The Skeleton pp 385-413 | Cite as

Experimental Skeletal Dysmorphology

Risk Assessment Issues
  • Rochelle W. Tyl
  • Melissa C. Marr
  • Christina B. Myers


The two components of formal risk assessment are hazard identification and risk assessment. Hazard can be defined as the intrinsic capacity of an agent to do harm. Risk can be defined as the assessment of whether an agent will produce adverse outcomes to the species of interest under relevant exposure conditions. The critical aspect of risk is relevant exposure, by a relevant route, at relevant doses or concentrations, during sensitive life stages (i.e., timing of exposure), and for appropriate durations. Laboratory animal studies are critical for the risk component. The doses for the animal studies at which effects are observed or not observed are then compared with the exposures from all sources (e.g., feed, water, air) as measured, calculated, or modeled of the species of interest, to calculate a margin of exposure (MOE). The larger the MOE, the less concern. The species of interest is usually, but not always, humans (e.g., increasing attention to environmental risk assessments).


Developmental Toxicity Skeletal Malformation Skeletal Variation Fetal Body Weight Historical Incidence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    National Research Council (NRC) (1983) Committee on the Institutional Means for the Assessment of Risks to Public Health. Risk Assessment in the Federal Government: Managing the Process. Commission on Life Sciences, NRC, National Academy Press, Washington, DC, pp. 17–83.Google Scholar
  2. 2.
    National Research Council (NRC) (2000) Scientific Frontiers in Developmental Toxicity and Risk Assessment. Committee on Developmental Toxicology, Board on Environmental Studies and Toxicology, NRC, National Academy Press, Washington, DC, p. 27.Google Scholar
  3. 3.
    U.S. Environmental Protection Agency (1982) OPP Guideline 83–3, Teratogenicity Study, Pesticide Assessment Guidelines, Subdivision F, Hazard Evaluation, Human and Domestic Animals, Office of Pesticides and Toxic Substances, Washington, DC.Google Scholar
  4. 4.
    U.S. Food and Drug Administration (1982) Toxicological Principles for the Safety Assessment of Direct Food Additives and Color Additives Used in Food (“Redbook”), Appendix II, Guidelines for teratogenicity testing in rat, hamster, mouse, and rabbit, US FDA, Washington, DC, p. 108.Google Scholar
  5. 5.
    Organisation for Economic Cooperation and Development (OECD) (1983) Guidelines for Testing of Chemicals, No. 414. Teratogenicity [C(83)44 (final)].Google Scholar
  6. 6..
    U.S. Food and Drug Administration (FDA) (2000) “Redbook 2000.” Toxicological Principles for the Safety of Food Ingredients. Center for Food Safety and Applied Nutrition, Office of Premarket Approval (CFSAN, OPA), July 20, 2000.Google Scholar
  7. 7.
    Dawson, A. B. (1926) A note on the staining of the skeleton of cleared specimens with alizarin red S. Stain Tech. 1, 123–124.Google Scholar
  8. 8.
    Crary, D. D. (1962) Modified benzyl alcohol clearing of alizarin-stained specimens without loss of flexibility. Stain Tech. 37, 124–125.Google Scholar
  9. 9.
    Peltzer, M. A. and Schardein, J. L. (1966) A convenient method for processing fetuses for skeletal staining. Stain Tech. 41, 300–302.Google Scholar
  10. 10.
    Barrow, M. V. and Taylor, W. J. (1969) A rapid method for detecting malformations in rat fetuses. J. Morphol. 127, 291–306.PubMedCrossRefGoogle Scholar
  11. 11.
    US Environmental Protection Agency (EPA) (1998) Office of Prevention, Pesticides and Toxic Substances (OPPTS), Health Effects Testing Guidelines, OPPTS 870.3700, Prenatal Developmental Toxicity Study (Final Guideline, August, 1998).Google Scholar
  12. 12.
    Organisation for Economic Cooperation and Development (OECD) (2001) OECD Guideline for the Testing of Chemicals Proposal for Updating Guideline 414: Prenatal Developmental Toxicity Study. Adopted January 22, 2001.Google Scholar
  13. 13.
    Monie, I. W. (1965) Dissection Procedures for Rat Fetuses Permitting Alizarin Red Staining of Skeleton and Histological Study of Viscera. Supplement to Teratology Workshop Manual, pp. 163–173.Google Scholar
  14. 14.
    Inouye, M. (1976) Differential staining of cartilage and bone in fetal mouse skeleton by Alcian blue and alizarin red S. Congenit. Anomal. 16, 171–173.Google Scholar
  15. 15.
    Kimmel, C. A. and Trammel, C. A. (1981) A rapid procedure for routine double staining of cartilage and bone in fetal and adult animals. Stain Technol. 56, 271–273.PubMedGoogle Scholar
  16. 16.
    Fritz, H. and Ness, R. (1970). Ossification of rat and mouse skeletons in the perinatal period. Teratology 3, 331–337.PubMedCrossRefGoogle Scholar
  17. 17.
    Wickramarante, G. A. de S. (1988) The postnatal fate of supernumerary ribs in rat teratogenicity studies. J. Appl. Toxicol. 8, 91–94.CrossRefGoogle Scholar
  18. 18.
    Man, M. C., Price, C. J., Myers, C. B., and Morrissey, R. E. (1992) Developmental stages of the CD (Sprague-Dawley) rat skeleton after maternal exnosure to ethylene glycol. Teratologv 46. 169–181.Google Scholar
  19. 19.
    Thiel, R., Dillman, I., Schimmel, A., Bochert, G., Chahoud, I., and Neubert, D. (1989) Aspects of designing postnatal studies. III. Persistence of skeletal anomalies induced prenatally (abstract). Teratology 40, 300.Google Scholar
  20. 20.
    U.S. Food and Drug Administration (1994) International Conference on Harmonization (ICH), Guideline for detection of toxicity to reproduction for medicinal products, Section 4.1.3, study for effects on embryo-fetal development. Fed. Regist. 59(183). 48749, Sentember 22, 1994.Google Scholar
  21. 21..
    U.S. Environmental Protection Agency (EPA) (1997) 40CFR Part 799, Toxic Substances Control Act Test Guidelines; Final Rule. Section 799.9370, TSCA prenatal developmental toxicity. Fed. Regist. 62(158), 43832–43834 (Friday, August 15, 1997).Google Scholar
  22. 22.
    Marr, M. C., Myers, C. B., Price, C. J., Tyl, R. W., and Jahnke, G. D. (1999) Comparison of maternal and developmental endpoints for control CD® rats dosed from implantation through organogenesis or through the end of gestation. Teratology 59, 413.Google Scholar
  23. 23.
    Kimmel, G. L., Kimmel, C. A., and Francis, E. Z. (1987) Evaluation of maternal and developmental toxicity. Teratogen. Carcinogen. Mutagen. 7, 203–338.CrossRefGoogle Scholar
  24. 24.
    Woo, D. C. and Hoar, R. M. (1972) “Apparent hydronephrosis” as a normal aspect of renal development in late gestation of rats: the effect of methyl salicylate. Teratology 6, 191–196.PubMedCrossRefGoogle Scholar
  25. 25.
    Tyl, R. W. and Marr, M. C. (1996) Developmental toxicity testing methodology, in Handbook of Developmental Toxicology, Chapter 7 (Hood, R. D., ed.), CRC Press, Boca Raton, FL, pp. 175–225.Google Scholar
  26. 26..
    Tyl, R. W. and Marr, M. C. (2003). Developmental toxicity testing methodology, in Handbook of Developmental Toxicology, Chapter 7, Second Edition (Hood, R. D., ed.), CRC Press, Boca Raton, FL, in press.Google Scholar
  27. 27.
    Rodwell, D. E. (2000) The effect of cesarean section on fetal body weights in rats on developmental toxicity studies (abstract no. 1393). Toxicologist 54, p. 297.Google Scholar
  28. 28.
    Spark, C. and Dawson, A. B. (1928) The order and time of appearance of centers of ossification in the fore- and hindlimbs of the albino rat, with special reference to the possible influence of the sex factor. Am. J. Anat. 41, 411–445.CrossRefGoogle Scholar
  29. 29.
    Strong, R. M. (1928) The order, time and rate of ossification of the albino rat (mus norvegicus albinus) skeleton. Am. J. Anat. 36, 313–355.CrossRefGoogle Scholar
  30. 30.
    Walker, D. G. and Wirtschafter, Z. T. (1957) The Genesis of the Rat Skeleton. Charles C. Thomas, Springfield, IL.Google Scholar
  31. 31.
    Yasuda, M. and Yuki, T. (1996) Color Atlas of Fetal. Skeleton of the Mouse, Rat, and Rabbit. Ace Art Co., Osaka, Japan.Google Scholar
  32. 32.
    Hartman, H. A. (1974) The fetus in experimental teratology, in The Biology of the Laboratory Rabbit (Weisbroth, S. H., Flatt, R. E., and Kraus, A. L., eds.), Academic Press, New York, pp. 92–153.Google Scholar
  33. 33.
    Fritz, H. (1974) Prenatal ossification in rabbits as indicative of fetal maturity. Teratology 11, 313–320.CrossRefGoogle Scholar
  34. 34.
    Beck, S. L. (1983) Assessment of adult skeletons to detect prenatal exposure to acetazolamide in mice. Teratology 28.45–66.PubMedCrossRefGoogle Scholar
  35. 35.
    Aliverti, V., Bonanomi, L., Giavini, E., Leone, V. G., and Mariani, L. (1979) The extent of fetal ossification as an index of delayed development in teratogenic studies on the rat. Teratology 20, 237–242.Google Scholar
  36. 36.
    Banerjee, B. N. and Durloo, R. S. (1973) Incidence of teratological anomalies in control Charles River CD strain rats. Toxicology 1, 151–154.PubMedCrossRefGoogle Scholar
  37. 37.
    Perraud, J. (1976) Levels of spontaneous malformations in the CD rat and the CD-1 mouse. Lab. Anim. Sci. 26, 293–300.PubMedGoogle Scholar
  38. 38.
    Fritz, H., Grauwiler, J., and Himmler, H. (1978) Collection of control data from teratological experiments in mice, rats, and rabbits. Arzneim-Forsch/Drug Res. 28, 1410–1413.Google Scholar
  39. 39.
    Charles River Laboratories (1988) Embryo and Fetal Developmental Toxicity (Teratology) Control Data in the Charles River CrI:CD® BR Rat. Charles River Laboratories, Inc., Wilmington, MA.Google Scholar
  40. 40.
    Midwest Teratology Association (1992). Historical Control Project 1988–1992: Skeletal Findings on SpragueDawley CD ® Rats and New Zealand White Rabbits . Parke-Davis Pharmaceutical Research, Ann Arbor, MI.Google Scholar
  41. 41..
    Woo, D. C. and Hoar, R. M. (1979) Reproductive performance and spontaneous malformations in control Charles River CD rats: a joint study by MARTA (abstract). Teratology 19, MA.Google Scholar
  42. 42.
    Palmer, A. K. (1972) Sporadic malformations in laboratory animals and their influence in drug testing, in Drugs and Fetal Development. Adv. Biol. Med. (Klingsberg, M. A., ed.), 27, 45–60.CrossRefGoogle Scholar
  43. 43.
    Cozens, D. D. (1965) Abnormalities of the external form and of the skeleton in the New Zealand white rabbit. Food Cosmet. Toxicol. 3, 695–700.PubMedCrossRefGoogle Scholar
  44. 44.
    Stadler, J., Kessedjian, M. J., and Perraud, J. (1983) Use of the New Zealand white rabbit in teratology: incidence of spontaneous and drug-induced malformations. Food. Chem. Toxicol. 21, 631–636.PubMedCrossRefGoogle Scholar
  45. 45.
    Woo, D. C. and Hoar, R. M. (1982) Reproductive performance and spontaneous malformations in control New Zealand white rabbits: a joint study by MARTA (abstract). Teratology 25, 82A.Google Scholar
  46. 46.
    Chernoff, N., Rogers, J. M., Turner, C. I., and Francis, B. M. (1991) Significance of supernumerary ribs in rodent developmental toxicity studies: postnatal persistence in rats and mice. Fundam. Appl. Toxicol. 17, 448–453.PubMedCrossRefGoogle Scholar
  47. 47..
    Tyl, R. W., Chernoff, N., Myers, C. B., Narotsky, M. G., and Rogers, J. M. (2003) Abnormal patterning, in Interpretation of Skeletal Variations for Human Health Risk Assessment, ILSI Press, Washington, DC, in press.Google Scholar
  48. 48.
    Chernoff, N. (1990) Studies on maternal toxicity, formation of supernumerary ribs, and evidence for embryonic repair of xenobiotic-induced cellular injury (Abstract F5). Teratology 42, 18A.CrossRefGoogle Scholar
  49. 49.
    Kimmel, C. A. and Wilson, J. G. (1973) Skeletal deviations in rats: malformations or variations. Teratology 8, 309–316.PubMedCrossRefGoogle Scholar
  50. 50.
    Tyl, R. W., Price, C. J., Marr, M. C., Myers, C. B., Seely, J. C., Heindel, J. J., and Schwetz, B. A. (1993) Developmental toxicity evaluation of ethylene glycol by gavage in New Zealand White rabbits. Fundam. Appl. Toxicol. 20, 402–412.PubMedCrossRefGoogle Scholar
  51. 51.
    Tyl, R. W., Ballantyne, B., Fisher, L. C., Fait, D. L., Savine, T. A., Dodd, D. E., et al. (1995) Evaluation of the developmental toxicity of ethylene glycol aerosol in the CD rat and CD-1 mouse by whole-body exposure. Fundam. Appl. Toxicol. 24, 57–75.PubMedCrossRefGoogle Scholar
  52. 52.
    Tyl, R. W., Ballantyne, B., Fisher, L. C., Fait, D. L., Dodd, D.E., Klonne, D. R., et al. (1995) Evaluation of the developmental toxicity of ethylene glycol aerosol in CD-1 mice by noseonly exposure. Fundam. Appl. Toxicol. 27, 49–62.PubMedCrossRefGoogle Scholar
  53. 53.
    Tyl, R. W., Fisher, L. C., Kubena, M. F., Vrbanic, M. A., and Losco, P. E. (1995). Assessment of the developmental toxicity of ethylene glycol applied cutaneously to CD-1 mice. Fundam. Appl. Toxicol. 27, 155–166.PubMedCrossRefGoogle Scholar
  54. 54.
    Price, C. J., Kimmel, C. A., Tyl, R. W., and Marr, M. C. (1985). The developmental toxicity of ethylene glycol in rats and mice. Toxicol. Appl. Pharmacol. 81, 113–127.PubMedCrossRefGoogle Scholar
  55. 55.
    Kessel, M. (1992) Respecification of vertebral identities by retinoic acid. Development 115, 487–501.PubMedGoogle Scholar
  56. 56.
    Narotsky, M. G., Francis, E. Z., and Kavlock, R. J. (1994) Developmental toxicity and structure-activity relationships of aliphatic acids, including dose-response assessment of valproic acid in mice and rats. Fundam. Appl. Toxicol. 22, 251–265.PubMedCrossRefGoogle Scholar
  57. 57.
    Kimmel, C. A., Cuff, J. M., Kimmel, G. L., Heredia, D. J., Tudor, N., Silverman, P. M., et al. (1993) Skeletal development following heat exposure in the rat. Teratology 47, 229–242.PubMedCrossRefGoogle Scholar
  58. 58.
    Hayes, W. C., Cobel-Geard, S. R., Hanley, T. R., Murray, J. S., Freshour, N. L., Rao, K. S., et al. (1981) Teratogenic effects of vitamin A palmitate in Fischer 344 rats. Drug Chem. Toxicol. 4, 283–295.PubMedCrossRefGoogle Scholar
  59. 59.
    Nelson, B. K., Brightwell, W. S., MacKenzie, D. R., Khan, A., Burg, J. R., Weigel, W. W., et al. (1985) Teratologic assessment of methanol and ethanol at high inhalation levels in rats. Fundam. Appl. Toxicol. 5, 727–736.PubMedCrossRefGoogle Scholar
  60. 60.
    Rogers, J. M., Mole, M. L., Chernoff, N., Barbee, B. D., Turner, C. I., Lugsdon, T. R., et al. (1993) The developmental toxicity of inhaled methanol in the CD-1 mouse, with quantitative dose-response modeling for estimation of benchmark doses. Teratology 47, 175–188.PubMedCrossRefGoogle Scholar
  61. 61.
    Rogers, J. M., Francis, D. M., Barbee, B. D., and Chernoff, N. (1991) Developmental toxicity of bromoxynil in rats and mice. Fundam. Appl. Toxicol. 17, 442–447.PubMedCrossRefGoogle Scholar
  62. 62.
    Price, C. J., Marr, M. C., Myers, C. B., Seely, J. C., Heindel, J. J., and Schwetz, B. A. (1996) The developmental toxicity of boric acid in rabbits. Fundam. Appl. Toxicol. 34, 176–187.Google Scholar
  63. 63.
    Heindel, J. J., Price, C. J., Field, E. A., Marr, M. C., Myers, C. B., Morrissey, R. E., et al. (1992) Developmental toxicity of boric acid in mice and rats. Fundam. Appl. Toxicol. 18, 266–277.PubMedCrossRefGoogle Scholar
  64. 64.
    Heindel, J. J., Price, C. J., and Schwetz, B. A. (1994) The developmental toxicity of boric acid in mice, rats, and rabbits. Environ. Health Perspect. 102 (Suppl 7), 107–1121.Google Scholar
  65. 65.
    Price, C. J., Strong, P. L., Marr, M. C., Myers, C. B., and Murray, F. J. (1996) Developmental NOAEL and postnatal recovery in rats fed boric acid during gestation. Fundam. Appl. Toxicol. 32, 179–193.PubMedCrossRefGoogle Scholar
  66. 66.
    Price, C. J., Strong, P. L., Murray, F. J., and Goldberg, M. M. (1997) Blood boron concentrations in pregnant rats fed boric acid throughout gestation. Renrod. Toxicol. 11. 833–842.CrossRefGoogle Scholar
  67. 67.
    Price, C. J., Strong, P. L., Murray, F. J., and Goldberg, M. M. (1998) Developmental effects of boric acid in rats related to maternal blood boron concentrations. Biol. Trace Element Res. 66, 359–372.CrossRefGoogle Scholar
  68. 68.
    Narotsky, M. G., Hamby, B. T., Mitchell, D. S., and Kavlock, R. J. (1995) Effects of boric acid on axial skeletal development in rats (Abstract No. P58). Teratology 51, 192.Google Scholar
  69. 69.
    Narotsky, M. G., Hamby, B. J., Best, D. S., and Kavlock, R. J. (1996) Effects of single-day boric acid treatment on axial skeletal development in rats (Abstract No. 70). Teratology 53, 101.Google Scholar
  70. 70.
    Narotsky, M. G., Schmid, J. E., Andrews, J. E., and Kalock, R. J. (1998) Effects of boric acid on axial skeletal development in rats. Biol. Trace Element Res. 66, 373–394.CrossRefGoogle Scholar
  71. 71.
    Connelly, L. E. and Rogers, J. M. (1997) Methanol causes posteriorization of cervical vertebrae in mice. Teratology 55, 138–144.PubMedCrossRefGoogle Scholar
  72. 72.
    Kessel, M., Balling, R., and Gruss, P. (1990) Variations of cervical vertebrae after expression of a Hox-1.1 transgene in mice. Cell 61, 301–308.PubMedCrossRefGoogle Scholar
  73. 73.
    Charite, J. W., de Graaff, W., Shen, S., and Deschamps, J. (1994) Ectopic expression of Hoxb-8 causes duplication of the ZPA in the forelimb and homeotic transformation of axial structures. Cell 78, 589–601.PubMedCrossRefGoogle Scholar
  74. 74.
    Beyer, P. E. and Chernoff, N. (1986) The induction of supernumerary ribs in rodents: role of maternal stress. Teratog. Carcinog. Mutag. 6, 419–429.CrossRefGoogle Scholar
  75. 75.
    Daston, G. P. and Overmann, G. J. (1996) Lumbar ribs associated with posteriorization of Hoxa-10 expression in salicylate-treated mouse embryos (abstract). Teratology 53, 85.CrossRefGoogle Scholar
  76. 76.
    Anbazhagan, R. and Raman, V. (1997) Homeobox genes: molecular link between congenital anomalies and cancer. Eur. J. Cancer 33, 635–637.PubMedCrossRefGoogle Scholar
  77. 77.
    Jegalian, B. G. and DeRobertis, E. M. (1992) Homeotic transformations in the mouse induced by overexpression of a human Hox3.3 transgene. Cell 71, 901–910.PubMedCrossRefGoogle Scholar
  78. 78.
    Small, K. M. and Potter, S. S. (1993) Homeotic transformations and limb defects in Hox All mutant mice. Genes De. 7, 2318–2328.CrossRefGoogle Scholar
  79. 79.
    van der Lugt, N. M., Domen, J., Linders, K., van Roon, M., Robanus-Maandag, E., Riele, H., et al. (1994) Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes De. 8, 757–769.CrossRefGoogle Scholar
  80. 80.
    Chernoff, N., Kavlock, R. J., Beyer, P. E., and Miller, D. (1987) The potential relationship of maternal toxicity, general stress, and fetal outcome. Teratog. Carcinog. Mutagen. 7, 241–253.PubMedCrossRefGoogle Scholar
  81. 81.
    Chernoff, N., Miller, D. B., Rosen, M. B., and Mattscheck, C. L. (1988) Developmental effects of maternal stress in the CD-1 mouse induced by restraint on single days during the period of major organogenesis. Toxicology 51, 57–65.PubMedCrossRefGoogle Scholar
  82. 82.
    Pettersen, J. C., Koltis, G. G., and White, M. J. (1979) An examination of the spectrum of anatomic defects and variations found in eiaht cases of trisomv 13. Am. J. Med. Genet. 3, 183–210.PubMedCrossRefGoogle Scholar
  83. 83.
    Kjaer, I. and Fischer Hansen, B. (1997) Cervical ribs in fetuses with Ullrich-Turner syndrome. Am. J. Med. Genet. 71, 219–221.PubMedCrossRefGoogle Scholar
  84. 84.
    Kjaer, I., Keeling, J. W., and Fischer Hansen, B. (1997) Pattern of malformations in the axial skeleton in human trisomy 13 fetuses. Am. J. Med. Genet. 70, 421–426.PubMedCrossRefGoogle Scholar
  85. 85.
    Keeling, J. W., Hansen, B. F., and Kjaer, I. (1997) Pattern of malformations in the axial skeleton in human trisomy 21 fetuses. Am. J. Med. Genet. 68, 466–471.PubMedCrossRefGoogle Scholar
  86. 86.
    Kjaer, I., Keeling, J. W., and Hansen, B. F. (1996) Pattern of malformations in the axial skeleton in human trisomy 18 fetuses. Am. J. Med. Genet. 65, 332–336.PubMedCrossRefGoogle Scholar
  87. 87.
    Kjaer, I., Keeling, J. W., Smith, N. M., and Hansen, B. F. (1997) Pattern of malformations in the axial skeleton in human triploid fetuses. Am. J. Med. Genet. 72, 216–221.PubMedCrossRefGoogle Scholar
  88. 88.
    Kimmel, C. A. and Wilson, J. G. (1973) Skeletal deviations in rats: malformations or variations. Teratology 8, 309–316.PubMedCrossRefGoogle Scholar
  89. 89.
    Staples, R. E. (with concurrence of J. G. Wilson) (1975) Chapter 4. Definition of teratogenesis and teratogen, in Methods for Detection of Environmental Agents That Produce Congenital Defects (Shepard, T. H., Miller, J. R., and Marois, M, eds.), Proceedings of the Guadeloupe Meeting, Elsevier, New York, pp. 25–26.Google Scholar
  90. 90.
    Nishimura, M., Lizuka, M., Iwaki, S., and Kast, A. (1982) Repairability of drug-induced “wavy ribs” in rat offspring. Arzneim-Forsch./Drug Res. 32, 1518–1522.Google Scholar
  91. 91.
    Hayasaka, I., Tamaki, F., Uchiyama, K., Kato, Z., and Murakami, K. (1985) Azosemide-induced fetal wavy ribs and their disappearance after birth in rats. Cong. Anom. 25, 121–127.CrossRefGoogle Scholar
  92. 92.
    Kast, A. (1994) “Wavy Ribs.” A reversible pathologic finding in rat fetuses. Exp. Toxicol. Pathol. 46, 203–210.PubMedCrossRefGoogle Scholar
  93. 93.
    Sycamore, L. K. (1944) Common congenital anomalies of the bony thorax. Am. J. Radiol. 51, 593–599.Google Scholar
  94. 94.
    Bohutova, J., Kolar, J., Vitovec, J., and Vyhnanek, L. (1980) Accessory caudal axial and pelvic ribs. ROFO Fortschr Geb Rontgenstr Nuklearmed 133, 641–643.PubMedCrossRefGoogle Scholar
  95. 95.
    Ogilvie, M. D., Hilton, C. E., and Ogilvie, C. D. (1998) Lumbar anomalies in the Shanidar 3 Neandertal. J. Hum. Evol. 35, 597–610.PubMedCrossRefGoogle Scholar
  96. 96.
    Wilbur, A. K. (2000) Possible case of Rubinstein-Taybi syndrome in a prehistoric skeleton from west-central Illinois. Am. J. Med. Genet. 91, 56–61.PubMedCrossRefGoogle Scholar
  97. 97.
    Usher, B. M. and Christensen, M. N. (2000) A sequential developmental field defect of the vertebrae, ribs, and sternum, in a young woman of the 12th century AD. Am. J. Phys. Anthropol. 111, 355–367.PubMedCrossRefGoogle Scholar
  98. 98.
    Bagnall, K. M., Harris, P. F., and Jones, P. R. (1984) A radiographic study of variations of the human fetal spine. Anat. Rec. 208, 265–270.PubMedCrossRefGoogle Scholar
  99. 99.
    McNally, E., Sandin, B., and Wilkins, R. A. (1990) The ossification of the costal element of the seventh cervical vertebra with particular reference to cervical ribs. J. Anat. 170, 125–129.PubMedGoogle Scholar
  100. 100.
    Noback, C. R. and Robertson, G. G. (1951) Sequence and appearance of ossification centres in human skeletons during the first five prenatal months. Am. J. Anat. 89, 1–28.PubMedCrossRefGoogle Scholar
  101. 101.
    Henderson, M. S. (1914) Cervical rib. Report of thirty-one cases. Am. J. Orthop. Surg. 11, 408–430.Google Scholar
  102. 102.
    Schumacher, R., Mai, A., and Gutjahr, P. (1992) Association of rib anomalies and malignancy in childhood. Eur. J. Pediatr. 151, 432–434.PubMedCrossRefGoogle Scholar
  103. 103.
    Steiner, H. A. (1943) Roentgenologic manifestations and clinical symptoms of rib abnormalities, Radiology 40, 175–178.Google Scholar
  104. 104.
    MacGibbon, B. and Farfan, H. F. (1979) A radiologic survey of various configurations of the lumbar spine. Spine 4, 258–266.PubMedCrossRefGoogle Scholar
  105. 105.
    Bardeen, C. R. (1909) Vertebral regional determination in young human embryos. Anat. Rec. 2, 99–105.CrossRefGoogle Scholar
  106. 106.
    Davis, D. B. and King, J. C. (1938) Cervical rib in early life. Am. J. Dis. Child. 56, 744–755.Google Scholar
  107. 107.
    Meyer, D. B. (1978) The appearance of “cervical ribs” during early human fetal development. Anat. Rec. 190, 481.Google Scholar
  108. 108.
    O’Rahilly, R., Muller, F., and Meyer, D. B. (1990) The human vertebral column at the end of the embryonic period proper. 3. The thoracic columbar region. J. Anat. 168, 81–93.PubMedGoogle Scholar
  109. 109.
    Schapera, J. (1987) Autosomal dominant inheritance of cervical ribs. Clin. Genet. 31, 386–388.PubMedCrossRefGoogle Scholar
  110. 110.
    Nguyen, T., Baumgartner, F., and Nelems, B. (1997) Bilateral rudimentary first ribs as a cause of thoracic outlet syndrome. J. Natl. Med. Assoc. 89, 69–73.PubMedGoogle Scholar
  111. 111.
    Fernandez Noda, E. I., Nunez-Arguelles, J., Perez Fernandez, J., Castillo, J., Perez Izquierdo, M., and Rivera Luna, H. (1996) Neck and brain transitory vascular compression causing neurological complications, results of surgical treatment on 1.300 patients. J. Cardiovasc. Surg. (Torino) 37, 155–166.Google Scholar
  112. 112.
    Short, D. W. (1975) The subclavian artery in 16 patients with complete cervical ribs. J. Cardiovasc. Surg. 16, 135–141.Google Scholar
  113. 113.
    Connell, J. L., Doyle, J. C., and Gurry, J. F. (1980) The vascular complications of cervical rib. Aust. NZ J. Surg. 50, 125–130.CrossRefGoogle Scholar
  114. 114.
    Beam, P., Patel, J., and O’Flynn, W. R. (1993) Cervical ribs: a cause of distal and cerebral embolism. Postgrad. Med. J. 69, 65–68.CrossRefGoogle Scholar
  115. 115.
    Hood, D. B., Keuhne, J., Yellin, A. E., and Weaver, F. A. (1997) Vascular complications of thoracic outlet syndrome. Am. Surg. 63, 913–917.PubMedGoogle Scholar
  116. 116.
    Evans, A. L. (1999) Pseudoseizures as a complication of painful cervical ribs. Dey. Med. Child. Neurol. 41, 840–842.CrossRefGoogle Scholar
  117. 117.
    Saxton, E. H., Miller, T. Q., and Collins, J. D. (1999) Migraine complicated by brachial plexopathy as displayed by MRI and MRA: aberrant subclavian artery and cervical ribs. J. Natl. Med. Assoc. 91, 333–341.PubMedGoogle Scholar
  118. 118.
    Ferrier, P. F. and Hinrichs, W. L. (1967) Basal-cell carcinoma syndrome. Am. J. Dis. Child. 113, 538–545.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Rochelle W. Tyl
  • Melissa C. Marr
  • Christina B. Myers

There are no affiliations available

Personalised recommendations