Advertisement

Mechanotransduction Pathways in Cartilage

  • Qian Chen
Chapter

Abstract

It is known that cartilage homeostasis is regulated by mechanical signals during limb development, fracture repair, and skeletal remodeling. The dramatic effect of mechanical stimulation of bone growth is best illustrated by distraction osteogenesis, in which distraction forces are applied to a healing limb to stimulate bone formation (1,2). When distraction stress is applied at certain amplitude and frequency, new bone formation is sustained, thereby achieving limb lengthening. In recent years, great progress has been made in understanding how new bone formation is activated by mechanical stimulation and the cellular signal transduction pathway to receive and convert mechanical signals into tissue growth and regeneration. In this chapter, we will summarize recent studies elucidating the molecular mechanism of biophysical regulation of cartilage growth, an important step during endochondral bone formation and fracture healing.

Keywords

Bone Morphogenetic Protein Fracture Healing Distraction Osteogenesis Chondrocyte Proliferation Matrix Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Einhorn, T. A. (1998) One of nature’s best kept secrets (editorial; comment). J. Bone Miner. Res. 13, 10–12.PubMedCrossRefGoogle Scholar
  2. 2.
    Welch, R. D., Birch, J. G., Makarov, M. R., and Samchukov, M. L. (1998) Histomorphometry of distraction osteogenesis in a caprine tibial lengthening model [see comments]. J. Bone Miner. Res. 13, 1–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Morscher, E. (1968) Strength and morphology of growth cartilage under hormonal influence of puberty: animal experiements and clinical study on the etiology of local growth disorders during puberty. Reconstr. Surg. Traumatol. 10. 3–104.PubMedGoogle Scholar
  4. 4.
    Smith, W. S. and Cunningham, J. B. (1957) The effect of alternating distracting forces on the epiphyseal plates of calves: a preliminary report. Clin. Orthopaedics 10, 125–130.Google Scholar
  5. 5.
    Carter, D. R. and Wong M. (1988) Mechanical stresses and endochondral ossification in the chondroepiphysis. J. Orthonaed. Res. 6, 148–154.CrossRefGoogle Scholar
  6. 6.
    Cohen, B., Chorney, G. S., and Phillips, D. P. (1992) The microstructural tensile properties and biochemcial composition of the bovine distal femoral growth plate. J. Orthopaed. Res. 10, 263–275.CrossRefGoogle Scholar
  7. 7.
    Haas, S. L. (1973) The localization of the growing point in the epiphyseal cartilage plate of bones. Am. J. Orthopaed. Surg. 15, 563–586.Google Scholar
  8. 8.
    Chen, Q., Johnson, D. M., Haudenschild, D. R., Tondravi, M. M., and Goetinck, P. F. (1995) Cartilage matrix protein forms a type II collagen-independent filamentous network: analysis in primary cell cultures with a retrovirus expression system. Mol. Biol. Cell. 6, 1743–1753.PubMedGoogle Scholar
  9. 9.
    Castagnola, P., Dozin, B., Moro, G., and Cancedda, R. (1988) Changes in the expression of collagen genes show two stages in chondrocyte differentiation in vitro. J. Cell Biol. 106, 461–467.PubMedCrossRefGoogle Scholar
  10. 10.
    Oohira, A., Kimata, K., Suzuki, S., Takata, K., Suzuki, I., and Hoshino, M. (1974) A correlation between synthetic activities for matrix macromolecules and specific stages of cytodifferentiation in developing cartilage. J. Biol. Chem. 249, 1637–1645.Google Scholar
  11. 11.
    von der Mark, K., Kirsch, T., Nerlich, A., Kuss, A., Weseloh, G., Gluckert, K., and Stoss, H. (1992) Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheumatism 35, 806–811.PubMedCrossRefGoogle Scholar
  12. 12.
    Hiltunen, A., Aro, H. T., and Vuorio, E. (1993) Regulation of extracellular matrix genes during fracture healing in mice. Clin. Orthopaed. Rel. Res. 297, 23–27.Google Scholar
  13. 13.
    Scammell, B. E., and Roach, H. (1996) A new role for the chondrocyte in fracture repair: Endochondral ossification includes direct bone formation by former chondrocytes. J. Bone Miner. Res. 11, 737–745.PubMedCrossRefGoogle Scholar
  14. 14.
    Frank, E. H. and Grodzinsky, A. J. (1987) Cartilage electromechanics-I. Electrokinetic transduction and the effects of electrolyte pH and ionic strength. J. Biomechanics 20, 615–627.CrossRefGoogle Scholar
  15. 15.
    Guilak, F., Ratcliffe, A., and Mow, V. C. (1995) Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J. Orthopaed. Res. 13, 410–421.CrossRefGoogle Scholar
  16. 16.
    Lai, W. M., Hou, J. S., and Mow, V. C. (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomechanical Eng. 113, 245–258.CrossRefGoogle Scholar
  17. 17.
    Jones, I. L., Klamfeldt, A., and Sandstrom, T. (1982) The effect of continuous mechanical pressure upon the turnover of articular cartilage proteoglycans in vitro. Clin. Orthopaed. Rel. Res. 165, 283–289.Google Scholar
  18. 18.
    Kim, Y. J., Sah, R. L., Grodzinsky, A. J., Plaas, A. H., and Sandy, J. D. (1994) Mechanical regulation of cartilage biosynthetic behavior: physical stimuli. Arch. Biochem. Biophys. 311, 1–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Sah, R. L., Kim, Y. J., Doong, J. Y., Grodzinsky, A. J., Plaas, A. H., and Sandy, J. D. (1989) Biosynthetic response to cartilage explants to dynamic compression. J. Orthopaed Res. 7, 619–636.CrossRefGoogle Scholar
  20. 20.
    Schneiderman, R., Keret, D., and Maroudas, A. (1986) Effects of mechanical and osmotic pressure on the rate of glycosaminoglycan synthesis in the human adult femoral head cartilage: an in vitro study. J. Orthopaed. Res. 4, 393–408.CrossRefGoogle Scholar
  21. 21.
    Lee, R. C., Rich, J. B., Kelley, K. M., Weiman, D. S., and Mathews, M. B. (1982) A comparison of in vitro cellular responses to mechanical and electrical stimulation. Am. Surg. 48, 567–574.PubMedGoogle Scholar
  22. 22.
    Smith, R. L., Rusk, S. F., Ellison, B. E., Wessells, P., Tsuchiya, K., Carter, D. R., et al. (1996) In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J. Orthop. Res. 14, 53–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., and Hunziker, E. B. (1995) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108, 1497–1508.PubMedGoogle Scholar
  24. 24.
    Sah, R. L., Grodzinsky, A. J., Plaas, A. H., and Sandy, J. D. (1990) Effects of tissue compression on the hyaluronatebinding properties of newly synthesized proteoglycans in cartilage explants. Biochem. J. 267, 803–808.PubMedGoogle Scholar
  25. 25.
    Yellowley, C. E., Jacobs, C. R., Li, Z., Zhou, Z., and Donahue, H. J. (1997) Effects of fluid flow on intracellular calcium in bovine articular chondrocytes. Am. J. Physiol. 273, C30–C36.PubMedGoogle Scholar
  26. 26.
    Liu, M., Skinner, S. J., Xu, J., Han, R. N., Tanswell, A. K., and Post, M. (1992) Stimulation of fetal rat lung cell proliferation in vitro by mechanical stretch. Am. J. Physiol. 263, L376–L383.PubMedGoogle Scholar
  27. 27.
    Xu, J., Liu, M., Liu, J., Caniggia, I., and Post, M. (1996) Mechanical strain induces constitutive and regulated secretion of glycosaminoglycans and proteoglycans in fetal lung cells. J. Cell Sci. 109, 1605–1613.PubMedGoogle Scholar
  28. 28.
    Centra, M., Ratych, R. E., Cao, G. L., Li, J., Williams, E., Taylor, R. M., et al. (1992) Culture of bovine pulmonary artery endothelial cells on Gelfoam blocks. FASEB J. 6, 3117–3121.PubMedGoogle Scholar
  29. 29.
    Liu, M., Xu, J., Souza, P., Tanswell, B., Tanswell, A. K., and Post M. (1995) The effect of mechanical strain on fetal rat lung cell proliferation: comparison of two- and three-dimensional culture systems. In Vitro Cell. Dev. Biol. Animal 31, 858–866.CrossRefGoogle Scholar
  30. 30.
    Wu, Q. and Chen, Q. (2000) Mechanoregulation of chondrocyte proliferation, maturation and hypertrophy: ion-channel dependent transduction of matrix deformation signals. Exp. Cell Res. 256, 383–391.PubMedCrossRefGoogle Scholar
  31. 31.
    Tavernarakis, N. and Driscoll, M. (1997) Molecular modeling of mechanotransduction in the nematode Caenorhabditis elegans. Annu. Rev. Physiol. 59, 659–689.PubMedCrossRefGoogle Scholar
  32. 32.
    Hauser, N., Paulsson, M., Heinegard, D., and Morgelin, M. (1996) Interaction of cartilage matrix protein with aggrecanincreased covalent cross-linking with tissue maturation. J. Biol. Chem. 271, 32247–32252.PubMedCrossRefGoogle Scholar
  33. 33.
    Paulsson, M. and Heinegard, D. (1979) Matrix proteins bound to associatively prepared proteoglycans from bovine cartilage. Biochem. J. 183, 539–545.PubMedGoogle Scholar
  34. 34.
    Ando, J., Ohtsuka, A., Korenaga, R., Kawamura, T., and Kamiya, A. (1993) Wall shear stress rather than shear rate regulated cytoplasmic Ca++ responses to flow in vascular endothelial cells. Biochem. Biophys. Res. Commun. 190, 716–723.PubMedCrossRefGoogle Scholar
  35. 35.
    Beit-Or, A., Nevo, Z., Kalina, M., and Eilam, Y. (1990) Decrease in the basal levels of cytosolic free calcium in chondrocvtes during aging in culture: possible role as differentiation-signal. J. Cell. Physiol. 144, 197–203.PubMedCrossRefGoogle Scholar
  36. 36.
    Eilam, Y., Beit-Or, A., and Nevo, Z. (1985) Decrease in cytosolic free Ca2+ and enhanced proteoglycan synthesis induced by cartilage derived growth factors in cultured chondrocytes. Biochem. Biophvs. Res. Commun. 132, 770–779.CrossRefGoogle Scholar
  37. 37.
    Hung, C. T., Pollack, S. R., Reilly, T. M., and Brighton, C. T. (1995) Real-time calcium response of cultured bone cells to fluid flow. Clin. Orthop. Rel. Res. 313, 256–269.Google Scholar
  38. 38.
    Reich, K. M. and Frangos, J. A. (1991) Effect of flow on prostaglandin E2 and inositol trisphosphate levels in osetoblasts. Am. J. Physiol. 261, C428–C432.PubMedGoogle Scholar
  39. 39.
    Shyy, J. Y. and Chien, S. (1997) Role of integrins in cellular responses to mechanical stress and adhesion. Curr. Opin. Cell Biol. 9, 707–713.PubMedCrossRefGoogle Scholar
  40. 40.
    MacKenna, D. A., Dolfi, F., Vuori, K., and Ruoslahti, E. (1998) Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J. Clin. Invest. 101, 301–310.PubMedCrossRefGoogle Scholar
  41. 41.
    Cobb, M. H. and Goldsmith, E. J. (1995) How MAP kinases are regulated. J. Biol. Chem. 270, 14843–14846.PubMedCrossRefGoogle Scholar
  42. 42.
    Kyriakis, J. M. and Avruch, J. (1996) Sounding the alarm: protein kinase cascades activated by stress and inflammation. J. Biol. Chem. 271, 24313–24316.PubMedCrossRefGoogle Scholar
  43. 43.
    Kummer, J. L., Rao, P. K., and Heidenreich, K. A. (1997) Apoptosis induced by withdrawal of trophic factors in mediated by p38 mitogen-activated protein kinase. J. Biol. Chem. 272, 20490–20494.PubMedCrossRefGoogle Scholar
  44. 44.
    Karin, M. (1996) The regulation of AP-1 activity by mitogen-activated protein kinases. Philos. Trans. Royal Soc. London 351, 127–134.CrossRefGoogle Scholar
  45. 45.
    Geng, Y., Valbracht, J., and Lotz, M. (1996) Selective activation of the mitogen-activated protein kinase subgroups c-Jun NH2 terminal kinase and p38 by IL-1 and TNF in human articular chondrocytes. J. Clin. Invest. 98, 2425–2430.PubMedCrossRefGoogle Scholar
  46. 46.
    Lo, Y. Y. C., Wong, J. M. S., and Cruz, T. F. (1996) Reactive oxygen species mediate cytokine activation of c-Jun NH2-terminal kinases. J. Biol. Chem. 271, 15703–15707.PubMedCrossRefGoogle Scholar
  47. 47.
    Vortkamp, A., Lee, K., Lanske, B., Segre, G. V., Kronenberg, H. M., and Tabin, C. J. (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein (see comments). Science 273, 613–622.PubMedCrossRefGoogle Scholar
  48. 48.
    Vortkamp, A., Pathi, S., Peretti, G. M., Caruso, E. M., Zaleske, D. J., and Tabin, C. J. (1998) Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech. Dev. 71, 65–76.PubMedCrossRefGoogle Scholar
  49. 49.
    Ferguson, C., Alpern, E., Miclau, T., and Helm, J. A. (1999) Does adult fracture repair recapitulate embryonic skeletal formation? Mech. Dev. 87, 57–66.PubMedCrossRefGoogle Scholar
  50. 50.
    St-Jacques, B., Hammerschmidt, M., and McMahon, A. P. (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation (published erratum appears in Genes Dey. 13, 2617,1999). Genes Dev. 13, 2072–2086.PubMedCrossRefGoogle Scholar
  51. 51.
    McMahon, A. P. (2000) More surprised in the Hedgehog signaling pathway. Cell 100, 185–188.PubMedCrossRefGoogle Scholar
  52. 52.
    Pathi, S., Rutenberg, J. B., Johnson, R. L., and Vortkamp, A. (1999) Interaction of Ihh and BMP Noggin signaling during cartilage differentiation. Dev. Biol. 209, 239–253.PubMedCrossRefGoogle Scholar
  53. 53.
    Zou, H., Wieser, R., Massague, J., and Niswander, L. (1997) Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev. 11, 2191–2203.PubMedCrossRefGoogle Scholar
  54. 54.
    Wu, Q., Zhang, Y., and Chen, Q. (2001) Indian hedgehog is an essential component of mechanotransduction complex to stimulate chondrocvte proliferation. J. Biol. Chem. 276, 35290–35296.PubMedCrossRefGoogle Scholar
  55. 55.
    Hogan, B. L.M. (1996) Bone Morphogenetic Proteins In Development. Curr. Opin. Genet. Des. 6, 432–438.CrossRefGoogle Scholar
  56. 56.
    Fietz, M. J., Concordet, J. P., Barbosa, R., Johnson, R., Krauss, S., McMahon, A. P., et al. (1994) The hedgehog gene family in Drosophila and vertebrate development. Development Suppl., 43–51.Google Scholar
  57. 57.
    Tanimoto, H., Itoh, S., ten Dijke, P., and Tabata, T. (2000) Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol. Cell. 5, 59–71.PubMedCrossRefGoogle Scholar
  58. 58.
    Brunet, L. J., McMahon, J. A., McMahon, A. P., and Harland, R. M. (1998) Noggin, cartilage morphogenesis, and joint formation is the mammalian skeleton (see comments). Science 280, 1455–1457.PubMedCrossRefGoogle Scholar
  59. 59.
    Sata, M., Ochi, T., Nakase, T., Hirota, S., Kitamura Y., Nomura, S., and Yasui, N. (1999) Mechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis. J. Bone Miner. Res. 14, 1084–1095.CrossRefGoogle Scholar
  60. 60.
    Suzuki, F. (1992) Effects of various growth factors on a chondrocyte differentiation model. Adv. Exp. Med. Biol. 324, 101–106.PubMedCrossRefGoogle Scholar
  61. 61.
    Enomotoiwamoto, M., Iwamoto, M., Mukudai, Y., Kawakami, Y., Nohno, T., Higuchi, Y., et al. (1998) Bone morphogenetic protein signaling is required for maintanance of differentiated phenotype, control of proliferation, and hypertrophy in chondrocytes. J. Cell Biol. 140, 409–418.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Qian Chen

There are no affiliations available

Personalised recommendations