Skip to main content

Evolutionary Aspects of Bone Health

Development in Early Human Populations

  • Chapter
Nutrition and Bone Health

Part of the book series: Nutrition and Health ((NH))

Abstract

The skeleton serves two primary functions: it provides biomechanical support and protection of soft tissue; and it plays a key role in mineral homeostasis. Skeletal health can be affected by a number of factors, including genetics, lifestyle, demographic characteristics, and disease. Skeletal size, strength, and structure can be affected by diet and physical activity, age, body size, ethnicity, and health status. In living persons, most of these factors can be assessed to some extent, and changes can be monitored in individuals over time. Techniques such as bone densitometry, assessment of biochemical markers of bone remodeling, radi-ography, bone biopsy, and others can be used in the assessment of skeletal status. In contrast, investigations of skeletal health in past populations are limited to var-ious physical characteristics that happen to be preserved at a moment in time for each individual specimen or local population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nelson DA. An anthropological perspective on optimizing calcium consumption for the prevention of osteoporosis. Osteopor Int 1996; 6:325–328.

    Article  CAS  Google Scholar 

  2. Relethford JH. The Human Species, 5th ed. McGraw-Hill, New York, 2003.

    Google Scholar 

  3. Wolpoff MH. Paleoanthropology, 2nd ed. McGraw-Hill, New York, 1999.

    Google Scholar 

  4. Jurmain R, Kilgore L, Trevathan W, Nelson H. Introduction to Physical Anthropology, 9th ed. Wadsworth, Belmont, CA, 2003.

    Google Scholar 

  5. Stringer CB. The emergence of modern humans. Sci Am 1990; 12:98–104.

    Article  Google Scholar 

  6. Eaton SB, Nelson DA. Calcium in evolutionary perspective. Am J Clin Nutr 1991; 54:281S–287S.

    Google Scholar 

  7. Mazess RB, Mather W. Bone mineral content of North Alaskan Eskimos. Am J Clin Nutr 1974; 27:916–925.

    PubMed  CAS  Google Scholar 

  8. FAO/WHO Expert Group: Joint FAO/WHO expert consultation on human vitamin and mineral requirements, Chapter 11, Calcium, 2002. www.fao.org/docrep/004/y2809e/y2809e0h.htm.

    Google Scholar 

  9. Schuette SA, Hegsted M, Zemel MB, Linkswiler HM. Renal acid, urinary cyclic AMP, and hydroxyproline excretion as affected by level of protein, sulfur amino acid, and phosphorus intake. J Nutr 1981; 111:2106–2116.

    PubMed  CAS  Google Scholar 

  10. Orwoll ES. The effects of dietary protein insufficiency and excess on skeletal health. Bone 1992; 13:343–350.

    Article  PubMed  CAS  Google Scholar 

  11. Bell NH, Shary J, Stevens J, Garza M, Gordon L, Edwards J. Demonstration that bone mass is greater in black than in white children. J Bone Miner Res 1991; 6:719–723.

    Article  PubMed  CAS  Google Scholar 

  12. Grynpas M. Age and disease-related changes in the mineral of bone. Calcif Tissue Int 1993; 53(suopl 1):557–564.

    Article  Google Scholar 

  13. Abelow BJ, Holford TR, Insogna KL. Cross-cultural association between dietary animal protein and hip fracture: a hypothesis. Calcif Tissue Int 1992; 50:14–18.

    Article  PubMed  CAS  Google Scholar 

  14. Jablonski NG, Chaplin G. The evolution of human skin coloration. J Hum Evol 2000; 39:57–106.

    Article  PubMed  CAS  Google Scholar 

  15. Eriksen EF, Glerup H. Vitamin D deficiency and aging: implications for general health and osteoporosis. Biogerontology 2002; 3:73–77.

    Article  PubMed  CAS  Google Scholar 

  16. Pfeiffer SK, Lazenby RA. Low bone mass in past and present aboriginal populations. In: Draper HH, ed. Advances in Nutritional Research, Vol. 9. Plenum, New York, 1994, pp. 35–51.

    Google Scholar 

  17. Nelson DA. Bone density in three archaeological populations. Am J Phys Anthropol 1984; 63:198.

    Google Scholar 

  18. Agarwal SC, Grynpas MD. Bone quantity and quality in past populations. Anat Rec 1996; 246:423–432.

    Article  PubMed  CAS  Google Scholar 

  19. Martin DL, Armelagos GJ. Morphometrics of compact bone: an example from Sudanese Nubia. Am J Phys Anthropol 1979; 51:571–578.

    Article  PubMed  CAS  Google Scholar 

  20. Martin DL, Armelagos GJ, Goodman AH, Van Gerven DP. The effects of socioeconomic change in prehistoric Africa: Sudanese Nubia as a case study. In: Cohen MN, Armelagos GJ, eds. Paleopathology at the Origins of Agriculture. Academic, New York, 1984, pp. 193–214.

    Google Scholar 

  21. Martin DL, Armelagos GJ. Skeletal remodelling and mineralization as indicators of health: an example from prehistoric Sudanese Nubia. J Hum Evol 1985; 14:527–537.

    Article  Google Scholar 

  22. Ericksen MF. Cortical bone loss with age in three native American populations. Am J Phys Anthropol 1976; 45:443–452.

    Article  PubMed  CAS  Google Scholar 

  23. Ericksen MF. Patterns of microscopic bone remodelling in three aboriginal American populations. In: Brownman DL, ed. Early Native Americans: Prehistoric Demography, Economy, and Technology. Houton, The Hague, 1980, pp. 239–270.

    Google Scholar 

  24. Richman EA, Ortner DJ, Schulter-Ellis FP. Differences in intracortical bone remodeling in three aboriginal American populations: possible dietary factors. Calcif Tissue Int 1979; 28:209–214.

    Article  PubMed  CAS  Google Scholar 

  25. Mazess RB. Bone density in Sadlermiut Eskimo. Hum Biol 1966; 38:42–48.

    PubMed  CAS  Google Scholar 

  26. Mazess RB, Jones R. Weight and density of Sadlermiut Eskimo long bones. Hum Biol 1972; 44:537–548.

    PubMed  CAS  Google Scholar 

  27. Thompson DD, Guinness-Hey M. Bone mineral-osteon analysis of Yupik-Inupiaq skeletons. Am J Phys Anthropol 1981; 55:1–7.

    Article  PubMed  CAS  Google Scholar 

  28. Thompson DD, Posner AS, Laughlin WS, Blumenthal NC. Comparison of bone apatite in osteoporotic and normal Eskimos. Calcif Tissue Int 1983; 35:392–393.

    Article  PubMed  CAS  Google Scholar 

  29. Thompson DD, Salter EM, Laughlin WS. Bone core analysis of Baffin Island skeletons. Arctic Anthropol 1981; 18:87–96.

    Google Scholar 

  30. Ruff CB, Larsen CS, Hayes WC. Structural changes in the femur with the transition to agriculture on the Georgia coast. Am J Phys Anthropol 1984; 64:125–136.

    Article  PubMed  CAS  Google Scholar 

  31. Bridges PS. Bone cortical area in the evaluation of nutrition and activity levels. Am J Hum Biol 1989; 1:785–792.

    Article  Google Scholar 

  32. Jackes M. Building the bases for paleodemographic analyses: adult age determination. In: Katzenberg MA, Saunders SR, eds. Biological Anthropology of the Human Skeleton. Wiley Liss, New York, 2000, pp. 417–466.

    Google Scholar 

  33. Milner GR, Wood JW, Boldsen JL. Paleodemography. In: Katzenberg MA, Saunders SR, eds. Biological Anthropology of the Human Skeleton. Wiley Liss, New York, 2000, pp. 467–497.

    Google Scholar 

  34. Saunders SR, Hoppa RD. Growth deficit in survivors and non-survivors: biological mortality bias in subadult skeletal samples. Yrbk Phys Anthropol 1993; 36:127–151.

    Article  Google Scholar 

  35. FAO of the United Nations. Production Yearbook Vol. 44. FAO, Rome, 1991.

    Google Scholar 

  36. Cooper C, Campion G, Melton LJ III. Hip fractures in the elderly: a worldwide projection. Osteoporos Int 1992; 2:285–289.

    Article  PubMed  CAS  Google Scholar 

  37. Holbrook TL, Barrett-Connor E. Calcium intake: covariates and confounders. Am J Clin Nutr 1991; 53:741–744.

    PubMed  CAS  Google Scholar 

  38. Larsen CS. Bioarchaeology: Interpreting Behavior from the Human Skeleton. Cambridge University Press, Cambridge, UK, 1977.

    Google Scholar 

  39. Bridges PS. Skeletal evidence of changes in subsistence activities between the Archaic and Mississippian time periods in northwestern Alabama. In: Powell ML, Bridges PS, Mires AMW, eds. What Mean These Bones: Studies in Southeastern Bioarchaeology. University of Alabama Press, Tuscaloosa, AL, 1991, pp. 89–101.

    Google Scholar 

  40. Bridges PS. Skeletal biology and behavior in ancient humans. Evol Biol 1995; 4:112–120.

    Google Scholar 

  41. Kanis JA. Osteoporosis. Blackwell Science, Oxford, UK, 1994.

    Google Scholar 

  42. Mosekilde L. Osteoporosis and exercise. Bone 1995; 17:193–195.

    Article  PubMed  CAS  Google Scholar 

  43. Lees B, Molleson T, Arnett TR, Stevenson JC. Differences in proximal femur bone density over two centuries. Lancet 1993; 341:673–675.

    Article  PubMed  CAS  Google Scholar 

  44. Ekenman I, Eriksson SA, Lindgren JU. Bone density in medieval skeletons. Calcif Tissue Int 1995; 56:355–358.

    Article  PubMed  CAS  Google Scholar 

  45. Katz SH, Armstrong DF. Cousin marriage and the X-chromosome: evolution of longevity and language. In: Crews DE, Garruto RM, eds. Biological Anthropology and Aging. Oxford University Press, New York, 1994, pp. 101–123.

    Google Scholar 

  46. Cohen MN. Health and the Rise of Civilization. Yale University Press, New Haven, CT, 1989.

    Google Scholar 

  47. Larsen CS. Biological changes in human populations with agriculture. Ann Rev Anthropol 1995; 24:185–213.

    Article  Google Scholar 

  48. Wilmoth JR. Demography of longevity: past, present, and future trends. Exp Gerontol 2000; 35:1111–1129.

    Article  PubMed  CAS  Google Scholar 

  49. Russell JC. The Control of Late Ancient and Medieval Populations. American Philosophical Society, Philadelphia, 1985.

    Google Scholar 

  50. Sjovold T. Inference concerning the age distribution of skeletal populations and some consequences for paleodemography. Anthrop Kozl 1978; 22:99–114.

    Google Scholar 

  51. Klinghardt G. Hunter-gatherers in southern Africa. Iziko Museums of Capetown. 2001. www.museums.org.za/sam/resource/arch/hunters.htm.

    Google Scholar 

  52. Sumner DR, Morbeck ME, Lobick JJ. Apparent age-related bone loss among adult female Gombe chimpanzees. Am J Phys Anthropol 1989; 79:25–234.

    Article  Google Scholar 

  53. Hawkes K, O’Connell JF, Blurton-Jones NG. Hadza women’s time allocation, offspring provisioning, and the evolution of long postmenopausal life spans. Curr Anthropol 1997; 38:551–577.

    Article  Google Scholar 

  54. Garn SM. The Earlier Gain and the Later Loss of Cortical Bone in Nutritional Perspective. Charles C Thomas, Springfield, IL, 1970.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nelson, D.A., Sauer, N.J., Agarwal, S.C. (2004). Evolutionary Aspects of Bone Health. In: Holick, M.F., Dawson-Hughes, B. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-740-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-740-6_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-451-7

  • Online ISBN: 978-1-59259-740-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics