-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-745-1_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-455-5

  • Online ISBN: 978-1-59259-745-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics