Skip to main content

Alterations in T-Cell Signaling Pathways and Increased Sensitivity to Apoptosis

  • Chapter
Cancer Immunotherapy at the Crossroads

Abstract

Despite the presence of antigens on tumors, studies suggest that that the antitumor immune response is attenuated. Well-recognized immune dysfunction in T cells of tumor-bearing hosts is most pronounced in tumor-infiltrating lymphocytes (TIL), and is characterized by impaired proliferation and reduced cytotoxic effector function (1). Some in vivo gene expression studies suggest that in the tumor microenvironment, there is minimal induction of inflammatory responses involving the expression of IFN-γ and IL-2 mRNA,(2,3) In a subset of patients, diminished T-cell function has also been observed in the peripheral blood, which is mostly associated with reduced production of TH1 type cytokines (e.g., IFN-γ) following stimulation of peripheral-blood T cells with mitogens or anti-CD3 antibody (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Finke JH, Rayman P, Hart L, Alexander JP, Edinger MG, Tubbs RR, Characterization of TIL subsets from human renal cell carcinoma: specific reactivity defined by cytotoxicity IFN-1 secretion and proliferation. J Immunother 1994; 15: 91–104.

    Article  CAS  Google Scholar 

  2. Wang Q, Redovan C, Tubbs R, Olencki T, Klein E, Kudoh S, et al. Selective cytokine gene expression in renal cell carcinoma tumor cells and tumor-infiltrating lymphocytes. Int J Cancer 1995; 61: 780–785.

    Article  PubMed  CAS  Google Scholar 

  3. Olive C, Cheung C, Nicol D, and Falk MC. Expression of cytokine mRNA transcripts in renal cell carcinoma. Immunol Cell Biol 1998; 76: 357–362.

    Article  PubMed  CAS  Google Scholar 

  4. Ochoa AC, Longo DL. (1995) Alteration of signal transduction in T cells from cancer patients. In Important Advances in Oncology ( Devita VD, Hellman S, and Rosenberg SA, eds.), J. B. Lipponcott, Philadelphia, PA, pp. 43–54.

    Google Scholar 

  5. Klugo RC. Diagnostic and therapeutic immunology of renal cell cancer. Henry Ford Med J 1979; 27: 106–109.

    Google Scholar 

  6. Sun EW, Shi YF. Apoptosis: the quiet death silences the immune system. Pharmacol Ther 2001; 92: 135–145.

    Article  PubMed  CAS  Google Scholar 

  7. Estaquier J, Ameisen JC. A role for T-helper type-1 and type-2 cytokines in the regulation of human monocyte apoptosis. Blood 1997; 90: 1618–1625.

    PubMed  CAS  Google Scholar 

  8. Dhein J, Walczak H, Baumler C, Debatin KM, and Krammer PH. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 1995; 373: 438–441.

    Article  PubMed  CAS  Google Scholar 

  9. Telford WG, Miller RA. Aging increases CD8 T cell apoptosis induced by hyperstimulation but decreases apoptosis induced by agonist withdrawal in mice. Cell Immunol 1999; 191: 131–138.

    Article  PubMed  CAS  Google Scholar 

  10. Griffith TS, Brunner T, Fletcher SM, Green DR, and Gerguson TA. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 1995; 270: 1189–1191.

    Article  PubMed  CAS  Google Scholar 

  11. van Parijs L, Abbas A. Role of Fas-mediated cell death in the regulation of immune responses. Curr Opin Immunol 1996; 8: 355–361.

    Article  PubMed  Google Scholar 

  12. Radoja S, Saio M, Frey AB. CD8+ tumor-infiltrating lymphocytes are primed for Fas-mediated activation-induced cell death but are not apoptotic in situ. J Immunol 2001; 166: 6074–6083.

    PubMed  CAS  Google Scholar 

  13. Finke JH, Rayman P, George R, Tannenbaum CS, Kolenko V, Uzzo R, et al. Tumor-induced sensitivity to apoptosis in T cells from patients with renal cell carcinoma: role of nuclear factor-kappaB suppression. Clin Cancer Res 2001; 7: 940s - 946s.

    PubMed  CAS  Google Scholar 

  14. Whiteside TL, Rabinowich H. The role of Fas/FasL in immunosuppression induced by human tumors. Cancer Immunol Immunother 1998; 46: 175–184.

    Article  PubMed  CAS  Google Scholar 

  15. Saito T, Dworacki G, Gooding W, Lotze MT, Whiteside TL. Spontaneous apoptosis of CD8+ T lymphocytes in peripheral blood of patients with advanced melanoma. Clin Cancer Res 2000; 6: 1351–1364.

    PubMed  CAS  Google Scholar 

  16. Takahashi R, Deveraux Q, Tamm I, Welsh K, Assa-Munt N, Salvesen GS, A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem I998;273:7787–7790.

    Google Scholar 

  17. Uzzo RG, Rayman P, Kolenko V, Ckarj 0E, Bloom T, Ward AM, Mechanisms of Apoptosis in T cells from patients with renal cell carcinoma. Clin Cancer Res 1999; 5: 1219–1229.

    PubMed  CAS  Google Scholar 

  18. Nunez G, Benedict MA, Hu Y, Inohara N. Caspases: the proteases of thea poptotic pathway. Oncogene 1998; 17: 3237–3245.

    Article  PubMed  Google Scholar 

  19. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998; 281: 1305–1308.

    Article  PubMed  CAS  Google Scholar 

  20. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995; 81: 505–512.

    Article  PubMed  CAS  Google Scholar 

  21. Muzio M. Signalling by proteolysis: death receptors induce apoptosis. Int J Clin Lab Res 1998;28:141–147.

    Google Scholar 

  22. Algeciras-Schimnich A, Shen L, Barnhart BC, Murmann AE, Burkhardt JK, Peter ME. Molecular ordering of the initial signaling events of CD95. Mol Cell Biol 2002; 22: 207–220.

    Article  PubMed  CAS  Google Scholar 

  23. Hirata H, Takahashi A, Kobayashi S, Yonebara S, Sawai H, Okazaki T, et al. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J Exp Med 1998; 187: 587–600.

    Article  PubMed  CAS  Google Scholar 

  24. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94: 491–501.

    Article  PubMed  CAS  Google Scholar 

  25. Loeffler M, Kroemer G. The mitochondrion in cell death control: certainties and incognita. Exp Cell Res 2000;256:19–26.

    Google Scholar 

  26. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf- 1 /caspase-9 complex initiate an apoptotic protease cascade. Cell 1997; 91: 479–489.

    Article  PubMed  CAS  Google Scholar 

  27. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90: 405–413.

    Article  PubMed  CAS  Google Scholar 

  28. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Prevention of apoptosis by Bc1–2: release of cytochrome c from mitochondria blocked. Science 1997;1129–1132.

    Google Scholar 

  29. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bc1–2 regulation of apoptosis. Science 1997;275:1132–1136.

    Google Scholar 

  30. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 1998; 95: 4997–5002.

    Article  PubMed  CAS  Google Scholar 

  31. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, and Alnemri ES. Autoactivation of procaspase-9 by Apaf-l-mediated oligomerization. Mol Cell 1998; 1: 949–957.

    Article  PubMed  CAS  Google Scholar 

  32. Reed JC. Cytochrome c-can’t live with it-can’t live without it. Cell 1997;91:559–562.

    Google Scholar 

  33. Johnson DE, Gastman BR, Wieckowski E, Wang GQ, Amoscato A, Delach SM, et al. Inhibitor of apoptosis protein hILP undergoes caspase-mediated cleavage during T lymphocyte apoptosis. Cancer Res 2000; 60: 1818–1823.

    PubMed  CAS  Google Scholar 

  34. Yang YL, Lee XM. The IAP family: endogenous caspase inhibitors with multiple biological activities. Cell Res 2000;10:169–177.

