Skip to main content

Optimizing T-Cell Adoptive Immunotherapy to Overcome Tumor Evasion

  • Chapter
Cancer Immunotherapy at the Crossroads

Part of the book series: Current Clinical Oncology ((CCO))

  • 122 Accesses

Abstract

The normal immune system has the capacity to develop tolerant relationships with strongly antigenic environments, including the placenta and the bacteria-laden large intestine (13). Such chronic tolerance is as important to the immune system as its capacity to destroy pathogens, since it is essential that the host does not reject a growing fetus or loops of bowel that house commensual bacteria. A vast array of physiological immunosuppressive factors, including interleukin (IL)-10, transforming growth factor-β (TGF-β), and cyclic adenosine 5′ monophosphate (cAMP)-elevating prostaglandins, contribute to the induction and maintenance of such tolerance, and are variously produced by T lymphocytes themselves and/or by ambient host cells such as macrophages (412).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wojtowicz-Praga S. Reversal of tumor-induced immunosuppression: a new approach to cancer therapy. J Immunother 1997; 20 (3): 165–177.

    Article  PubMed  CAS  Google Scholar 

  2. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 1998; 92 (11): 4150–4166.

    PubMed  CAS  Google Scholar 

  3. Kavanaugh DY, Carbone DP. Immunologic dysfunction in cancer. Hematol Oncol Clin N Am 1996;10(41:927–951.

    Google Scholar 

  4. Kullberg MC, Ward JM, Gorelick PL, Caspar P, Hieny S, Cheever A, et al. Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-l0 (IL-10)-deficient mice through an IL-12- and gamma interferon-dependent mechanism. Infect Immun 1998; 66 (11): 5157–5166.

    PubMed  CAS  Google Scholar 

  5. Davidson NJ, Hudak SA, Lesley RE, Menon S, Leach MW, Rennick DM. IL-12, but not IFN-gamma, plays a major role in sustaining the chronic phase of colitis in IL-10-deficient mice. J Immunol 1998; 161 (6): 3143–3149.

    PubMed  CAS  Google Scholar 

  6. Reuter BK, Asfaha S, Buret A, Sharkey KA, Wallace JL. Exacerbation of inflammation-associated colonic injury in rat through inhibition of cyclooxygenase-2. J Clin Investig 1996; 98 (9): 2076–2085.

    Article  PubMed  CAS  Google Scholar 

  7. Lane JS, Todd KE, Lewis MP, Gloor B, Ashley SW, Reber HA, et al. Interleukin-10 reduces the systemic inflammatory response in a murine model of intestinal ischemia/reperfusion. Surgery 1997; 122 (2): 288–294.

    Article  PubMed  CAS  Google Scholar 

  8. Strober W, Kelsall B, Fuss I, Marth T, Ludviksson B, Ehrhardt R, et al. Reciprocal IFN-gamma and TGF-beta responses regulate the occurrence of mucosal inflammation. Immunol Today 1997; 18 (2): 61–64.

    Article  PubMed  CAS  Google Scholar 

  9. Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med 1996; 183 (6): 2669–2674.

    Article  PubMed  CAS  Google Scholar 

  10. Giladi E, Raz E, Karmeli F, Okon E, Rachmilewitz D. Transforming growth factor-beta gene therapy ameliorates experimental colitis in rats. Eur J Gastroenterol Hepatol 1995; 7 (4): 341–347.

    PubMed  CAS  Google Scholar 

  11. Seo N, Hayakawa S, Takigawa M, TokuraY. Interleukin-10 expressed at early tumour sites induces subsequent generation of CD4(+) T-regulatory cells and systemic collapse of anti-tumour immunity. Immunology 2001; 103 (4): 449–457.

    Article  PubMed  CAS  Google Scholar 

  12. Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+) CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 2001; 194 (5): 629–644.

    Article  PubMed  CAS  Google Scholar 

  13. Wick M, Dubey P, Koeppen H, Siegel CT, Fields PE, Chen L, et al. Antigenic cancer cells grow progressively in immune hosts without evidence for T cell exhaustion or systemic anergy. J Exp Med 1997; 186 (2): 229–238.

    Article  PubMed  CAS  Google Scholar 

  14. Cohen PA, Peng L, Plautz GE, Kim KK, Weng DE, Shu S. CD4+ T Cells in Adoptive Immunotherapy and the Indirect Mechanism of Tumor Rejection. Crit Rev Immunol 2000; 20 (1): 17–56.

    Article  PubMed  CAS  Google Scholar 

  15. Cohen PA, Peng L, Kjaergaard J, Plautz GE, Finke JH, Koski GK, et al. T-cell adoptive therapy of tumors: mechanisms of improved therapeutic performance. Crit Rev Immunol 2001; 21 (1–3): 215–248.

    PubMed  CAS  Google Scholar 

  16. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298 (5594): 850–854.

    Article  PubMed  CAS  Google Scholar 

  17. Kagamu H, Touhalisky JE, Plautz GE, Krauss JC, Shu S. Isolation based on L-selectin expression of immune effector T cells derived from tumor-draining lymph nodes. Cancer Res 1996; 56 (19): 4338–4342.

    PubMed  CAS  Google Scholar 

  18. Kagamu H, Shu S. Purification of L-selectin(low) cells promotes the generation of highly potent CD4 antitumor effector T lymphocytes. J Immunol 1998; 160 (7): 3444–3452.

    PubMed  CAS  Google Scholar 

  19. Peng L, Kjaergaard J, Weng DE, Plautz GE, Shu S, Cohen PA. Helper-independent CD8+/CD62L low T Cells with broad anti-tumor efficacy are naturally sensitized during tumor progression. J Immunol 2000; 165: 5738–5749.

    PubMed  CAS  Google Scholar 

  20. Speiser DE, Miranda R, Zakarian A, Bachmann MF, McKall-Faienza K, Odermatt B, et al. Self antigens expressed by solid tumors Do not efficiently stimulate naive or activated T cells: implications for immunotherapy. J Exp Med 1997; 186 (5): 645–653.

    Article  PubMed  CAS  Google Scholar 

  21. Kammula US, Lee K-H, Riker AI, Wang E, Ohnmacht GA, Rosenberg SA, et al. Functional analysis of antigen-specific T lymphocytes by serial measurement of gene expression in peripheral blood mononuclear cells and tumor specimens. JImmunol 1999; 163 (12): 6867–6875.

    CAS  Google Scholar 

  22. Deeths MJ, Kedl RM, Mescher MF. CD8+ T cells become nonresponsive (anergic) following activation in the presence of costimulation. J Immunol 1999; 163 (1): 102–110.

    PubMed  CAS  Google Scholar 

  23. Shrikant P, Mescher MF. Control of syngeneic tumor growth by activation of CD8+ T cells: efficacy is limited by migration away from the site and induction of nonresponsiveness. J Immunol 1999; 162 (5): 2858–2866.

    PubMed  CAS  Google Scholar 

  24. Shrikant P, Khoruts A, Mescher MF. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell-and IL-2-dependent mechanism. Immunity 1999; 11 (4): 483–493.

    Article  PubMed  CAS  Google Scholar 

  25. Marzo AL, Kinnear BF, Lake RA, Frelinger JJ, Collins EJ, Robinson BW, et al. Tumor-specific CD4+ T cells have a major “post-licensing” role in CTL mediated anti-tumor immunity. J Immunol 2000; 165 (11): 6047–6055.

    PubMed  CAS  Google Scholar 

  26. Marzo AL, Lake RA, Lo D, Sherman L, McWilliam A, Nelson D, et al. Tumor antigens are constitutively presented in the draining lymph nodes. JImmunol 1999;162(101:5838–5845.

    Google Scholar 

  27. Stephenson KR, Perry-Lalley D, Griffith KD, Shu S, Chang AE. Development of antitumor reactivity in regional draining lymph nodes from tumor-immunized and tumor-bearing murine hosts. Surgery 1989; 105 (4): 523–528.

    PubMed  CAS  Google Scholar 

  28. Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 1986; 233 (4770): 1318–1321.

    Article  PubMed  CAS  Google Scholar 

  29. Barth RJ, Jr., Mule JJ, Asher AL, Sanda MG, Rosenberg SA. Identification of unique murine tumor associated antigens by tumor infiltrating lymphocytes using tumor specific secretion of interferon-gamma and tumor necrosis factor. J Immunol Methods 1991; 140: 269–279.

    Article  PubMed  Google Scholar 

  30. Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin2. J Natl Cancer Inst 1994; 86: 1159–1166.

    Article  PubMed  CAS  Google Scholar 

  31. Dudley ME, Wunderlich JR, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, et al. A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J Immunother 2002; 25 (3): 243–251.

    Article  PubMed  CAS  Google Scholar 

  32. Dudley ME, Wunderlich J, Nishimura MI, Yu D, Yang JC, Topalian SL, et al. Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother 2001; 24 (4): 363–373.

    Article  PubMed  CAS  Google Scholar 

  33. Peng L, Kjaergaard J, Plautz GE, Awad M, Drazba JA, Shu S, et al. Tumor-induced Lselectinh’=h suppressor T cells mediate potent effector T cell blockade and cause failure of otherwise curative adoptive immunotherapy. J Immunol 2002; 169: 4811–4821.

    PubMed  Google Scholar 

  34. Cruz PD, Bergstresser PR. Antigen processing and presentation by epidermal Langerhans cells, induction of immunity or unresponsiveness. Dermatol Clin 1990; 8: 633–646.

    PubMed  Google Scholar 

  35. Girolomoni G, Simon JC, Bergstresser PR, Cruz PD. Freshly isolated spleen dendritic cells and epidermal Langerhans cells undergo similar phenotypic and functional changes during short term culture. J Immunol 1990; 145: 2820–2826.

    PubMed  CAS  Google Scholar 

  36. Caux C, Massacrier C, Vanbervliet B, Dubois B, Van Kooten C, Durand I, et al. Activation of human dendritic cells through CD40 cross-linking. J Exp Med 1994; 180: 1263–1272.

    Article  PubMed  CAS  Google Scholar 

  37. Toes REM, Schoenberger SP, van der Voort EIH, Offringa R, Melief CJM. CD40CD4OLigand interactions and their role in cytotoxic T lymphocyte priming and anti-tumor immunity. Semin Immunol 1998; 10 (6): 443–448.

    Article  PubMed  CAS  Google Scholar 

  38. Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998; 393 (6684): 474–478.

    Article  PubMed  CAS  Google Scholar 

  39. Lu Z, Yuan L, Zhou X, Sotomayor E, Levitsky HI, Pardon DM. CD40-independent pathways of T cell help for priming of CD8(+) cytotoxic T lymphocytes. J Exp Med 2000; 191(3):541–550 2000; 191 (3): 541–550.

    Google Scholar 

  40. Chou T, Chang AE, Shu SY. Generation of therapeutic T lymphocytes from tumor-bearing mice by in vitro sensitization. Culture requirements and characterization of immunologic specificity. J Immunol 1988; 140 (7): 2453–2461.

    PubMed  CAS  Google Scholar 

  41. Uzzo RG, Rayman P, Kolenko V, Clark PE, Bloom T, Ward AM. et al. Mechanisms of apoptosis in T cells from patients with renal cell carcinoma. Clin Cancer Res I999;5: 1219–1229.

    Google Scholar 

  42. Gastman BR, Johnson DE, Whiteside TL, Rabinowich H. Tumor-induced apoptosis of T lymphocytes: elucidation of intracellular apoptotic events. Blood 2000 Mar 15;95(6):2015–2023 2000; 95 (6): 2015–2023.

    CAS  Google Scholar 

  43. Whiteside TL. Immune cells in the tumor microenvironment. Mechanisms responsible for functional and signaling defects. Adv Exp Med Biol 1998;451:167–171.

    Google Scholar 

  44. Tanaka H, Yoshizawa H, Yamaguchi Y, Ito K, Kagamu H, Suzuki E, et al. Successful doptive immunotherapy of murine poorly immunogenic tumor with specific effector cells generated from gene-modified tumor-primed lymph node cells. J Immunol 1999; 162 (6): 3574–3582.

    PubMed  CAS  Google Scholar 

  45. Kjaergaard J, Shu S. Tumor infiltration by adoptively transferred T cells is independent of immunologic specificity but requires down-regulation of L-selectin expression. Jlmmunol 1999; 163: 751–759.

    CAS  Google Scholar 

  46. Mukai S, Kjaergaard J, Shu S, Plautz GE. Infiltration of tumors by systemically transferred tumor-reactive T lymphocytes is required for antitumor efficacy. Cancer Res 1999; 59 (20): 5245–5249.

    PubMed  CAS  Google Scholar 

  47. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401 (6754): 708–712.

    Article  PubMed  CAS  Google Scholar 

  48. Tussey L, Speller S, Gallimore A, Vessey R. Functionally distinct CD8+ memory T cell subsets in persistent EBV infection are differentiated by migratory receptor expression. Eur J Immunol 2000; 30 (7): 1823–1829.

    Article  PubMed  CAS  Google Scholar 

  49. Masopust D, Vezys V, Marzo AL, Lefrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001; 291 (5512): 2413–2417.

    Article  PubMed  CAS  Google Scholar 

  50. Peng L, Krauss JC, Plautz GE, Mukai S, Shu S, Cohen PA. T cell-mediated tumor rejection displays diverse dependence upon perforin and IFN-gamma mechanisms that cannot be predicted from in vitro T cell characteristics. J Immunol 2000; 165 (12): 7116–7124.

    PubMed  CAS  Google Scholar 

  51. Kjaergaard J, Peng L, Cohen PA, Drazba JA, Weinberg AD, Shu S. Augmentation vs. inhibition: effects of conjunctional OX-40 receptor monoclonal antibody and IL-2 treatment on adoptive immunotherapy of advanced tumor. J Immunol 2001; 167: 6669–6677.

    PubMed  CAS  Google Scholar 

  52. Shrikant P, Mescher MF. Opposing effects of IL-2 in tumor immunotherapy: promoting CD8 T cell growth and inducing apoptosis. J Immunol 2002; 169 (4): 1753–1759.

    PubMed  CAS  Google Scholar 

  53. Tanaka H, Tanaka J, Kjaergaard J, Shu S. Depletion of CD4+CD25+ regulatory cells aguments the generation of specific immune T cells in tumor-draining lymph nodes. J Immunother 2002; 25: 207–217.

    Article  PubMed  CAS  Google Scholar 

  54. Schwartzentruber DJ, Horn SS, Dadmarz R, White DE, Yannelli JR, Steinberg SM, et al. In vitro predictors of therapeutic response in melanoma patients receiving tumor-infiltrating lymphocytes and interleukin-2. J Clin Oncol 1994; 12 (7): 1475–1483.

    PubMed  CAS  Google Scholar 

  55. Pockaj BA, Sherry RM, Wei JP, Yannelli JR, Carter CS, Leitman SF, et al. Localization of Ill indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Augmentation with cyclophosphamide and correlation with response. Cancer 1994;73(6):1731–1737.

    Google Scholar 

  56. Yee C, Gilbert MJ, Riddell SR, Brichard VG, Fefer A, Thompson JA, et al. Isolation of tyrosinase-specific CD8+ and CD4+ T cell clones from the peripheral blood of melanoma patients following in vitro stimulation with recombinant vaccinia virus. J Immunol 1996; 157 (9): 4079–4086.

    PubMed  CAS  Google Scholar 

  57. Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 2002;99(25):16,168–16,173.

    Google Scholar 

  58. Mukai S, Kagamu H, Shu S, Plautz GE. Critical role of CDlla (LFA-l) in therapeutic efficacy of systemically transferred antitumor effector T cells. Cell Immunol 1999; 192: 122–132.

    Article  PubMed  CAS  Google Scholar 

  59. Peng L, Krauss JC, Plautz GE, Mukai S, Shu S, Cohen PA. T-cell mediated rejection of established tumors displays a varied requirement for perforin and IFN-gamma expression which is not predicted by in vitro lytic capacity. JImmunol 2000; 165: 7116–7124.

    CAS  Google Scholar 

  60. Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998; 393 (6684): 474–478.

    Article  PubMed  CAS  Google Scholar 

  61. Surman DR, Dudley ME, Overwijk WW, Restifo NP. CD4+ T cell control of CD8+ T cell reactivity to a model tumor antigen. J Immunol 2000; 164: 562–565.

    PubMed  CAS  Google Scholar 

  62. Thivolet C, Bendelac A, Bedossa P, Bach JF, Carnaud C. CD8+ T cell homing to the pancreas in the nonobese diabetic mouse is CD4+ T cell-dependent. J Immunol 1991; 146 (1): 85–88.

    PubMed  CAS  Google Scholar 

  63. Miki S, Ksander B, Streilein JW. Studies on the minimum requirements for in vitro “cure” of tumor cells by cytotoxic T lymphocytes. Reg Immunol 1992; 4 (6): 352–362.

    PubMed  CAS  Google Scholar 

  64. Ksander BR, Acevedo J, Streilein JW. Local T helper cell signals by lymphocytes infiltrating intraocular tumors. J Immunol 1992; 148 (6): 1955–1963.

    PubMed  CAS  Google Scholar 

  65. Bando Y, Ksander BR, Streilein JW. Characterization of specific T helper cell activity in mice bearing al loantigenic tumors in the anterior chamber of the eye. Eur J Immunol 1991; 21 (8): 1923–1931.

    Article  PubMed  CAS  Google Scholar 

  66. Wang LX, Chen BG, Plautz GE. Adoptive immunotherapy of advanced tumors with CD62 L-selectin(low) tumor-sensitized T lymphocytes following ex vivo hyperexpansion. J Immunol 2002; 169 (6): 3314–3320.

    PubMed  CAS  Google Scholar 

  67. Cohen PA, Fowler DJ, Kim H, White RL, Czerniecki BJ, Carter C, et al. Propagation of murine and human T cells with defined antigen specificity and function. In: Ciba Foundation Symposium No 187: Vaccines against virally induced cancers ( Frazer I, Chadwick D, Marsh J, eds.), Wiley & Sons Ltd, Chichester, 1994, pp. 179–193.

    Google Scholar 

  68. Plautz GE, Inoue M, Shu S. Defining the synergistic effects of irradiation and T-cell immunotherapy for murine intracranial tumors. Cell Immunol 1996; 171 (2): 277–284.

    Article  PubMed  CAS  Google Scholar 

  69. Peng L, Shu S, Krauss JC. Treatment of subcutaneous tumor with adoptively transferred T cells. Cell Immunol 1997; 178 (1): 24–32.

    Article  PubMed  CAS  Google Scholar 

  70. Chang AE, Shu S, Chou T, Lafreniere R, Rosenberg SA. Differences in the effects of host suppression on the adoptive immunotherapy of subcutaneous and visceral tumors. Cancer Res 1986; 46 (7): 3426–3430.

    PubMed  CAS  Google Scholar 

  71. Kjaergaard J, Peng L, Cohen PA, Shu S. Therapeutic efficacy of adoptive immunotherapy is predicated on in vivo antigen-specific proliferation of donor T cells. Clin Immunol 2003; 108 (1): 8–20.

    Article  PubMed  CAS  Google Scholar 

  72. Winter H, Hu HM, McClain K, Urba WJ, Fox BA. Immunotherapy of melanoma: a dichotomy in the requirement for IFN-gamma in vaccine-induced antitumor immunity versus adoptive immunotherapy. J Immunol 2001; 166 (12): 7370–7380.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Cohen, P.A., Plautz, G.E., Finke, J.H., Shu, S. (2004). Optimizing T-Cell Adoptive Immunotherapy to Overcome Tumor Evasion. In: Finke, J.H., Bukowski, R.M. (eds) Cancer Immunotherapy at the Crossroads. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-743-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-743-7_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9844-8

  • Online ISBN: 978-1-59259-743-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics