Skip to main content

Human Intestinal Cellular Characteristics and Drug Permeability

  • Chapter
Cellular Drug Delivery

Abstract

Oral drug administration is the most convenient method to administer drugs, particularly in the treatment of chronic diseases. This preference is generally the case, even when the site of drug action is beyond the gastrointestinal tract (GI), requiring the drug to be systemically available. For systemic drug availability, drug dosing via the oral route requires the drug to exhibit sufficient gastrointestinal absorption. Two components of drug absorption from solid oral-dosage forms (e.g., tablets, capsules) are: (1) drug dissolution from the dosage form, which results in the drug being in solution within the gut lumen, and (2) drug permeation across the GI wall. In this chapter, elements of GI drug permeability are discussed, with special emphasis on the enterocyte and the in vitro Caco-2 cell model. Included is a discussion of the lipid plasma membrane, in vitro drug permeability and its relation to in vivo permeability, and a discussion of future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kenyon CJ, Brown F, McClelland GR, Wilding IR. The use of pharmacoscintigraphy to elucidate food effects observed with a novel protease inhibitor (saquinavir). Pharm Res 1998; 15: 417–422.

    Article  PubMed  CAS  Google Scholar 

  2. Lennernas H. Human intestinal permeability. J Pharm Sci 1998; 87: 403–410.

    Article  PubMed  CAS  Google Scholar 

  3. Friedman MH. Principles and Models of Biological Transport. Berlin, Springer-Verlag, 1986: 216.

    Google Scholar 

  4. Fogh J, Fogh JM, Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 1977; 59: 221–226.

    PubMed  CAS  Google Scholar 

  5. Pinto M, Robine-Leon S, Appay MD, et al. Enterocytic like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell 1983; 47: 323–330.

    Google Scholar 

  6. Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989; 96: 736–749.

    PubMed  CAS  Google Scholar 

  7. Hidalgo IJ, Borchardt RT. Transport of bile acids in a human intestinal epithelial cell line, Caco-2. Biochim Biophys Acta 1990; 1035: 97–103.

    Article  PubMed  CAS  Google Scholar 

  8. Yu H, Cook TJ, Sinko PJ. Evidence for diminished functional expression of intestinal transporters in Caco-2 cell monolayers at high passages. Pharm Res 1997; 14: 757–762.

    Article  PubMed  CAS  Google Scholar 

  9. Walter E, Janich S, Roessler BJ, et al. HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: in vitro-in vivo correlation with permeability data from rats and humans. J Pharm Sci 1996; 85: 1070–1076.

    Article  PubMed  CAS  Google Scholar 

  10. Pontier C, Pachot J, Botham R, Lenfant B, Arnaud P. HT29-MTX and Caco-2/TC7 monolayers as predictive models for human intestinal absorption: role of the mucus layer. J Pharm Sci 2001; 90: 1608–1619.

    Article  PubMed  CAS  Google Scholar 

  11. Artursson P, Ungell AL, Lofroth JE. Selective paracellular permeability in two models of intestinal absorption: cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharm Res 1993; 10: 1123–1129.

    Article  PubMed  CAS  Google Scholar 

  12. Tsuji A, Tamai I. Carrier-mediated intestinal transport of drugs. Pharm Res 1996; 13: 963–977.

    Article  PubMed  CAS  Google Scholar 

  13. Yang C, Tirucherai GS, Mitra AK. Prodrug based optimal drug delivery via membrane transporter/receptor. Expert Opin Biol Ther 2001; 1: 159–175.

    Article  PubMed  CAS  Google Scholar 

  14. Han H, de Vrueh RL, Rhie JK, et al. 5’-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm Res 1998; 15: 1154–1159.

    Article  PubMed  CAS  Google Scholar 

  15. Anderle P, Rakhmanova V, Woodford K, et al. Messenger RNA expression of transporter and ion channel genes in undifferentiated and differentiated Caco-2 cells compared to human intestines. Pharm Res 2003; 20: 3–15.

    Article  PubMed  CAS  Google Scholar 

  16. Chu XY, Sanchez-Castano GP, Higaki K, et al. Correlation between epithelial cell permeability of cephalexin and expression of intestinal oligopeptide transporter. J Pharmacol Exp Ther 2001; 299: 575–582.

    PubMed  CAS  Google Scholar 

  17. Chandler CE, Zaccaro LM, Moberly JB. Transepithelial transport of cholyltaurine by Caco-2 cell monolayers is sodium dependent. Am J Physiol 1993; 264: G1118 - G1125.

    PubMed  CAS  Google Scholar 

  18. Putnam WS, Ramanathan S, Pan L, et al. Functional characterization of monocarboxylic acid, large neutral amino acid, bile acid and peptide transporters, and P-glycoprotein in MDCK and Caco-2 cells. J Pharm Sci 2002; 91: 2622–2635.

    Article  PubMed  CAS  Google Scholar 

  19. Anderle P, Niederer E, Rubas W, et al. P-Glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels. J Pharm Sci 1998; 87: 757–762.

    Article  PubMed  CAS  Google Scholar 

  20. Taipalensuu J, Tornblom H, Lindberg G, et al. Correlation of gene expression of ten drug efflux proteins of the ATP- binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J Pharmacol Exp Ther 2001; 299: 164–170.

    PubMed  CAS  Google Scholar 

  21. Sun D, Lennernas H, Welage LS, et al. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm Res 2002; 19: 1400–1416.

    Article  PubMed  CAS  Google Scholar 

  22. Schmiedlin-Ren P, Thummel KE, Fisher JM, et al. Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrix-coated permeable supports in the presence of 1alpha,25-dihydroxyvitamin D3. Mol Pharmacol 1997; 51: 741–754.

    PubMed  CAS  Google Scholar 

  23. Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem 2001; 276: 14581–14587.

    Article  PubMed  CAS  Google Scholar 

  24. Lentz KA, Hayashi J, Lucisano LJ, Polli JE. Development of a more rapid, reduced serum culture system for Caco-2 monolayers and application to the biopharmaceutics classification system. Int J Pharm 2000; 200: 41–51.

    Article  PubMed  CAS  Google Scholar 

  25. Liang E, Chessic K, Yazdanian M. Evaluation of an accelerated Caco-2 cell permeability model. J Pharm Sci 2000; 89: 336–345.

    Article  PubMed  CAS  Google Scholar 

  26. Irvine JD, Takahashi L, Lockhart K, et al. MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. J Pharm Sci 1999; 88: 28–33.

    Article  PubMed  CAS  Google Scholar 

  27. Proulx P. Structure-function relationships in intestinal brush border membranes. Biochim Biophys Acta 1991; 1071: 255–271.

    Article  PubMed  CAS  Google Scholar 

  28. Brasitus TA, Dudeja PK. Effect of hypothyroidism on the lipid composition and fluidity of rat colonic apical plasma membranes. Biochim Biophys Acta 1988; 939: 189–196.

    Article  PubMed  CAS  Google Scholar 

  29. Xiang TX, Chen J, Anderson BD. A quantitative model for the dependence of solute permeability on peptide and cholesterol content in biomembranes. J Membr Biol 2000; 177: 137–148.

    Article  PubMed  CAS  Google Scholar 

  30. Rege BD, Kao JPY, Polli JE. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur J Pharm Sci 2002; 16: 237–246.

    Article  PubMed  CAS  Google Scholar 

  31. Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 1991; 175: 880–885.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Polli, J.E., Balakrishnan, A., Seo, P.R. (2004). Human Intestinal Cellular Characteristics and Drug Permeability. In: Lu, D.R., Øie, S. (eds) Cellular Drug Delivery. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-745-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-745-1_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-455-5

  • Online ISBN: 978-1-59259-745-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics