Skip to main content

The NCI Human Tumor Cell Line (60-Cell) Screen

Concept, Implementation, and Applications

  • Chapter
Anticancer Drug Development Guide

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

This chapter is not intended to provide a comprehensive review of applications of the National Cancer Institute (NCI) 60-cell screen to anticancer drug discovery and development. The literature is now replete with such examples, given the NCI operation and provision of the screen to researchers worldwide for well over a decade. Selected examples are used here to illuminate the kind of output that has been routinely available from the screen and to show how some of the simplest applications of this output have been and perhaps remain of substantial utility to researchers engaged in the challenging and uncertain field of anticancer drug discovery and development. Readers may also wish to examine and consider the current operational details, as well as the wealth of related information and research tools based on the 60-cell screen, now provided by the NCI Developmental Therapeutics Program (DTP) at its internet website (http://dtp.nci.nih.gov). What follows here is intended as an historical and personal perspective on how the 60-cell screen came to be and the value and legitimacy of the screen as a research tool. I attempt to convey a sense of the breadth and depth of the diverse participants and their contributions to the screen’ s conceptual development, implementation, and oversight, and I offer one participant’ s view of obstacles encountered, choices and compromises made, and other issues that may have contributed to the utility as well as limitations of the current screen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Driscoll JS. The preclinical new drug research program of the National Cancer Institute. Cancer Treat Rep 1984; 68: 63–76.

    PubMed  CAS  Google Scholar 

  2. Boyd JD, ed. National Cancer Institute planning to switch drug development emphasis from compound to human cancer-oriented strategy. Cancer Lett 1984; 10: 1–2.

    Google Scholar 

  3. Boyd MR. National Cancer Institute drug discovery and development. In: Frei E II, Freireich E, eds., Accomplishments in Oncology. Philadelphia: Lippincott. 1986: 68–76.

    Google Scholar 

  4. Boyd JD, ed. Division of Cancer Treatment Board approves new screening program, natural products concepts. Cancer Lett 1985; 11: 4–5.

    Google Scholar 

  5. Boyd JD, ed. Reviewers report progress in new drug prescreen system development. Cancer Lett 1989; 15: 1–5.

    Google Scholar 

  6. Boyd MR. Status of the NCI preclinical antitumor drug discovery screen. In: DeVita VT Jr, Hellman S, Rosenberg SA, eds., Cancer: Principles and Practice of Oncology Updates, vol. 3, no. 10. Philadelphia: Lippincott. 1989: 1–12.

    Google Scholar 

  7. Friend T. Plants, sea could yield new drugs. USA Today 1989; September 5:D1.

    Google Scholar 

  8. Kolberg RJ. Casting a wider net to catch cancer cures. J NIH Res 1990; 2: 82–84.

    Google Scholar 

  9. Ansley D. Cancer Institute turns to cell line screening. Scientist 1990; 4: 3–9.

    Google Scholar 

  10. Stehlin D. Harvesting drugs from plants. FDA Consumer 1990; October:20–24.

    Google Scholar 

  11. Thompson D. Giving up on the mice. Time 1990; September 17: 79.

    Google Scholar 

  12. Boyd MR. The future of new drug development. In: Niederhuber JE, ed., Current Therapy in Oncology. Philadelphia: BC Decker. 1993: 11–22.

    Google Scholar 

  13. Boyd MR, Paull KD. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev Res 1995; 34: 91–109.

    Article  CAS  Google Scholar 

  14. Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute. Proceedings, Workshop on Disease-Oriented Antitumor Drug Discovery and Development, Bethesda, MD, January 9–10. 1985: 1–273.

    Google Scholar 

  15. Shoemaker RH, Wolpert-DeFilippes M, Kern D, et al. Application of a human tumor colony forming assay to new drug screening. Cancer Res 1985; 45: 2145–2153.

    PubMed  CAS  Google Scholar 

  16. Alley MC, Scudiero DA, Monks A, et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 1988; 48: 589–601.

    PubMed  CAS  Google Scholar 

  17. Paull KD, Shoemaker RH, Boyd MR, et al. The synthesis of XTT: a new tetrazolium reagent that is bioreducible to a water-soluble formazan. J Heterocyclic Chem 1988; 25: 911–914.

    Article  CAS  Google Scholar 

  18. Scudiero DA, Shoemaker RH, Paull KD, et al. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 1988; 48: 4827–4833.