    Google Scholar 

  35. Dhein J, Walczak H, Baumler C, Debatin KM, and Krammer PH. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 1995;373:438–441.

    Google Scholar 

  36. O’Connell J, Bennett MW, O’Sullivan GC, Shanahan F. The Fas counterattack: cancer as a site of immune privilege. Immunol Today 1999;20:46–52.

    Google Scholar 

  37. Inaba M, Kurasawa K, Mamura M, Kumano K, Saito Y, Iwamoto I. Primed T cells are more resistant to Fas-mediated activation-induced cell death than naive T cells. J Immunol 1999; 163: 1315–1320.

    PubMed  CAS  Google Scholar 

  38. Irmler M, Thome M, Hahne M, Schneider P. Hofmann K, Steiner V, et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997; 388: 190–195.

    Article  PubMed  CAS  Google Scholar 

  39. Bonfoco F, Stuart PM, Brunner T, Lin T, Griffith TS, Gao Y, et al. Inducible non-lymphoid expression of Fas Ligand is responsible for superantigen-induced peripheral deletion of T cells. Immunity 1998; 9: 711–720.

    Article  PubMed  CAS  Google Scholar 

  40. Hildeman DA, Zhu Y, Mitchell TC, Kappler J, Marrack P. Molecular mechanisms of activated T cell death in vivo. Curr Opin Immunol 2002; 14: 354–359.

    Article  PubMed  CAS  Google Scholar 

  41. Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 1995; 377: 348–351.

    Article  PubMed  CAS  Google Scholar 

  42. Lenardo M, Chan KM, Hornung F, McFarland H, Siegel R, Wang J, et al. Mature T lymphocyte apoptosis-immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol 1999; 17: 221–253.

    Article  PubMed  CAS  Google Scholar 

  43. van Parijs L, Peterson DA, Abbas AK. The Fas/Fas ligand pathway and BcI-2 regulate T cell responses to model self and foreign antigens. Immunity 1998; 8: 265–274.

    Article  PubMed  Google Scholar 

  44. Derby MA, Snyder JT, Tse R, Alexander-Miller MA, Berzofsky JA. An abrupt and concordant initiation of apoptosis: antigen-dependent death of CD8+ CTL. Eur J Immunol 2001; 31: 2951–2959.

    Article  PubMed  CAS  Google Scholar 

  45. Zhou S, Ou R, Huang L, Moskophidis D. Critical role for perforin-, Fas/FasL-, and TNFR1-mediated cytotoxic pathways in down-regulation of antigen-specific T cells during persistent viral infection. J Virol 2002; 76: 829–840.

    Article  PubMed  CAS  Google Scholar 

  46. Tham EL, Mescher MF. The poststimulation program of CD4 versus CD8 T cells (death versus activation-induced nonresponsiveness). J Immunol 2002; 169: 1822–1828.

    PubMed  CAS  Google Scholar 

  47. Ju ST, Panka DJ, Cui H, Ettinger R, el-Khatib M, Sherr DH, et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 1995; 373: 444 448.

    Google Scholar 

  48. Wang R, Zhang L, Yin D, Mufson RA, Shi Y. Protein kinase C regulates Fas (CD95/APO-1) expression. J Immunol 1998; 161: 2201–2207.

    PubMed  CAS  Google Scholar 

  49. Gonzalez-Garcia A, R-Borlado L, Leonardo E, Merida I, Martinez-A C, Carrera AC. Lek is necessary and sufficient for Fas-ligand expression and apoptotic cell death in mature cycling T cells. J Immunol 1997; 158: 4104–4112.

    PubMed  CAS  Google Scholar 

  50. Carrera AC, Calvo V, Borlado LR, Paradis H, Alemany S, Roberts TM, et al. The catalytic domain of pp56(lck), but not its regulatory domain, is sufficient for inducing IL-2 production. J Immunol 1996; 157: 3775–3782.

    PubMed  CAS  Google Scholar 

  51. Algeciras-Schimnich A, Griffith TS, Lynch DH, Paya CV. Cell cycle-dependent regulation of FLIP levels and susceptibility to Fas-mediated apoptosis. J Immunol 1999; 162: 5205–5211.

    PubMed  CAS  Google Scholar 

  52. Kirchhoff S, Muller WW, Krueger A, Schmitz I, Krammer PH. TCR-mediated up-regulation of c-FLIPshort correlates with resistance toward CD95-mediated apoptosis by blocking death-inducing signaling complex activity. J Immunol 2000; 165: 6293–6300.

    PubMed  CAS  Google Scholar 

  53. Zhou S, Ou R, Huang L, Moskophidis D. Critical role for perforin-, Fas/FasL-, and TNFR1-mediated cytotoxic pathways in down-regulation of antigen-specific T cells during persistent viral infection. J Virol 2002; 76: 829–840.

    Article  PubMed  CAS  Google Scholar 

  54. Hoffmann TK, Dworacki G, Tsukihiro T, Meidenbauer N, Gooding W, Johnson JT, et al. Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res 2002; 8: 2553–2562.

    PubMed  Google Scholar 

  55. Sandstrom PA, Mannie MD, Buttke TM. Inhibition of activation-induced death in T cell hybridomas by thiol antioxidants: oxidative stress as a mediator of apoptosis. J Leukoc Biol 1994; 55: 221–226.

    PubMed  CAS  Google Scholar 

  56. Ray G, Batra S, Shukla NK, Deo S, Raina V, Ashok S, et al. Lipid peroxidation, free radical production and antioxidant status in breast cancer. Breast Cancer Res Treat 2000; 59: 163–170.

    Article  PubMed  CAS  Google Scholar 

  57. Parola M, Bellomo G, Robino G, Barrera G, Dianzani MU. 4-Hydroxynonenal as a biological signal: molecular basis and pathophysiological implications. Antioxid Redox Signal 1999; 1: 255–284.

    Article  PubMed  CAS  Google Scholar 

  58. Brown NS, Bicknell R. Hypoxia and oxidative stress in breast cancer. Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Res 2001; 3: 323–327.

    Article  PubMed  CAS  Google Scholar 

  59. Lusini L, Tripodi SA, Rossi R, Giannerini F, Giustarini D, del Vecchio MT, et al. Altered glutathione anti-oxidant metabolism during tumor progression in human renal-cell carcinoma. Int J Cancer 2001; 91: 55–59.

    Article  PubMed  CAS  Google Scholar 

  60. Okamoto K, Toyokuni S, Uchida K, Ogawa O, Takenewa J, Kakehi Y, et al. Formation of 8-hydroxy-2’-deoxyguanosine and 4-hydroxy-2-nonenal-modified proteins in human renal-cell carcinoma. Intl Cancer 1994; 58: 825–829.

    Article  CAS  Google Scholar 

  61. Hronek M, Zadak Z, Solichova D, Jandik P, Melichar B. The association between specific nutritional antioxidants and manifestation of colorectal cancer. Nutrition 2000; 16: 189–191.

    Article  PubMed  CAS  Google Scholar 

  62. Gackowski D, Banaszkiewicz Z, Rozalski R, Jawien A, Olinski R. Persistent oxidative stress in colorectal carcinoma patients. Intl Cancer 2002; 101: 395–397.

    Article  CAS  Google Scholar 

  63. Skrzydewska E, Stankiewicz A, Michalak K, Sulkowska M, Zalewski B, Piotrowski Z. Antioxidant status and proteolytic-antiproteolytic balance in colorectal cancer. Folia Histochem Cvtobiol 2001;39 Suppl 2: 98–99.

    Google Scholar 

  64. Boer JM, Huber WK, Sultmann H, Wilmer F, von Heydebreck A, Haas S, et al. Identification and classification of differentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array. Genome Res 2001; 11: 1861–1870.

    PubMed  CAS  Google Scholar 

  65. Kinnula VL, Pietarinen-Runtti P, Raivio K, Kahlos K, Pelin K, Mattson K, et al. Manganese superoxide dismutase in human pleural mesothelioma cell lines. Free Radic Biol Med 1996; 21: 527–532.

    Article  PubMed  CAS  Google Scholar 

  66. Cobbs CS, Levi DS, Aldape K, Israel MA. Manganese superoxide dismutase expression in human central nervous system tumors. Cancer Res 1996; 56: 3192–3195.

    PubMed  CAS  Google Scholar 

  67. Izutani R, Asano S, Emano M, Kuroda D, Kato M, Ohyanagi H.Expression of manganese superoxide dismutase in esophageal and gastric cancers. J Gastroenterol 1998; 33: 816–822.

    Article  PubMed  CAS  Google Scholar 

  68. Arakaki N, Kajihara T, Arakaki R, Ohnishi T, Kazi JA, Nakashima H, et al. Involvement of oxidative stress in tumor cytotoxic activity of hepatocyte growth factor/scatter factor. JBiol Chem 274:13, 541–13, 546, 1999.

    Google Scholar 

  69. Pias EK, Ekshyyan OY, Rhoads CA, Fuseler J, Harrison L, Aw TY. Differential effects of superoxide dismutase isoform expression on hydroperoxide-induced apoptosis in PC-12 cells. JBiol Chem 2003 Apr 11;278(15):13,294–13,301.

    Google Scholar 

  70. Yamakawa H, Ito Y, Naganawa T, Banno Y, Nakashima S, Yoshimura S, et al. Activation of caspase-9 and -3 during H2O2-induced apoptosis of PC12 cells independent of ceramide formation. Neural Res 2000; 22: 556–564.

    CAS  Google Scholar 

  71. Stridh H, Kimland M, Jones DP, Orrenius S, Hampton MB. Cytochrome c release and caspase activation in hydrogen peroxide-and tributyltin-induced apoptosis. FEBS Lett 1998; 429: 351–355.

    Article  PubMed  CAS  Google Scholar 

  72. Gastman BR, Yin XM, Johnson DE, Wieckowski E, Wang GQ, Watkins SC, et al. Tumor-induced apoptosis of T cells: amplification by a mitochondria] cascade. Cancer Res 2000; 60: 6811–6817.

    PubMed  CAS  Google Scholar 

  73. Malmberg KJ, Arulampalam V, lchihara F, Petersson M, Seki K, Andersson T, et al. Inhibition of activated/memory (CD45RO(+)) T cells by oxidative stress associated with block of NF-kappaB activation. J Immunol 2001; 167: 2595–2601.

    PubMed  CAS  Google Scholar 

  74. Garcia-Ruiz C, Colell A, Morales A, Calvo M, Enrich C, Fernandez-Checa JC. Trafficking of ganglioside GD3 to mitochondria by tumor necrosis factor-alpha. J Biol Chem 2002; 277:36, 443–36, 448.

    Google Scholar 

  75. Kalinich JF, Ramakrishnan R, McClain DE. Ramakrishnan N. 4-Hydroxynonenal, an end-product of lipid peroxidation, induces apoptosis in human leukemic T- and B-cell lines. Free Radic Res 2000; 33: 349–358.

    Article  PubMed  CAS  Google Scholar 

  76. Hellstrand K, Brune M, Naredi P, Mellqvist UH, Hansson M, Gehlsen KR, et al. Histamine: a novel approach to cancer immunotherapy. Cancer Investig 2001; 18: 347–355.

    Article  Google Scholar 

  77. Agarwala SS, Sabbagh MH. Histamine dihydrochloride: inhibiting oxidants and synergising IL-2-mediated immune activation in the tumour microenvironment. Expert Opin Biol Ther 2001; 1: 869–879.

    Article  PubMed  CAS  Google Scholar 

  78. Black PH. Shedding from the cell surface of normal and cancer cells. Adv Cancer Res 1980; 32: 75–199.

    Article  PubMed  CAS  Google Scholar 

  79. Hakomori S. Tumor-associated carbohydrate antigens. Annu Rev Immunol 1984; 2: 103–126.

    Article  PubMed  CAS  Google Scholar 

  80. Hoon DS, Okun E, Neuwirth H, Morton DL, Irie RF. Aberrant expression of gangliosides in human renal cell carcinomas. J Urol 1993; 150: 2013–2018.

    PubMed  CAS  Google Scholar 

  81. Ladisch S, Gillard B, Wong C, Ulsh L. Shedding and immunoregulatory activity of YAC-1 lymphoma cell gangliosides. Cancer Res 1983; 43: 3808–3813.

    PubMed  CAS  Google Scholar 

  82. Skipksi VP, Katopodis N, Prendergast JS, Stock CC. Gangliosides in blood serum of normal rats and Morris hepatoma 5123tc-bearing rats. Biochem Biophys Res Commun 67: 1975; 1122–1127.

    Article  Google Scholar 

  83. Kloppel TM, Keenan TW, Freeman MI, Morre DJ. Glycolipid-bound sialic acid in serum: increased levels in mice and humans bearing mammary carcinomas. Proc Natl Acad Sci USA 1977; 74: 3011–3013.

    Article  PubMed  CAS  Google Scholar 

  84. Li R, Ladisch S. Shedding of human neuroblastoma gangliosides. Biochim Biophys Acta 1991; 1083: 57–64.

    Article  PubMed  CAS  Google Scholar 

  85. Heitger A, Ladisch S. Gangliosides block antigen presentation by human monocytes. Biochim Biophys Acta 1303: 1996; 161–168.

    Article  PubMed  Google Scholar 

  86. Miller HC, Esselman WJ. Modulation of the immune response by antigen reactive lymphocytes after cultivation with gangliosides. Jlmmunol 1975; 115: 839–843.

    CAS  Google Scholar 

  87. Lu P, Sharom FJ. Immunosuppression by YAC-1 lymphoma: role of shed gangliosides. Cell Immunol 1996; 173: 22–32.

    Article  PubMed  CAS  Google Scholar 

  88. Sharom FJ, Chiu AL, Chu JW. Membrane gangliosides modulate interleukin-2-stimulated T-lymphocyte proliferation. Biochim Biophys Acta 1991; 1094: 35–42.

    Article  PubMed  CAS  Google Scholar 

  89. Garofalo T, Sorice M, Misasi R, Cinque B, Giammatteo M, Pontieri GM, A novel mechanism of CD4 down-modulation induced by monosialoganglioside GM3: involvement of serine phosphorylation and protein kinase Cd translocation. J Biol Chem 1998;273: 35, 153–35, 160.

    Google Scholar 

  90. Grayson G, Ladisch S. Immunosuppression by human gangliosides. II. Carbohydrate structure and inhibition of human NK activity. Cell Immunol 1992; 139: 18–29.

    Article  PubMed  CAS  Google Scholar 

  91. Irani DN. The susceptibility of mice to immune-mediated neurologic disease correlates with the degree to which their lymphocytes resist the effects of brain-derived gangliosides. J Immunol 1998; 161: 2746–2752.

    PubMed  CAS  Google Scholar 

  92. Uzzo RG, Rayman P, Klenko V, Clark PE, Cathcart MK, Bloom T, et al. Renal cell carcinoma-derived galgliosides suppress nuclear factor-KB activation in T cells. J Clin Investig 1999; 104: 769–776.

    Article  PubMed  CAS  Google Scholar 

  93. Garcia-Ruiz C, Colell A, Paris R, Fernândez-Checa J. C.Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release, and caspase activation. FASEB J 2000; 14: 847–858.

    Google Scholar 

  94. Scorrano L, Petronilli P, DiLisa F, Bernardi P. Commitment to apoptosis by GD3 ganglioside depends on opening of the mitochondrial permeability transition pore. J Biol Chem 1999;274:22, 581–22, 585.

    Google Scholar 

  95. Kristal BS, Brown AM. Apoptogenic ganglioside GD3 directly induces the mitochondria] permeability transition. J Biol Chem 1999;274:23, 169–23, 175.

    Google Scholar 

  96. Rippo MR, Malisan F, Rayagnan L, Tomassini B, Condo I, Costantini P, GD3 ganglioside directly targets mitochondria in a bcl-2-controlled fashion. FASEB J2000;14: 2047–2054.

    Google Scholar 

  97. Cole11 A, Garcia-Ruiz C, Roman J, Ballesta A, Fernandez-Checa JC. Ganglioside GD3 enhances apoptosis by suppressing the nuclear factor-kappa B-dependent survival pathway. FASEB J 2001; 15: 1068–1070.

    Google Scholar 

  98. Kudo D, Rayman P, Horton C, Cathcart M, Bukowski RM, Thornton M, et al. Gangliosides expressed by the renal cell carcinoma cell line SK-RC-45 are involved in tumor-induced apoptosis of T cells. Cancer Res 2003; 63: 1676–1683.

    PubMed  CAS  Google Scholar 

  99. Baeuerle PA, Baltimore D. NF-kappa B: ten years after. Cell 1996; 87: 13–20.

    Article  PubMed  CAS  Google Scholar 

  100. May MJ, and Ghosh S. Signal transduction through NF-kappa B. Immunol Today 1998; 19: 80–88.

    Article  PubMed  CAS  Google Scholar 

  101. Jacobs MD, Harrison SC. Structure of an IkappaBalphalNF-kappaB complex. Cell 1998; 95: 749–758.

    Article  PubMed  CAS  Google Scholar 

  102. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 1997; 388: 548–554.

    Article  PubMed  CAS  Google Scholar 

  103. Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996; 274: 782–784.

    Article  PubMed  CAS  Google Scholar 

  104. Ferreira V, Sidenius N, Tarantino N, Hubert P, Chatenoud L, Blasi F, et al. In vivo inhibition of NF-kappa B in T-lineage cells leads to a dramatic decrease in cell proliferation and cytokine production and to increased cell apoptosis in response to mitogenic stimuli, but not to abnormal thymopoiesis. J Immunol 1999; 162: 6442–6450.

    PubMed  CAS  Google Scholar 

  105. Dudley E, Hornung F, Zheng L, Scherer D, Ballard D, Lenardo M. NF-kappaB regulates Fas/APO-1/CD95- and TCR-mediated apoptosis of T lymphocytes. Eur J Immunol 1999; 29: 878–886.

    Article  PubMed  CAS  Google Scholar 

  106. Wang CY, Mayo MW, Komeluk RG, Goeddel DV, Baldwin AS Jr. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998; 281: 1680–1683.

    Article  PubMed  CAS  Google Scholar 

  107. Tamatani M, Che YH, Matsuzaki H, Ogawa S, Okado H, Miyake S, et al. Tumor necrosis factor induces Bc1–2 and Bet-x expression through NFkappaB activation in primary hippocampal neurons. J Biol Chem 1999; 274: 8531–8638.

    Article  PubMed  CAS  Google Scholar 

  108. Wu MX, Ao Z, Prasad KV, Wu R, Schlossman SF. IEX-1L, an apoptosis inhibitor involved in NF-kappaB-mediated cell survival. Science 1998; 281: 998–1001.

    Article  PubMed  CAS  Google Scholar 

  109. Zong WX, Edelstein LC, Chen C, Bash J, Gelinas C. The prosurvival Bc1–2 homolog Bf1–1/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis. Genes Dev 1999; 13: 382–387.

    Article  PubMed  CAS  Google Scholar 

  110. Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 1995; 83: 1243–1252.

    Article  PubMed  CAS  Google Scholar 

  111. Shu HB, Takeuchi M, Goeddel DV. The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAPI are components of the tumor necrosis factor receptor 1 signaling complex. Proc Natl Acad Sci USA 1996;93:13,973–13,978.

    Google Scholar 

  112. Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Nall Acad Sci USA 1997;94:10, 057–10, 062.

    Google Scholar 

  113. Deveraux QL, Reed JC. IAP family proteins: suppressors of apoptosis. Genes Dev 1999; 13: 239–252.

    Article  PubMed  CAS  Google Scholar 

  114. Lee SY, Lee SY, Choi Y. TRAF-interacting protein (TRIP): a novel component of the tumor necrosis factor receptor (TNFR)- and CD30-TRAF signaling complexes that inhibits TRAF2-mediated NF-kappaB activation. J Exp Med 1997, 185: 1275–1285.

    Article  PubMed  CAS  Google Scholar 

  115. Nagata S. Apoptosis by death factor. Cell 1997; 88: 355–365.

    Article  PubMed  CAS  Google Scholar 

  116. Franco JL, Ghosh P, Wiltrout RH, Carter CR, Zea AH, Momozaki N, et al. Partial degradation of T-cell signal transduction molecules by contaminating granulocytes during protein extraction of splenic T cells from tumor-bearing mice. Cancer Res 1995; 55: 3840–3846.

    PubMed  CAS  Google Scholar 

  117. Kurt RA, Urba WJ, Smith JW, Schoof DD. Peripheral T lymphocytes from women with breast cancer exhibit abnormal protein expression of several signaling molecules. Int J Cancer 1998; 78: 16–20.

    Article  PubMed  CAS  Google Scholar 

  118. Uzzo RG, Clark PE, Rayman P, Bloom T, Rybicki L, Novick AC, et al. Alterations in NFkappaB activation in T lymphocytes of patients with renal cell carcinoma. J Natl Cancer Inst 1999; 91: 718–721.

    Article  PubMed  CAS  Google Scholar 

  119. Gati A, Guerra N, Giron-Michel J, Azzarone B, Angevin E, Moretta A, et al. Tumor cells regulate the lytic activity of tumor-specific cytotoxic T lymphocytes by modulating the inhibitory natural killer receptor function. Cancer Res 2001; 61: 3240–3244.

    PubMed  CAS  Google Scholar 

  120. Batra RK, Lin Y, Sharma S, Dohadwala M, Luo J, Pold M, et al. Non-small cell lung cancer-derived soluble mediators enhance apoptosis in activated T lymphocytes through an I kappa B kinase-dependent mechanism. Cancer Res 2003; 63: 642–646.

    PubMed  CAS  Google Scholar 

  121. Ling W, Rayman P, Uzzo R, Clark P, Kim HJ, Tubbs R, et al. Impaired activation of NFkappaB in T cells from a subset of renal cell carcinoma patients is mediated by inhibition of phosphorylation and degradation of the inhibitor, IkappaBalpha. Blood 1998; 92: 1334–1341.

    PubMed  CAS  Google Scholar 

  122. Page S, Fischer C, Baumgartner B, Haas M, Kreusel U, Loidl G, 4-Hydroxynonenal prevents NF-kappaB activation and tumor necrosis factor expression by inhibiting IkappaB phosphorylation and subsequent proteolysis. JBiol Chem 1999;274:11, 611–11, 618.

    Google Scholar 

  123. Ng CS, Novick AC, Tannenbaum CS, Bukowski RM, Finke JH. Mechanisms of immune evasion by renal cell carcinoma: tumor-induced T-lymphocyte apoptosis and NFkappaB suppression. Urology 2002; l:9–14.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Derweesh, I.H. et al. (2004). Alterations in T-Cell Signaling Pathways and Increased Sensitivity to Apoptosis. In: Finke, J.H., Bukowski, R.M. (eds) Cancer Immunotherapy at the Crossroads. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-743-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-743-7_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9844-8

  • Online ISBN: 978-1-59259-743-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics