Advertisement

Regulation of Chondrocyte Differentiation

  • Andreia M. Ionescu
  • M. Hicham Drissi
  • Regis J. O’Keefe
Chapter

Abstract

During the last decade, great progress has been made toward a better understanding of skeletal development, cartilage, and bone formation. In particular, many mechanisms underlying a variety of cellular and molecular processes that regulate growth and differentiation of chondrocytes, osteoblasts, and osteoclasts have been elucidated. This chapter will review some of the molecular and genetic pathways known to regulate cartilage development. Skeletal formation occurs through both endochondral and intramembraneous ossification. Flat bones and craniofacial bones are formed through intramembraneous ossification that relies on osteoblast differentiation directly from mesenchymal stem cells. The axial and appendicular skeleton form through endochondral ossification, which requires the formation of a cartilage intermediate that forms a template for osteoid deposition and bone formation. During endochondral bone formation, mesenchymal stem cells differentiate into both chondrocytes and osteoblasts. During development of the long bone, growth plates localize to either end of the skeletal element and the region of cartilage is surrounded by a perichondrium that is composed of undifferentiated mesenchymal cells. In the growth plates, chondrocytes undergo several stages of differentiation. One of the important transitions is from proliferation to hypertrophy, an event that precedes mineralization of the cartilage matrix (Fig. 1). Chondrocyte hypertrophy is characterized by profound physical and biochemical changes, including a 5- to 10fold increase in volume and expression of alkaline phosphatase, type X collagen, and MMP-1 3 (1,2). Type X collagen is a short-chain collagen found only in the hypertrophic zone of the growth plate. Although its exact function remains unclear, mutations in the colX gene have been found to cause Schmid metaphyseal chondrodysplasia (3), and transgenic mice with disruption in the colX gene exhibit a mild alteration of the growth plate architecture (4).

Keywords

Growth Plate cAMP Response Element Binding Endochondral Ossification Chondrocyte Differentiation PTHrP Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buckwalter, J. A., Mower, D., Ungar, R., Schaeffer, J., and Ginsberg, B. (1986) Morphometric analysis of chondrocyte hypertrophy. J. Bone Joint. Surg. Am. 68, 243–255.PubMedGoogle Scholar
  2. 2.
    Linsenmayer, T. F., Chen, Q. A., Gibney, E., Gordon, M. K., Marchant, J. K., Mayne, R., et al. (1991) Collagen types IX and X in the developing chick tibiotarsus: analyses of mRNAs and proteins. Development 111, 191–196.PubMedGoogle Scholar
  3. 3.
    Warman, M. L., Abbott, M., Apte, S. S., Hefferon, T., McIntosh, I., Cohn, D. H., et al. (1993) A type X collagen mutation causes Schmid metaphyseal chondrodysplasia. Nat. Genet. 5, 79–82.PubMedCrossRefGoogle Scholar
  4. 4.
    Gress, C. and Jacenko, O. (2000) Growth plate compressions and altered hematopoiesis in collagen X null mice. J. Cell. Biol. 149, 983–993.PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson, H. C., Hsu, H. H., Morris, D. C., Fedde, K. N., and Whyte, M. P. (1997) Matrix vesicles in osteomalacic hypophosphatasia bone contain apatite-like mineral crystals. Am. J. Pathol. 15, 1555–1561.Google Scholar
  6. 6.
    Erlebacher, A., Filvaroff, E. H., Gitelman, S. E., and Derynck, R. (1995) Toward a molecular understanding of skeletal development. Cell 80, 371–378.PubMedCrossRefGoogle Scholar
  7. 7.
    Baron, R. E. (1996) Anatomy and ultrastructure of the bone, in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. (Favus, M. J., ed.), Lippencott-Raven, New York, pp. 3–10.Google Scholar
  8. 8.
    Ingham, P. W. (1998) Transducing hedgehog: the story so far. EMBO J. 17, 3505–3511.PubMedCrossRefGoogle Scholar
  9. 9.
    Vortkamp, A., Lee, K., Lanske, B., Segre, G. V., Kronenberg, H. M., and Tabin, C. J. (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273, 613–622.PubMedCrossRefGoogle Scholar
  10. 10.
    St-Jacques, B., Hammerschmidt, M., and McMahon, A. P. (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocvtes and is essential for bone formation. Genes Dev. 13, 2072–2086.PubMedCrossRefGoogle Scholar
  11. 11.
    Weir, E. C., Philbrick, W. M., Amling, M., Neff, L. A., Baron, R., and Broadus, A. E. (1996) Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc. Natl. Acad. Sci. USA 93, 10240–10245.PubMedCrossRefGoogle Scholar
  12. 12.
    Schipani, E., Lanske, B., Hunzelman, J., Luz, A., Kovacs, C. S., Lee, K., et al. (1997) Targeted expression of con-stitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. Proc. Natl. Acad. Sci. USA 94, 13689–13694.PubMedCrossRefGoogle Scholar
  13. 13.
    Karaplis, A. C., Luz, A., Glowacki, J., Bronson, R. T., Tybulewicz, V. L., Kronenberg, H. M., et al. (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 8, 277–289.PubMedCrossRefGoogle Scholar
  14. 14.
    Lanske, B., Karaplis, A. C., Lee, K., Luz, A., Vortkamp, A., Pirro, A., et al. (1996) PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth (see comments). Science 273, 663–666.PubMedCrossRefGoogle Scholar
  15. 15.
    Alvarez, J., Sohn, P., Zeng, X., Doetschman, T., Robbins, D. J., and Serra, R. (2002) TGFβ2 mediates the effects of Hedgehog on hypertrophic differentiation and PTHrP expression. Development 129, 1913–1924.PubMedGoogle Scholar
  16. 16.
    Long, F. and Linsenmayer, T. F. (1998) Regulation of growth region cartilage proliferation and differentiation by perichondrium. Development 125, 1067–1073.PubMedGoogle Scholar
  17. 17.
    Serra, R., Karaplis, A., and Sohn, P. (1999) Parathyroid hormone-related peptide (PTHrP)-dependent and -independent effects of transforming growth factor beta (TGF-beta) on endochondral bone formation. J. Cell Biol. 145, 783–794.PubMedCrossRefGoogle Scholar
  18. 18.
    Pateder, D. B., Rosier, R. N., Schwarz, E. M., Reynolds, P. R., Puzas, J. E., D’Souza, M., et al. (2000) PTHrP expression in chondrocytes, regulation by TGF-beta, and interactions between epiphyseal and growth plate chondrocytes. Exp. Cell Res. 256, 555–562.PubMedCrossRefGoogle Scholar
  19. 19.
    Pateder, D., Ferguson, C., Ionescu, A., Schwarz, E., Rosier, R., Puzas, J., et al. (2001) PTHrP expression in chick sternal chondrocytes is regulated by TGF-beta through Smad-mediated signaling. J. Cell. Physiol. 188, 343–351.PubMedCrossRefGoogle Scholar
  20. 20.
    Serra, R., Johnson, M., Filvaroff, E., LaBorde, J., Sheehan, D., Derynck, R., et al. (1997) Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J. Cell Biol. 139, 541–552.PubMedCrossRefGoogle Scholar
  21. 21.
    Iwasaki, M., Le, A., and Helms, J. A. (1997) Expression of Indian Hedgehog, bone morphogenetic protein 6 and gli during skeletal morphogenesis. Mech. Dev. 69, 197–202.PubMedCrossRefGoogle Scholar
  22. 22.
    O’Keefe, R. J., Schwarz, E. M., Ionescu, A. M., Zuscik, M. J., Zhang, X., Puzas, J. E., et al. (2003) TGF-β3 and chondrocyte differentiation. Mol. Biol. Orthopaed. Section VI, pp. 289–301, edited by C. H. Evans and R. N. Rosier.Google Scholar
  23. 23.
    D’Angelo, M., Billings, P. C., Pacifici, M., Leboy, P. S., and Kirsch, T. (2001) Authentic matrix vesicles contain active metalloproteases (MMP) A role for matriz vesicle-associated MMP-13 in activation of transforming growth factor beta. J. Biol. Chem. 276, 11347–11353.PubMedCrossRefGoogle Scholar
  24. 24.
    Bonewald, L. F., Oreffo, R. O., Lee, C. H., Park-Snyder, S., Twardzik, D., and Mundy, G. R. (1997) Effects of retinol on activation of latent transforming growth factor beta by isolated chondrocytes. Endocrinology 138, 657–666.PubMedCrossRefGoogle Scholar
  25. 25.
    Yang, X., Chen, L., Xu, X., Li, C., Huang, C., and Deng, C. (2001) TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J. Cell Biol. 153, 35–46.PubMedCrossRefGoogle Scholar
  26. 26.
    Zou, H., Wieser, R., Massague, J., and Niswander, L. (1997) Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev. 11, 2191–2203.PubMedCrossRefGoogle Scholar
  27. 27.
    Enomoto-Iwamoto, M., Iwamoto, M., Mukudai, Y., Kawakami, Y., Nohno, T., Higuchi, Y., et al. (1998) Bone morphogenetic signaling is required for maintenance of differentiated phenotype, control of proliferation, and hypertrophy in chondrocytes. J. Cell Biol. 140, 409–418.PubMedCrossRefGoogle Scholar
  28. 28.
    Lyons, K., Hogan, B., and Robertson, E. (1995) Colocalization of BMP7 and BMP2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech. Dev. 50, 71–73.PubMedCrossRefGoogle Scholar
  29. 29.
    Asahina, I., Sampath, T. K., and Hauschka, P. V. (1996) Human osteogenic protein-1 induces chondroblastic, osteoblastic. and/or adiDocvtic differentiation of clonal murine target cells. Exp. Cell Res. 222, 38–47.PubMedCrossRefGoogle Scholar
  30. 30.
    Duprez, D. M., Coltey, M., Amthor, H., Brickell, P. M., and Tickle, C. (1996) Bone morphogenetic protein-2 (BMP-2) inhibits muscle development and promotes cartilage formation in chick limb bud cultures. Dev. Biol. 174, 448–452.PubMedCrossRefGoogle Scholar
  31. 31.
    Pathi, S., Rutenberg, J., Johnson, R., and Vortkamp, A. (1999) Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation. Dev. Biol. 209, 239–253.PubMedCrossRefGoogle Scholar
  32. 32.
    Grimsrud, C. D., Romano, P. R., D’Souza, M., Puzas, J. E., Reynolds, P. R., Rosier, R. N., and O’Keefe, R. J. (1999) BMP-6 is an autocrine stimulator of chondrocyte differentiation. J. Bone Miner. Res. 14, 475–482.PubMedCrossRefGoogle Scholar
  33. 33.
    Luca, F. D., Barnes, K. M., Uyeda, J. A., De-Levi, S., Abad, V., Palese, T., et al. (2001) Regulation of growth plate chondrogenesis by bone morphogenetic protein-2. Endocrinology 142, 430–436.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang, D., Schwarz, E. M., Puzas, J. E., Zuscik, M. J., Rosier, R. N., and O’Keefe, R. J. (2003) ALK2 functions as a BMP type I receptor and induces Indian Hedgehog in chondrocytes during skeletal development. J. Bone Miner. Res. 18, 1593–1604.PubMedCrossRefGoogle Scholar
  35. 35.
    Ionescu, A. M., Schwarz, E. M., Vinson, C., Puzas, J. E., Rosier, R., Reynolds, P. R et al. (2001) PTHrP modulates chondrocyte differentiation through AP-1 and CREB signaling. J. Biol. Chem. 276, 11639–11647.PubMedCrossRefGoogle Scholar
  36. 36.
    Ionescu, A. M., Schwarz, E. M., Zuscik, M. J., Drissi, H., Puzas, J. E., Rosier, R. N., et al. (2003) ATF-2 cooperates with Smad3 to mediate TGF-β3 effects on chondrocvte maturation. Exp. Cell Res. 288, 198–207.PubMedCrossRefGoogle Scholar
  37. 37.
    Beier, F., Lee, R. J., Taylor, A. C., Pestell, R. G., and LuValle, P. (1999) Identification of the cyclin D1 gene as a target of activating transcription factor 2 in chondrocytes. Proc. Natl. Acad. Sci. USA 96, 1433–1438.PubMedCrossRefGoogle Scholar
  38. 38.
    Beier, F., Taylor, A., and LuValle, P. (2000) Activating transcription factor 2 is necessary for maximal activity and serum induction of the cyclin A promoter in chondrocytes. J. Biol. Chem. 275, 12948–12953.PubMedCrossRefGoogle Scholar
  39. 39.
    Zuscik, M. J., Puzas, J. E., Rosier, R. N., Gunter, K. K., and Gunter, T. E. (1994) Cyclic-AMP-dependent protein kinase activity is not required by parathyroid hormone to stimulate phosphoinositide signaling in chondrocytes but is required to transduce the hormone’s proliferative effect. Arch. Biochem. Biophys. 315, 352–361.PubMedCrossRefGoogle Scholar
  40. 40.
    Zuscik, M. J., Gunter, T. E., Rosier, R. N., Gunter, K. K., and Puzas, J. E. (1994) Activation of phosphoinositide metabolism by parathyroid hormone in growth plate chondrocytes. Cell Calcium 16, 112–122.PubMedCrossRefGoogle Scholar
  41. 41.
    Abou-Samra, A. B., Juppner, H., Force, T., Freeman, M. W., Kong, X. F., Schipani, E., et al. (1992) Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol triphosphates and increases intracellular free calcium. Proc. Natl. Acad. Sci. USA 89, 2732–2736.PubMedCrossRefGoogle Scholar
  42. 42.
    Montminy, M. (1997) Transcriptional regulation by cyclic AMP. Annu. Rev. Biochem. 66, 807–822.PubMedCrossRefGoogle Scholar
  43. 43.
    Cesare, D. D., and Sassone-Corsi, P. (2000) Transcriptional regulation by cyclic AMP-responsive factors. Prog. Nucleic Acid Res. Mol. Biol. 64, 343–369.PubMedCrossRefGoogle Scholar
  44. 44.
    Rudolph, D., Tafuri, A., Gass, P., Hammerling, G. J., Arnold, B., and Schutz, G. (1998) Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc. Natl. Acad. Sci. USA 95, 4481–4486.PubMedCrossRefGoogle Scholar
  45. 45.
    Ahn, S., Olive, M., Aggarwal, S., Krylov, D., Ginty, D. D., and Vinson, C. (1998) A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol. Cell Biol. 18, 967–977.PubMedGoogle Scholar
  46. 46.
    Long, F., Schipani, E., Asahara, H., Kronenberg, H., and Montminy, M. (2001) The CREB family of activators is required for endochondral bone development. Development 128, 541–550.PubMedGoogle Scholar
  47. 47.
    Amizuka, N., Warshawsky, H., Henderson, J. E., Goltzman, D., and Karaplis, A. C. (1994) Parathyroid hormonerelated peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J. Cell Biol. 126, 1611–1623.PubMedCrossRefGoogle Scholar
  48. 48.
    Chung, U., Wei, W., Schipani, E., Hunzelman, J., Weinstein, L., and Kronenberg, H. (2000) In vivo function of stimulatory G protein (Gs) in the growth plate. J. Bone Miner. Res. 15, 5175.Google Scholar
  49. 49.
    Wrana, J., Attisano, L., Carcamo, J., Zentella, A., Doody, J., Laiho, M., Wang, X., and Massague, J. (1992) TGF beta signals through a heteromeric protein kinase receptor complex. Cell 71, 1003–1014.PubMedCrossRefGoogle Scholar
  50. 50.
    Mulder, K. (2000) Role of Ras and Mapks in TGFbeta signaling. Cytokine & Growth Factor Rev. 11, 23–35.CrossRefGoogle Scholar
  51. 51.
    Ferguson, C., Schwarz, E., Reynolds, P., Puzas, J., Rosier, R., and O’Keefe, R. (2000) Smad2 and 3 mediate transforming growth factor-betal -induced inhibition of chondrocyte maturation. Endocrinology 141, 4728–4735.PubMedCrossRefGoogle Scholar
  52. 52.
    Xing, J., Ginty, D., and Greenberg, M. (1996) Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273, 959–963.PubMedCrossRefGoogle Scholar
  53. 53.
    Jiang, Y., Chen, C., Li, Z., Guo, W., Gegner, J., Lin, S., and Han, J. (1996) Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J. Biol. Chem. 271, 17920–17926.PubMedCrossRefGoogle Scholar
  54. 54.
    Derijard, B., Hibi, M., Wu, I., Barrett, T., Su, B., Deng, T., Karin, M., and Davis, R. (1994) JNK1: a protein kinase stimulated by UV light and HaRas that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1037.PubMedCrossRefGoogle Scholar
  55. 55.
    Keeton, M. R., Curriden, S. A., Zonneveld, A. J. V., and Loskutoff, D. J. (1991) Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta. J. Biol. Chem. 266, 23048–23052.PubMedGoogle Scholar
  56. 56.
    Campbell, C. E., Flenniken, A. M., Skup, D., and Williams, B. R. G. (1991) Identification of a serum- and phorbol ester-responsive element in the murine tissue inhibitor of metalloproteinase gene. J. Biol. Chem. 266, 7199–7206.PubMedGoogle Scholar
  57. 57.
    Kim, S. J., Angel, P., Lafyatis, R., Hattori, K., Kim, K. Y., Sporn, M. B., et al. (1990) Autoinduction of transforming growth factor beta 1 is mediated by the AP-1 complex. Mol. Cellular Biol. 10, 1492–1497.Google Scholar
  58. 58.
    Angel, P., Hattori, K., Smeal, T., and Karin, M. (1991) The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell 55, 875–885.CrossRefGoogle Scholar
  59. 59.
    Chung, K. Y., Agarwal, A., Uitto, J., and Mauviel, A. (1996) An AP-1 binding sequence is essential for regulation of the human a2(I) collagen (COL1A2) promoter activity by transforming growth factor-β3. J. Biol. Chem. 271, 3272–3278.PubMedCrossRefGoogle Scholar
  60. 60.
    Pesce, C., Nogues, G., Alonso, C., Baralle, F., and Kornblihtt, A. (1999) Interaction between the (-170) CRE and the (-150) CCAAT box is necessary for efficient activation of the fibronectin gene promoter by cAMP and ATF-2. FEBS Lett. 457, 445–451.PubMedCrossRefGoogle Scholar
  61. 61.
    Reimold, A. M., Grusby, M. J., Kosaras, B., Fries, J. W., Mori, R., Maniwa, S., et al. (1996) Chondrodysplasia and neuroloeical abnormalities in ATF-2-deficient mice. Nature 379, 262–265.PubMedCrossRefGoogle Scholar
  62. 62.
    Maekawa, T., Bernier, F., Sato, M., Nomura, S., Singh, M., Inoue, Y., et al. (1999) Mouse ATF-2 null mutants display features of a severe type of Meconium Aspiration Syndrome. J. Biol. Chem. 274, 17813–17819.PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang, D., Ferguson, C. M., O’Keefe, R. J., Puzas, J. E., Rosier, R. N., and Reynolds, P. R. (2002) A role for the BMP antagonist chordin in endochondral ossification. J. Bone Miner. Res. 17, 293–300.PubMedCrossRefGoogle Scholar
  64. 64.
    Imamura, T., Takase, M., Nishihara, A., Oeda, E., Hanai, J., Kawabata, M., and Miyazono, K. (1997) Smad6 inhibits signalling by the TGF-beta superfamily. Nature 389, 622–626.PubMedCrossRefGoogle Scholar
  65. 65.
    Lebrun, J. J., Takabe, K., Chen, Y., and Vale, W. (1999) Roles of pathway-specific and inhibitory Smads in activin receptor signaling. Mol. Endocrinol. 13, 15–23.PubMedCrossRefGoogle Scholar
  66. 66.
    Hata, A., Lagna, G., Massague, J., and Hemmati-Brivanlou, A. (1998) Smad6 inhibits BMP/Smadl signaling by specifically competing with the Smad4 tumor suppressor. Genes Dey. 12, 186–197.CrossRefGoogle Scholar
  67. 67.
    Ishida, W., Hamamoto, T., Kusanagi, K., Yagi, K., Kawabata, M., Takehara, K., et al. (2000) Smad6 is a Smad1/5induced smad inhibitor. Characterization of bone morphogenetic protein-responsive element in the mouse Smad6 promoter. J. Biol. Chem. 275, 6075–6079.PubMedCrossRefGoogle Scholar
  68. 68.
    Li, X., Ionescu, A. M., Schwarz, E. M., Zhang, X., Drissi, H., Puzas, J. E., et al. (2003) Smad6 is induced by BMP-2 and modulates chondrocyte differentiation. J. Orthopaed. Res. 21, 908–913.CrossRefGoogle Scholar
  69. 69.
    Zhu, H., Havsak, P., Abdollah, S., Wrana, J. L., and Thomsen, G. H. (1999) A Smad ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687–693.PubMedCrossRefGoogle Scholar
  70. 70.
    Ionescu, A. M., Drissi, A. M., Schwarz, E. M., Kato, M., Puzas, J. E., McCance, D. J., Rosier, R. N., Zuscik, M. J., and O’Keefe, R. J. (2003) CREB cooperates with BMP-stimulated Smad signaling to enhance transcription of the Smad6 promoter. J. Cell. Physiol., in press.Google Scholar
  71. 71.
    Yakymovych, I., Ten Dijke, P., Heldin, C. H., and Souchelnytskyi, S. (2001) Regulation of Smad signaling by protein kinase C. FASEB J. 15, 553–555.PubMedGoogle Scholar
  72. 72.
    Kretzschmar, M., Doody, J., and Massague, J. (1997) Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad 1 . Nature 389, 618–622.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Andreia M. Ionescu
  • M. Hicham Drissi
  • Regis J. O’Keefe

There are no affiliations available

Personalised recommendations