The Skeleton pp 113-130 | Cite as

Control of Development and Homeostasis Via Regulation of BMP, Wnt, and Hedgehog Signaling

  • Renee Hackenmiller
  • Catherine Degnin
  • Jan Christian


Secreted signaling proteins play fundamental roles in the embryonic patterning of multicellular organisms from insects to humans. Three protein families, bone morphogenetic proteins (BMPs), Wnts, and hedgehog (Hh) are secreted cell—cell signaling molecules that have been shown to be important regulators of a wide variety of normal and pathological developmental processes. BMPs, Wnts, and Hh can all be termed as morphogens in that they act directly at a distance and induce distinct differentiation programs at different concentrations. Signaling by BMPs, Wnts, and Hh is regulated in both positive and negative fashions at the extracellular, membrane, cytoplasmic, and nuclear levels. The range of molecular strategies involved in regulating the signaling activities of these proteins in a developing embryo highlights the crucial importance of maintaining tight spatial and temporal control of morphogens during development.


Xenopus Embryo Morphogen Gradient Drosophila Wing Segment Polarity Gene Spemann Organizer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wozney, J. M., Rosen, V., Celeste, A., et al. (1988) Novel regulators of bone formation: molecular clones and activities. Science 242, 1528–1534.CrossRefPubMedGoogle Scholar
  2. 2.
    Nusse, R. and Varmus, H. E. (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109.CrossRefPubMedGoogle Scholar
  3. 3.
    Rijsewijk, F., Schuermann, M., Wagenaar, E., et al. (1987) The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649–657.CrossRefPubMedGoogle Scholar
  4. 4.
    Nusslein-Volhard, C. and Wieschaus, E.(1980) Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801.CrossRefPubMedGoogle Scholar
  5. 5.
    Neumann, C. and Cohen, S. (1997) Morphogens and pattern formation. Bioessays 19, 721–729.CrossRefPubMedGoogle Scholar
  6. 6.
    Gonzalez, F., Swales, L., Bejsovec, A., et al. (1991) Secretion and movement of wingless protein in the epidermis of the Drosophila embryo. Mech. Dev. 35, 43–54.CrossRefPubMedGoogle Scholar
  7. 7.
    Johnson, R. L. and Tabin, C. (1995) The long and short of hedgehog signaling. Cell 81, 313–316.CrossRefPubMedGoogle Scholar
  8. 8.
    Nakayama, T., Cui, Y., and Christian, J. L. (2000) Regulation of BMP/Dpp signaling during embryonic development. Cell Mol. Life Sci. 57, 943–956.CrossRefPubMedGoogle Scholar
  9. 9.
    Huelsken, J. and Birchmeier, W. (2001) New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Genet. Dev. 11, 547–553.CrossRefPubMedGoogle Scholar
  10. 10.
    Ingham, W. and McMahon, A. (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087.CrossRefPubMedGoogle Scholar
  11. 11.
    Hammonds, R. G. Jr., Schwall, R., Dudley, A., et al. (1991) Bone-inducing activity of mature BMP-2b produced from a hybrid BMP-2a/2b precursor. Mol. Endocrinol 5, 149–155.CrossRefPubMedGoogle Scholar
  12. 12.
    Massague, J. (1990) The transforming growth factor-beta family. Annu. Rev. Cell Biol. 6, 597–641.CrossRefPubMedGoogle Scholar
  13. 13.
    Steiner, D. F. (1998) The proprotein convertases. Curr. Opin. Chem. Biol. 2, 31–39.CrossRefPubMedGoogle Scholar
  14. 14.
    Cui, Y., Jean, F., Thomas, G., et al. (1998) BMP-4 is proteolytically activated by furin and/or PC6 during vertebrate embryonic development. EMBO J. 17, 4735–4743.CrossRefPubMedGoogle Scholar
  15. 15.
    Cui, Y., Hackenmiller, R., Berg, L., et al. (2001) The activity and signaling range of mature BMP-4 is regulated by sequential cleavage at two sites within the prodomain of the precursor. Genes Dev. 15, 2797–2802.PubMedGoogle Scholar
  16. 16.
    Constam, D. B. and Robertson, E. J. (1999) Regulation of bone morphogenetic protein activity by pro domains and proprotein convertases. J. Cell Biol. 144, 139–149.CrossRefPubMedGoogle Scholar
  17. 17.
    Constam, D. B. and Robertson, E. J. (2000) SPC4/PACE4 regulates a TGFbeta signaling network during axis formation. Genes Dev. 14, 1146–1155.PubMedGoogle Scholar
  18. 18.
    Roebroek, A. J., Umans, L., Pauli, I. G., et al. (1998) Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase Furin. Development 125, 4863–4876.PubMedGoogle Scholar
  19. 19.
    Gray, A. M. and Mason, A. J. (1990) Requirement for activin A and transforming growth factor—beta 1 pro-regions in homodimer assembly. Science 247, 1328–1330.CrossRefPubMedGoogle Scholar
  20. 20.
    Shinde, U. and Inouye, M. (2000) Intramolecular chaperones: polypeptide extensions that modulate protein folding. Semin. Cell Dev. Biol. 11, 35–44.CrossRefPubMedGoogle Scholar
  21. 21.
    Kessler, D. S. and Melton, D. A. (1995) Induction of dorsal mesoderm by soluble, mature Vgl protein. Development 121, 2155–2164.PubMedGoogle Scholar
  22. 22.
    Jones, C. M., Armes, N., and Smith, J. C. (1996) Signalling by TGF-beta family members: short-range effects of Xnr2 and BMP-4 contrast with the long-range effects of activin. Curr. Biol. 6, 1468–1475.CrossRefPubMedGoogle Scholar
  23. 23.
    Hawley, S. H., et al. (1995) Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev. 9, 2923–2935.CrossRefPubMedGoogle Scholar
  24. 24.
    Mason, A. J., Farnworth, G., and Sullivan, J. (1996) Characterization and determination of the biological activities of noncleavable high molecular weight forms of inhibin A and activin A. Mol. Endocrinol 10, 1055–1065.CrossRefPubMedGoogle Scholar
  25. 25.
    Ulloa, L. and Tabibzadeh, S. (2001) Lefty inhibits receptor-regulated Smad phosphorylation induced by the activated transforming growth factor-beta receptor. J. Biol. Chem. 276, 21397–2404.CrossRefPubMedGoogle Scholar
  26. 26.
    Eimon, M. and Harland, R. M. (2002) Effects of heterodimerization and proteolytic processing on Derriere and Nodal activity: implications for mesoderm induction in Xenopus. Development 129, 3089–3103.PubMedGoogle Scholar
  27. 27.
    Khalil, N. (2001) Post translational activation of latent transforming growth factor beta (L-TGF-beta): clinical implications. Histol. Histopathol. 16, 541–551.PubMedGoogle Scholar
  28. 28.
    Jones, W. K., Richmond, E. A., White, K., et al. (1994) Osteogenic protein-1 (0P-1) expression and processing in Chinese hamster ovary cells: isolation of a soluble complex containing the mature and pro-domains of OP-1. Growth Factors 11, 215–225.CrossRefPubMedGoogle Scholar
  29. 29.
    Arteaga-Solis, E., Gayraud, B., Lee, S. Y., et al. (2001) Regulation of limb patterning by extracellular microfibrils. J. Cell Biol. 154, 275–281.CrossRefPubMedGoogle Scholar
  30. 30.
    Aono, A., Hazama, M., Notoya, K., et al. (1995) Potent ectopic bone-inducing activity of bone morphogenetic protein-4/7 heterodimer. Biochem. Biophys. Res. Commun. 210, 670–677.CrossRefPubMedGoogle Scholar
  31. 31.
    Hazama, M., Aono, A., Ueno, N., et al. (1995) Efficient expression of a heterodimer of bone morphogenetic protein subunits using a baculo-virus expression system. Biochem. Biophys. Res. Commun. 209, 859–866.CrossRefPubMedGoogle Scholar
  32. 32.
    Suzuki, A., Kaneko, E., Maeda, J., et al. (1997) Mesoderm induction by BMP-4 and -7 heterodimers. Biochem. Biophys. Res. Commun. 232, 153–156.CrossRefPubMedGoogle Scholar
  33. 33.
    Nishimatsu, S. and Thomsen, G. H. (1998) Ventral mesoderm induction and patterning by bone morphogenetic protein heterodimers in Xenopus embryos. Mech. Dev. 74, 75–88.CrossRefPubMedGoogle Scholar
  34. 34.
    Yeo, C. and Whitman, M. (2001) Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Mol. Cell 7, 949–957.CrossRefPubMedGoogle Scholar
  35. 35.
    Kitajewski, J., Mason, J. O., and Varmus, H. E. (1992) Interaction of Wnt-1 proteins with the binding protein Bi. Mol. Cell Biol. 12, 784–790.PubMedGoogle Scholar
  36. 36.
    Kadowaki, T., Wilder, E., Klingensmith, J., et al. (1996) The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Genes Dev. 10, 3116–3128.CrossRefPubMedGoogle Scholar
  37. 37.
    Tanaka, K., Okabayashi, K., Asashima, M., et al. (2000) The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family. Eur. J. Biochem. 267, 4300–4311.CrossRefPubMedGoogle Scholar
  38. 38.
    Tanaka, K., Kitagawa, Y., and Kadowaki, T. (2002) Drosophila segment polarity gene product porcupine stimulates the posttranslational N-glycosylation of wingless in the endoplasmic reticulum. J. Biol. Chem. 277, 12816–12823.CrossRefPubMedGoogle Scholar
  39. 39.
    Bumcrot, D. A., Takada, R., and McMahon, A. (1995) Proteolytic processing yields two secreted forms of sonic hedgehog. Mol. Cell Biol. 15, 2294–2303.PubMedGoogle Scholar
  40. 40.
    Lee, J. J., Ekker, S. C., von Kessler, D. P., et al. (1994) Autoproteolysis in hedgehog protein biogenesis. Science 266, 1528–1537.CrossRefPubMedGoogle Scholar
  41. 41.
    Porter, J. A., von Kessler, D. P., Ekker, S. C., et al. (1995) The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature 374, 363–366.CrossRefPubMedGoogle Scholar
  42. 42.
    Porter, J. A., Young, K. E., and Beachy, A. (1996) Cholesterol modification of hedgehog signaling proteins in animal development. Science 274, 255–259.CrossRefPubMedGoogle Scholar
  43. 43.
    Osborne, T. F. and Rosenfeld, J. M. (1998) Related membrane domains in proteins of sterol sensing and cell signaling provide a glimpse of treasures still buried within the dynamic realm of intracellular metabolic regulation. Curr. Opin. Lipidol. 9, 137–140.CrossRefPubMedGoogle Scholar
  44. 44.
    Marti, E., Bumcrot, D. A., Takada, R., et al. (1995) Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375, 322–325.CrossRefPubMedGoogle Scholar
  45. 45.
    Pepinsky, R. B., Zeng, C., Wen, D., et al. (1998) Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem. 273, 14037–14045.CrossRefPubMedGoogle Scholar
  46. 46.
    Burke, R., Nellen, D., Bellotto, M., et al. (1999) Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell 99, 803–815.CrossRefPubMedGoogle Scholar
  47. 47.
    Amanai, K. and Jiang, J. (2001) Distinct roles of central missing and dispatched in sending the Hedgehog signal. Development 128, 5119–5127.PubMedGoogle Scholar
  48. 48.
    Lewis, M., Dunn, M. P., McMahon, J. A., et al. (2001) Cholesterol modification of sonic hedgehog is required for lung-range signaling activity and effective modulation of signaling by Ptc 1. Cell 105, 599–612.CrossRefPubMedGoogle Scholar
  49. 49.
    Chamoun, Z., Mann, R. K., Nellen, D., et al. (2001) Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science 293, 2080–2084.CrossRefPubMedGoogle Scholar
  50. 50.
    Lee, J. D. and Treisman, J. E. (2001) Sightless has homology to transmembrane acyltransferases and is required to generate active Hedgehog protein. Curr. Biol. 11, 1147–1152.CrossRefPubMedGoogle Scholar
  51. 51.
    Micchelli, C. A., The, I., Selva, E., et al. (2002) Rasp, a putative transmembrane acyltransferase, is required for Hedgehog signaling. Development 129, 843–851.PubMedGoogle Scholar
  52. 52.
    Lee, J. D., Kraus, P., Gaiano, N., et al. (2001) An acylatable residue of Hedgehog is differentially required in Drosophila and mouse limb development. Dev. Biol. 233, 122–136.CrossRefPubMedGoogle Scholar
  53. 53.
    Kohtz, J. D., Lee, H. Y., Gaiano, N., et al. (2001) N-terminal fatty-acylation of sonic hedgehog enhances the induction of rodent ventral forebrain neurons. Development 128, 2351–2363.PubMedGoogle Scholar
  54. 54.
    Taylor, F. R., Wen, D., Garber, E. A., et al. (2001) Enhanced potency of human Sonic hedgehog by hydrophobic modification. Biochemistry 40, 4359–4371.CrossRefPubMedGoogle Scholar
  55. 55.
    Zimmerman, L. B., De Jesus-Escobar, J. M., and Harland, R. M. (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606.CrossRefPubMedGoogle Scholar
  56. 56.
    Chang, C. and Hemmati-Brivanlou, A. (1998) Neural crest induction by Xwnt7B in Xenopus. Dev. Biol. 194, 129–134.CrossRefPubMedGoogle Scholar
  57. 57.
    Brunet, L. J., McMahon, J. A., McMahon, A. P., et al. (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280, 1455–1457.CrossRefPubMedGoogle Scholar
  58. 58.
    Gong, Y., Krakow, D., Marcelino, J., et al. (1999) Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nat. Genet. 21, 302–304.CrossRefPubMedGoogle Scholar
  59. 59.
    Piccolo, S., Sasai, Y., Lu, B., et al. (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, 589–598.CrossRefPubMedGoogle Scholar
  60. 60.
    Piccolo, S., Agius, E., Lu, B., et al. (1997), Cleavage of chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91, 407–416.CrossRefPubMedGoogle Scholar
  61. 61.
    Marques, G., Musacchio, M., Shimell, M. J., et al. (1997) Production of a DPP activity gradient in the early Drosophila embryo through the opposing actions of the SOG and TLD proteins. Cell 91, 417–426.CrossRefPubMedGoogle Scholar
  62. 62.
    Larrain, J., Bachiller, D., Lu, B., et al. (2000) BMP-binding modules in chordin: a model for signalling regulation in the extracellular space. Development 127, 821–830.PubMedGoogle Scholar
  63. 63.
    Blader, P, Rastegar, S., Fischer, N., et al. (1997) Cleavage of the BMP-4 antagonist chordin by zebrafish tolloid. Science 278, 1937–1940.CrossRefPubMedGoogle Scholar
  64. 64.
    Ashe, H. L. and Levine, M. (1999) Local inhibition and long-range enhancement of Dpp signal transduction by Sog [see comments]. Nature 398, 427–431.CrossRefPubMedGoogle Scholar
  65. 65.
    Scott, I. C., Blitz, I. L., Pappano, W. N., et al. (2001) Homologues of Twisted gastrulation are extracellular cofactors in antagonism of BMP signalling. Nature 410, 475–478.CrossRefPubMedGoogle Scholar
  66. 66.
    Ross, J. J., Shimmi, O., Vilmos, P., et al. (2001) Twisted gastrulation is a conserved extracellular BMP antagonist. Nature 410, 479–483.CrossRefPubMedGoogle Scholar
  67. 67.
    Chang, C., Holtzman, D. A., Chau, S., et al. (2001) Twisted gastrulation can function as a BMP antagonist. Nature 410, 483–487.CrossRefPubMedGoogle Scholar
  68. 68.
    Ray, R. and Wharton, K. A. (2001) Twisted perspective: new insights into extracellular modulation of BMP signaling during development. Cell 104, 801–804.CrossRefPubMedGoogle Scholar
  69. 69.
    Yu, K., Srinivasan, S., Shimmi, O., et al. (2000) Processing of the Drosophila Sog protein creates a novel BMP inhibitory activity. Development 127, 2143–2154.PubMedGoogle Scholar
  70. 70.
    Oelgeschlager, M., Larrain, J., Geissert, D., et al. (2000) The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling. Nature 405, 757–763.CrossRefPubMedGoogle Scholar
  71. 71.
    Harland, R. M. (2001) Developmental biology. A twist on embryonic signalling. Nature 410, 423–424.CrossRefPubMedGoogle Scholar
  72. 72.
    de Winter, J., ten Dijke, P., de Vries, C. J., et al. (1996) Follistatins neutralize activin bioactivity by inhibition of activin binding to its type II receptors. Mol. Cell Endocrinol. 116, 105–114.CrossRefPubMedGoogle Scholar
  73. 73.
    Iemura S. Y. T., Takagi, C., Uchiyama, H., Natsume, T., Shimasaki, S., Sugino, H., et al. (1998) Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. Proc. Natl. Acad. Sci. USA 95, 9337–9342.CrossRefPubMedGoogle Scholar
  74. 74.
    Hemmati-Brivanlou, A., Kelly, O. G., and Melton, D. A. (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77, 283–295.CrossRefPubMedGoogle Scholar
  75. 75.
    Fainsod, A., Deissler, K., Yelin, R., et al. (1997) The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech. Dev. 63, 39–50.CrossRefPubMedGoogle Scholar
  76. 76.
    Hsu, D.R., Economides, A. N., Wang, X., et al. (1998) The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol. Cell 1, 673–683.CrossRefPubMedGoogle Scholar
  77. 77.
    Piccolo, S., Agius, E., Leyns, L., et al. (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397, 707–710.CrossRefPubMedGoogle Scholar
  78. 78.
    Yokouchi, Y., Vogan, K. J., Pearse, R. V., 2nd, et al. (1999) Antagonistic signaling by Caronte, a novel Cerberusrelated gene, establishes left-right asymmetric gene expression. Cell 98, 573–583.CrossRefPubMedGoogle Scholar
  79. 79.
    Ozaki, T. and Sakiyama, S. (1993) Molecular cloning and characterization of a cDNA showing negative regulation in v-src-transformed 3Y1 rat fibroblasts. Proc. Natl. Acad. Sci. USA 90, 2593–2597.CrossRefPubMedGoogle Scholar
  80. 80.
    Ozaki, T. and Sakiyama, S. (1994) Tumor-suppressive activity of NO3 gene product in v-src-transformed rat 3Y1 fibroblasts. Cancer Res. 54, 646–648.PubMedGoogle Scholar
  81. 81.
    Dionne, M. S., Skarnes, W. C., and Harland, R. M. (2001) Mutation and analysis of Dan, the founding member of the Dan family of transforming growth factor beta antagonists. Mol. Cell Biol. 21, 636–643.CrossRefPubMedGoogle Scholar
  82. 82.
    Bouwmeester, T., Kim, S., Sasai, Y., et al. (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382, 595–601.CrossRefPubMedGoogle Scholar
  83. 83.
    Zuniga, A., Haramis, A. P., McMahon, A. P., et al. (1999) Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature 401, 598–602.CrossRefPubMedGoogle Scholar
  84. 84.
    Wang, S., Krinks, M., Lin, K., et al. (1997) Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88, 757–766.CrossRefPubMedGoogle Scholar
  85. 85.
    Leyns, L., Bouwmeester, T., Kim, S. H., et al. (1997) Frzb1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88, 747–756.CrossRefPubMedGoogle Scholar
  86. 86.
    Hoang, B., Moos, M., Jr., Vukicevic, S., et al. (1996) Primary structure and tissue distribution of FRZB, a novel protein related to Drosophila frizzled, suggest a role in skeletal morphogenesis. J. Biol. Chem. 271, 26131–26137.CrossRefPubMedGoogle Scholar
  87. 87.
    Reichsman, F., Smith, L., and Cumberledge, S. (1996) Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction. J. Cell Biol. 135, 819–827.CrossRefPubMedGoogle Scholar
  88. 88.
    Wang, S., Krinks, M., and Moos, M. Jr. (1997) Frzb-1, an antagonist of Wnt-1 and Wnt-8, does not block signaling by Wnts -3A, -5A, or -11. Biochem. Biophvs. Res. Commun. 236, 502–504.CrossRefGoogle Scholar
  89. 89.
    Lin, K., Wang, S., Julius, M. A., et al. (1997) The cysteine-rich frizzled domain of Frzb-1 is required and sufficient for modulation of Wnt signaling. Proc. Natl. Acad. Sci. USA 94, 11196–11200.CrossRefPubMedGoogle Scholar
  90. 90.
    Bradley, L., Sun, B., Collins-Racie, L., et al. (2000) Different activities of the frizzled-related proteins frzb2 and sizzled2 during Xenopus anteroposterior patterning. Der. Biol. 227, 118–132.Google Scholar
  91. 91.
    Bafico, A., Gazit, A., Pramila, T., et al. (1999) Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signaling. J. Biol. Chem. 274, 16180–16187.CrossRefPubMedGoogle Scholar
  92. 92.
    Hsieh, J. C., Kodjabachian, L., Rebbert, M. L., et al. (1999) A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398, 431–436.CrossRefPubMedGoogle Scholar
  93. 93.
    Christian, J. L. and Moon, R. T. (1993) Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev. 7, 13–28.CrossRefPubMedGoogle Scholar
  94. 94.
    Glinka, A., Wu, W., Delius, H., et al. (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362.CrossRefPubMedGoogle Scholar
  95. 95.
    Wehrli, M., Dougan, S. T., Caldwell, K., et al. (2000) arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407, 527–530.CrossRefPubMedGoogle Scholar
  96. 96.
    Mao, B., Wu, W., Li, Y., et al. (2001) LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411, 321–325.CrossRefPubMedGoogle Scholar
  97. 97.
    Semenov, M. V., Tamai, K., Brott, B. K., et al. (2001) Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr. Biol. 11, 951–961.CrossRefPubMedGoogle Scholar
  98. 98.
    Bafico, A., Liu, G., Yaniv, A., et al. (2001) Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat. Cell Biol. 3, 683–686.CrossRefPubMedGoogle Scholar
  99. 99.
    Mao, B., Wu, W., Davidson, G., et al. (2002) Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417, 664–667.CrossRefPubMedGoogle Scholar
  100. 100.
    Selleck, S. B. (1999) Overgrowth syndromes and the regulation of signaling complexes by proteoglycans. Am. J. Hum. Genet. 64, 372–377.CrossRefPubMedGoogle Scholar
  101. 101.
    Perrimon, N. and Bernfield, M. (2000) Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404, 725–728.CrossRefPubMedGoogle Scholar
  102. 102.
    Binari, R. C., Staveley, B. E., Johnson, W.A., et al. (1997) Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124, 2623–2632.PubMedGoogle Scholar
  103. 103.
    Tsuda, M., Kamimura, K., Nakato, H., et al. (1999) The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 400, 276–280.CrossRefPubMedGoogle Scholar
  104. 104.
    Jackson, S. M., Nakato, H., Sugiura, M., et al. (1997) Dally, a Drosophila glypican, controls cellular responses to the TGF-beta-related morphogen, Dp. Development 124, 4113–4120.PubMedGoogle Scholar
  105. 105.
    Paine-Saunders, S., Viviano, B. L., Zupicich, J., et al. (2000) glypican-3 controls cellular responses to Bmp4 in limb patterning and skeletal development. Dev. Biol. 225, 179–187.CrossRefPubMedGoogle Scholar
  106. 106.
    Grisaru, S., Cano-Gauci, D., Tee, J., et al. (2001) Glypican-3 modulates BMP- and FGF-mediated effects during renal branching morphogenesis. Dev. Biol. 231, 31–46.CrossRefPubMedGoogle Scholar
  107. 107.
    Ohkawara, B., Iemura, S., ten Dijke, P., et al. (2002) Action range of BMP is defined by its N-terminal basic amino acid core. Curr. Biol. 12, 205–209.CrossRefPubMedGoogle Scholar
  108. 108.
    Haerry, T. E., Heslip, T. R., Marsh, J. L., et al. (1997) Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development 124, 3055–3064.PubMedGoogle Scholar
  109. 109.
    Lin, X. and Perrimon, N. (1999) Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature 400, 281–284.CrossRefPubMedGoogle Scholar
  110. 110.
    Baeg, G. H., Lin, X., Khare, N., et al. (2001) Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128, 87–94.PubMedGoogle Scholar
  111. 111.
    Strigini, M. and Cohen, S. M. (2000) Wingless gradient formation in the Drosophila wing. Curr. Biol. 10, 293–300.CrossRefPubMedGoogle Scholar
  112. 112.
    Dhoot, G. K., Gustafsson, M. K., Ai, X., et al. (2001) Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293, 1663–1666.CrossRefPubMedGoogle Scholar
  113. 113.
    Robertson, D. A., Freeman, C., Morris, C. P., et al. (1992) A cDNA clone for human glucosamine-6-sulphatase reveals differences between arylsulphatases and non-arylsulphatases. Biochem. J. 288, 539–544.PubMedGoogle Scholar
  114. 114.
    Bellaiche, Y., The, I., and Perrimon, N. (1998) Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394, 85–88.CrossRefPubMedGoogle Scholar
  115. 115.
    The, I., Bellaiche, Y., and Perrimon, N. (1999) Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Mol. Cell. 4, 633–639.CrossRefPubMedGoogle Scholar
  116. 116.
    Stickens, D., Clines, G., Burbee, D., et al. (1996) The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes. Nat. Genet. 14, 25–32.CrossRefPubMedGoogle Scholar
  117. 117.
    Lind, T., Tufaro, F., McCormick, C., et al. (1998) The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J. Biol. Chem. 273, 26265–26268.CrossRefPubMedGoogle Scholar
  118. 118.
    Gritli-Linde, A., Lewis, P., McMahon, A. P., et al. (2001) The whereabouts of a morphogen: direct evidence for short- and graded long-range activity of hedgehog signalingpeptides. Dev. Biol. 236, 364–386.CrossRefPubMedGoogle Scholar
  119. 119.
    Kooyman, D. L., Byrne, G. W., McClellan, S., et al. (1995) In vivo transfer of GPI-linked complement restriction factors from erythrocytes to the endothelium. Science 269, 89–92.CrossRefPubMedGoogle Scholar
  120. 120.
    Dierick, H. and Bejsovec, A. (1999) Cellular mechanisms of wingless/Wnt signal transduction. Curr. Top. Dev. Biol. 43, 153–190.CrossRefPubMedGoogle Scholar
  121. 121.
    Rietveld, A., Neutz, S., Simons, K., et al. (1999) Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J. Biol. Chem. 274, 12049–12054.CrossRefPubMedGoogle Scholar
  122. 122.
    Onichtchouk, D., Chen, Y.-G., Dosch, R., et al. (1999) Silencing of TGF-P signalling by the pseudoreceptor BAMBI. Nature 401, 480–485.CrossRefPubMedGoogle Scholar
  123. 123.
    Lecuit, T. and Cohen, S. M. (1998) Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc. Development 125, 4901–4907.PubMedGoogle Scholar
  124. 124.
    Haerry, T. E., Khalsa, O., O’Connor, M. B., et al. (1998) Synergistic signaling by two BMP ligands through the SAX and TKV receptors controls wing growth and patterning in Drosophila. Development 125, 3977–3987.PubMedGoogle Scholar
  125. 125.
    Tanimoto, H., Itoh, S., ten Dijke, P., et al. (2000) Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol. Cell 5, 59–71.CrossRefPubMedGoogle Scholar
  126. 126.
    Gazzerro, E., Gangji, V., and Canalis, E. (1998) Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts. J. Clin. Invest. 102, 2106–2114.CrossRefPubMedGoogle Scholar
  127. 127.
    Kameda, T., Koike, C., Saitoh, K., et al. (1999) Developmental patterning in chondrocytic cultures by morphogenic gradients: BMP induces expression of indian hedgehog and noggin. Genes Cells 4, 175–184.CrossRefPubMedGoogle Scholar
  128. 128.
    Zhang, J. and Carthew, R. W. (1998) Interactions between Wingless and DFz2 during Drosophila wing development. Development 125, 3075–3085.PubMedGoogle Scholar
  129. 129.
    Cadigan, K. M., Fish, M. P., Rulifson, E. J., et al. (1998) Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell 93, 767–77.CrossRefPubMedGoogle Scholar
  130. 130.
    Chen, Y. and Struhl, G. (1996) Dual roles for patched in sequestering and transducing Hedgehog. Cell 87, 553–563.CrossRefPubMedGoogle Scholar
  131. 131.
    Briscoe, J., Chen, Y., Jessell, T. M., et al. (2001) A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic hedgehog in the neural tube. Mol. Cell 7, 1279–1291.CrossRefPubMedGoogle Scholar
  132. 132.
    Chuang, T. and McMahon, A. (1999) Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397, 617–621.CrossRefPubMedGoogle Scholar
  133. 133.
    Christian, J. L. (2002) Argosomes: intracellular transport vehicles for intercellular signals? Sci. STKE 2002, E13.CrossRefGoogle Scholar
  134. 134.
    Teleman, A. A., Strigini, M., and Cohen, S. M. (2001) Shaping morphogen gradients. Cell 105, 559–562.CrossRefPubMedGoogle Scholar
  135. 135.
    Seto, E. S., Bellen, H. J., and Lloyd, T. E. (2002) When cell biology meets development: endocytic regulation of signaling nathwavs. Genes Devel. 16, 1314–1336.CrossRefPubMedGoogle Scholar
  136. 136.
    Tabata, T.(2001) Genetics of morphogen gradients. Nat. Rev. 2, 620–630.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Renee Hackenmiller
  • Catherine Degnin
  • Jan Christian

There are no affiliations available

Personalised recommendations