    PubMed  CAS  Google Scholar 

  19. Vistica DT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR. Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res 1991; 51: 2515–2520.

    PubMed  CAS  Google Scholar 

  20. Vistica DT, Scudiero D, Skehan P, Monks A, Boyd MR. New carbon dioxide-independent basal growth medium for culture of diverse tumor and nontumor cells of human and nonhuman origin. J Natl Cancer Inst 1990; 82: 1055–1061.

    Article  PubMed  CAS  Google Scholar 

  21. Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 1990; 82: 1107–1112.

    Article  PubMed  CAS  Google Scholar 

  22. Rubinstein LV, Shoemaker RH, Paull KD, et al. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst 1990; 82: 1113–1118.

    Article  PubMed  CAS  Google Scholar 

  23. Monks A, Scudiero D, Skehan P, et al. Feasibility of a high-flux anticancer drug screen utilizing a diverse panel of human tumor cell lines in culture. J Natl Cancer Inst 1991; 83: 757–766.

    Article  PubMed  CAS  Google Scholar 

  24. Shoemaker RH, Monks A, Alley MC, et al. Development of human tumor cell line panels for use in disease-oriented drug screening. In: Hall T, ed., Prediction of Response to Cancer Chemotherapy. New York: Alan R. Liss. 1988: 265–286.

    Google Scholar 

  25. Stinson SF, Alley MC, Fiebig H, et al. Morphologic and immunocytochemical characteristics of human tumor cell lines for use in an anticancer drug screen. Anticancer Res 1992; 12: 1035–1054.

    PubMed  CAS  Google Scholar 

  26. Paull KD, Shoemaker RH, Hodes L, et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of the mean graph and COMPARE algorithm. J Nati Cancer Inst 1989; 81: 1088–1092.

    Article  CAS  Google Scholar 

  27. Boyd MR, Paull KD, Rubinstein LR. Data display and analysis strategies for the NCI disease-oriented in vitro antitumor drug screen. In: Valeriote FA, Corbett T, Baker L, eds., Cytotoxic Anticancer Drugs: Models and Concepts forDrug Discovery and Development. Amsterdam: Kluwer Academic Publishers. 1992: 11–34.

    Chapter  Google Scholar 

  28. Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute. Proceedings of the Ad Hoc Review Committee for the NCI In VitrolIn Vivo Disease-Oriented Screening Project, Bethesda, MD, September 23–24. 1985: 1–243.

    Google Scholar 

  29. Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute. Proceedings of the Ad Hoc Review Committee for the NCI In Vitrolln Vivo Disease-Oriented Screening Project, Bethesda, MD, December 8–9. 1986: 1–173.

    Google Scholar 

  30. Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute. Proceedings of Workshop on Selection, Characterization and Quality Control of Human Tumor Cell Lines for the NCI’s New Drug Screening Program, Bethesda, MD, May 27–28, 1987: 1–160.

    Google Scholar 

  31. Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute. Proceedings of the Ad Hoc Review Committee for the NCI In VitrolIn Vivo Disease-Oriented Screening Project, Bethesda, MD, May 19–20. 1988: 1–218.

    Google Scholar 

  32. Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute. Proceedings of the Ad Hoc Review Committee for the NCI In VitrolIn Vivo Disease-Oriented Screening Project, Bethesda, MD, November 13–15. 1989: 1–245.

    Google Scholar 

  33. Boyd MR. Strategies for the identification of new agents for the treatment of AIDS: a national program to facilitate the discovery and preclinical development of new drug candidates for clinical evaluation. In: DeVita VT, Hellman S, Rosenberg SA, eds., AIDS, Etiology, Diagnosis, Treatment and Prevention. Philadelphia: Lippincott. 1988: 305–319.

    Google Scholar 

  34. Weislow, OS, Kiser R, Fine DL, Bader J, Shoemaker RH, Boyd MR. New soluble-formazan assay for HIV-1 cytopathic effects: application to high-flux screening of synthetic and natural products for AIDS-antiviral activity. J Nati Cancer Inst 1989; 81: 577–586.

    Article  CAS  Google Scholar 

  35. Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute. Proceedings of Workshop on Issues for Implementation of a National Anti-HIV Preclinical Drug Evaluation Program; Critical Parameters for an In Vitro, Human Host-Cell Based, Primary Screen, Bethesda, MD, April 8–9. 1987: 1–136.

    Google Scholar 

  36. Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute. Proceedings of the Ad Hoc Advisory Committee for the Anti-HIV Drug Screening Program, Bethesda, MD, April 7–8. 1988: 1–113.

    Google Scholar 

  37. Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute. Proceedings of the Ad Hoc Expert Advisory Committee for the Anti-HIV Drug Screening Program, Bethesda, MD, November 13–15. 1989: 1–226.

    Google Scholar 

  38. Pettit GR, Kamano Y, Herald CL, et al. The isolation and structure of a remarkable marine animal constituent: dolastatin 10. J Am Chem Soc 1987; 109: 6883–6885.

    Article  CAS  Google Scholar 

  39. Bai R, Pettit, GR, Hamel E. Dolastatin 10, a powerful cytotoxic peptide derived from a marine animal; inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain. Biochem Pharmacol 1990; 39: 1941–1949.

    Article  PubMed  CAS  Google Scholar 

  40. Hodes L, Paull K, Koutsoukos A, Rubinstein L. Exploratory data analytic techniques to evaluate anticancer agents screened in a cell culture panel. J Biopharmaceut Stat 1992; 2; 31–48.

    Article  CAS  Google Scholar 

  41. Weinstein JN, Kohn KW, Grever MR, et al. Neural computing in cancer drug development: predicting mechanism of action. Science 1992; 258: 447–451.

    Article  PubMed  CAS  Google Scholar 

  42. van Osdol WW, Myers TG, Paull KD, Kohn KW, Weinstein JN. Use of the Kohonen self-organizing map to study the mechanisms of action of chemotherapeutic agents. J Natl Cancer Inst 1994; 86: 1853–1859.

    Article  PubMed  Google Scholar 

  43. Weinstein JN, Myers T, Buolamwini J, et al. Predictive statistics and artificial intelligence in the U.S. National Cancer Institute’s drug discovery program for cancer and AIDS. Stem Cells 1994; 12: 13–22.

    Article  PubMed  CAS  Google Scholar 

  44. Paull KP, Hamel E, Malspeis L. Prediction of biochemical mechanism of action from the in vitro antitumor screen of the National Cancer Institute. In: Foye O, ed., Cancer Chemotherapeutic Agents. Washington DC: American Chemical Society Books. 1995: 9–45.

    Google Scholar 

  45. Hirata Y, Uemura D. Halichondrins-antitumor polyether macrolides from a marine sponge. Pure Appl Chem 1986; 58: 701–710.

    Article  CAS  Google Scholar 

  46. Pettit GR, Herald CL, Boyd MR, et al. Isolation and structure of the cell growth inhibitory constituents from the pacific marine sponge Axinella sp. J Med Chem 1991; 34: 3339–3340.

    Article  PubMed  CAS  Google Scholar 

  47. Pettit GR, Cichacz ZA, Gao F, et al. Isolation and structure of spongistatin 1. J Org Chem 1993; 58: 1302–1304.

    Article  CAS  Google Scholar 

  48. Paull KD, Lin CM, Malspeis L, Hamel E. Identification of novel antimitotic agents acting at the tubulin level by computer-assisted evaluation of differential cytotoxicity data. Cancer Res 1992; 52: 3892–3900.

    PubMed  CAS  Google Scholar 

  49. Bai R, Paull KD, Herald CL, Malspeis L, Pettit GR, Hamel E. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin; discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J Biol Chem 1991; 24:15, 882–15, 889.

    Google Scholar 

  50. Bai R, Chiacz ZA, Herald CL, Pettit GR, Hamel E. Spongistatin 1, a highly cytotoxic, sponge-derived, marine natural product that inhibits mitosis, microtubule assembly, and the binding of vinblastine to tubulin. Mol Pharmacol 1993; 44: 757–766.

    PubMed  CAS  Google Scholar 

  51. Acton EM, Narayanan VL, Risbood P, Shoemaker RH, Vistica DT, Boyd MR. Anticancer specificity of some ellipticinium salts against human brain tumors in vitro. J Med Chem 1994; 37: 2185–2189.

    CAS  Google Scholar 

  52. Vistica DT, Kenney S, Hursey ML, Boyd MR. Cellular uptake as a determinant of cytotoxicity of quaternized ellipticines to human brain tumor cells. Biochem Biophys Res Commun 1994; 200: 1762–1768.

    Article  PubMed  CAS  Google Scholar 

  53. Shoemaker RH, Balaschak MS, Alexander MR, Boyd MR. Antitumor activity of 9-C1–2methylellipticinium acetate against human brain tumor xenografts. Oncol Rep 1995; 2: 663–667.

    PubMed  CAS  Google Scholar 

  54. Pettit GR, Inoue M, Kamano Y, et al. Isolation and structure of the powerful cell growth inhibitor cephalostatin 1. J Am Chem Soc 1988; 110: 2006–2007.

    Article  CAS  Google Scholar 

  55. Pettit GR, Kamano Y, Inoue M, et al. Antineoplastic agents 214. Isolation and structure of cephalostatins 7–9. J Org Chem 1992; 57:429–431

    Article  CAS  Google Scholar 

  56. Fuller RW, Cardellina JH II, Kato Y, et al. A pentahalogenated monoterpene from the red alga, Portieria hornemannii, produces a novel cytotoxicity profile against a diverse panel of human tumor cell lines. J Med Chem 1992; 35: 3007–3011.

    Article  PubMed  CAS  Google Scholar 

  57. Fuller RW, Cardellina JH II, Jurek J, et al. Isolation and structure/activity features of halomon-related antitumor monoterpenes from the red alga, Portieria hornemanii. J Med Chem 1994; 37: 4407–4411.

    Article  CAS  Google Scholar 

  58. Boyd MR, Farina C, Belfiore P, et al. Discovery of a novel antitumor benzolactone enamide class that selectively inhibits mammalian vacuolar-type (H+)-ATPases. J Pharmacol Exp Ther 2001; 297: 114–120.

    PubMed  CAS  Google Scholar 

  59. Erickson KL, Beutler JA, Cardellina JH II, Boyd MR. Salicylhalamides A and B, novel cytotoxic macrolides from the marine sponge Haliclona sp. J Org Chem 1997; 62: 8188–8192.

    Article  PubMed  CAS  Google Scholar 

  60. Galinis DL, McKee TC, Pannell L, Cardellina JH II, Boyd MR. Lobatamides A and B, novel cytotoxic macrolides from the tunicate Aplidium lobatum. J Org Chem 1997; 62: 8968–8969.

    Article  CAS  Google Scholar 

  61. McKee TC, Galinis DL, Pannell LK, et al. The lobatamides, novel cytotoxic macrolides from the tunicate Aplidium lobatum. J Org Chem 1998; 63: 7805–7810.

    Article  CAS  Google Scholar 

  62. Kunze B, Jansen R, Sasse R, Hofle G, Reichenbach H. Apicularens A and B, new cytostatic macrolides from Chondromyces species (myxobacteria): production, physico-chemical and biological properties. JAntibiot 1998; 51: 1075–1080.

    Article  CAS  Google Scholar 

  63. Jansen R, Kunze B, Reichenbach H, Hofle G. Antibiotics from gliding bacteria LXXXVI. Apicularens A and B, cytotoxic 10-membered lactones with a novel mechanism of action from Chondromyces species (myxobacteria): isolation, structure elucidatin, and biosynthesis. Eur J Org Chem 2000; 913–919.

    Google Scholar 

  64. Kim JW, Shinya K, Furihata K, Hayakawa Y, Seto H. Oximidines I and II: novel antitumor macrolides from Pseudomonas sp. J Org Chem 1999: 64: 153–155.

    Article  PubMed  CAS  Google Scholar 

  65. Dekker KA, Aiello R, Hirai H, et al. Novel lactone compounds from Mortierella verticillata that induce the human low density lipoprotein receptor gene: fermentation, isolation, structural elucidation and biological activities. J Antibiot 1998; 51: 14–20.

    Article  PubMed  CAS  Google Scholar 

  66. Alvarez M, Paull K, Monks A, et al. Generation of a drug resistance profile by quantitation of mdr-1/ P-glycoprotein expression in the cell lines of the NCI anticancer drug screen. J Clin Invest 1995; 95: 2205–2214.

    Article  PubMed  CAS  Google Scholar 

  67. Lee J-S, Paull KP, Hose C, et al. Rhodamine efflux patterns predict PGP substrates in the NCI drug screen. Mol Pharm 1994; 46: 627–638.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Boyd, M.R. (2004). The NCI Human Tumor Cell Line (60-Cell) Screen. In: Teicher, B.A., Andrews, P.A. (eds) Anticancer Drug Development Guide. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-739-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-739-0_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9841-7

  • Online ISBN: 978-1-59259-739-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics