Skip to main content

Quantitative Analyses of the Development of Different Hard Tissues

  • Chapter
The Skeleton

Abstract

The mineral apatite is the inorganic base element of hard tissues and its main configuration is the hexagonal hydroxyapatite. The physical and chemical characteristics are defined by the orientation of the crystals at the organic matrix. The formation of such hard tissues is a multistep process in which crystal formation and crystal growth are the final steps. This chapter will discuss these final steps from the first appearing crystallites and their further arrangement and structural orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Höhling, H. J., Barckhaus, R. H., Krefting, E. R., Althoff, J., and Quint, P. (1990) Collagen mineralization: aspects of the structural relationship between collagen and the apatitic crystallites, in Ultrastructure of skeletal tissue (Bonucci, E. and Motta, P. M., eds.), Kluwer, Boston Dordrecht London, pp. 41–62.

    Chapter  Google Scholar 

  2. Höhling, H. J., Arnold, S., Barckhaus, R. H., Plate, U., and Wiesmann, H. P. (1995) Structural relationship between the primary crystal formations and the matrix macromolecules in different hard tissues. Discussion of a general principle. Connect Tissue Res. 33,493–500.

    Article  Google Scholar 

  3. Plate, U., Arnold, S., Reimer, L., Höhling, H. J., and Boyde, A. (1994) Investigation of the early mineralization on collagen in dentine of rat incisors by quantitative electron spectroscopic diffraction (ESD). Cell Tissue Res. 278, 543–547.

    Article  PubMed  CAS  Google Scholar 

  4. Plate, U., Arnold, S., Stratmann, U., Wiesmann, H. P., and Höhling, H. J. (1998) General principle of ordered apatitic crystal formation in enamel and collagen rich hard tissues. Connect Tissue Res. 38, 149–157.

    Article  PubMed  CAS  Google Scholar 

  5. Arnold, S., Plate, U., Wiesmann, H. P., Kohl, H., and Höhling, H. J. (1997) Quantitative electron-spectroscopic diffraction (ESD) and electron spectroscopic imaging (ESI) analyses of dentine mineralisation in rat incisors. Cell Tissue Rec 2888, 185–190

    Article  Google Scholar 

  6. Fratzl, P., Schreiber, S., and Boyde, A. (1996) Characterization of bone mineral crystals in horse radius by small-angle x-ray scattering. Calcif. Tissue Int. 58, 341–346.

    Article  PubMed  CAS  Google Scholar 

  7. Fratzl, P., Paris, O., Klaushofer, K., and Landis, W. J. (1996b) Bone mineralization in an osteogenesis imperfect mouse model studied by small-angle x-ray scattering. J. Clin. Invest. 97, 396–402.

    Article  PubMed  CAS  Google Scholar 

  8. Koutsoukos, P. G. and Nancollas, G. H. (1981) The morphology of hydroxyapatite crystals grown in aqueous solution at 37°C. J. Crystal Growth 55, 369–375.

    Article  CAS  Google Scholar 

  9. Abbona, F. and Baronnet, A. (1996) A XRD and TEM study on the transformation of amorphous calcium phosphate in the presence of magnesium. J. Crystal Growth 165, 98–105.

    Article  CAS  Google Scholar 

  10. Graham, S. and Brown, P. W. (1996) Reactions of octacalcium phosphate to form hydroxyapatite. J. Crystal Growth 165, 106–115.

    Article  CAS  Google Scholar 

  11. Ma, C. L., Lu, H. B., Wang R. Z., Zhou, L. F., Cui, F. Z., and Qian, F. (1997) Comparison of controlled crystallization of calcium phosphates under three kinds of monolayers. J. Crystal Growth 173, 141–149.

    Article  CAS  Google Scholar 

  12. Höhling, H. J. (1966) Die Bauelemente von Zahnschmelz und Dentin aus morphologischer, chemischer und struktureller Sicht. Carl Hanser, München.

    Google Scholar 

  13. Höhling, H. J. (1989) Special aspects of biomineralisation of dental tissues, in Teeth. Handbook of microscopic anatomy Vol. V/6 (Oksche, A. and Vollrath, L., eds.), Springer, Berlin, pp. 475–524.

    Google Scholar 

  14. Posner, A. S. (1969) Crystal chemistry of bone mineral. Physiol. Rev. 49, 760–792.

    PubMed  CAS  Google Scholar 

  15. Posner, A. S., Betts, F., and Blumenthal, N. C. (1980) Formation and structure of synthetic and bone hydroxyapatites. Prog. Crystal Growth Charact. 3, 49–64.

    Article  CAS  Google Scholar 

  16. Wheeler, E. J. and Lewis, D. (1977) An x-ray study of the paracrystalline nature of bone apatite. Calcif. Tissue Res. 24, 243–248.

    Article  PubMed  CAS  Google Scholar 

  17. Grynpas, M. D., Bonar, L. C., and Glimsher, M. J. (1984) Failure to detect an amorphous calcium-phosphate solid Phase in bone mineral: a radial distribution function study. Calcif. Tissue Int. 36, 291–301.

    Article  PubMed  CAS  Google Scholar 

  18. Bonar, L. C., Grynpas, M. D., Roberts, J. E., Griffin, R. G., and Glimcher, M. J. (1985) Physical and chemical characterisation of the development and maturation of bone mineral, in The chemistry and biology of mineralized tissues (Butler, W. T., ed.), Ebsca Media, Birmingham, pp. 226–233.

    Google Scholar 

  19. Glimcher, M. J. (1992) The nature of the mineral component of bone and the mechanism of calcification, in Disorders of bone and mineral metabolism (Coe, F. L. and Favus, M. J., eds.), Raven Press, New York, pp. 265–286.

    Google Scholar 

  20. Fukuoka, E., Terada, K., Makita, M., and Yamamura, S. (1995) Paracrystalline lattice distortion in crystalline pharmaceuticals determination of paracrystalline lattice distortion by powder x-ray diffraction. Chem. Pharm. Bull. 43, 671–676.

    Article  CAS  Google Scholar 

  21. Arnold, S., Plate, U., Wiesmann, H. P., Kohl, H., and Höhling, H. J. (1999) Quantitative electron spectroscopic diffraction analyses of the crystal formation in dentine. J. Microsc. 195, 58–63.

    Article  PubMed  CAS  Google Scholar 

  22. Arnold, S. (1999) Quantitative Strukturuntersuchungen der Biomineralisation des hexagonalen Minerals Apatit mit Methoden der energiefilternden Elektronenmikroskopie. PhD thesis, Department of Physics, University of Münster.

    Google Scholar 

  23. Arnold, S., Plate, U., Wiesmann, H. P., Stratmann, U., Kohl, H., and Höhling, H. J. (2001) Quantitative analyses of the biomineralisation of different hard tissues. J. Microsc. 202, 488–494.

    Article  PubMed  CAS  Google Scholar 

  24. Hosemann, R. and Bagchi, S. N. (1962) Direct analysis of diffraction by matter. North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  25. Yamamura, S., Momose, Y., Terada, K., and Fukuoka, E. (1996) Evaluation of paracrystalline lattice distortion by profile analysis using a single x-ray diffraction peak. Int. J. Pharm. 133, 117–125.

    Article  CAS  Google Scholar 

  26. Plate, U., Höhling, H. J., Reimer, L., Barckhkaus, R. H., Wienecke, R., Wiesmann, H. P., and Boyde, A. (1992) Analyses of the calcium distribution in predentine by EELS and the early crystal formation in dentine by ESI and ESD. J. Microsc. 166, 329–341.

    Article  PubMed  CAS  Google Scholar 

  27. Reimer L., Fromm, I., Hirsch, P., Plate, U., and Rennekamp, R. (1992) Combination of EELS modes and electron spectroscopic imaging and diffraction in an energy-filtering electron microscope. Ultramicrosconv 46. 335–347.

    Article  CAS  Google Scholar 

  28. Reimer, L. (ed.) (1995) Energy -filtering transmission electron microscopy. Springer, Berlin.

    Google Scholar 

  29. Ik, C. (1994) Energiefilterung der Debye-Scherrer-Ringe von polykristallincn Aufdampfschichten. Diplom-thesis in Physics. Münster.

    Google Scholar 

  30. Hindeleh, A. M. and Hosemann, R. (1991) Microparacrystals: the intermediate state between crystalline and amorphous. J. Mater. Sci. 26. 5127–5133.

    Article  CAS  Google Scholar 

  31. Hosemann, R. and Hindeleh, A. M. (1995) Structure of crystalline and paracrystalline condensed matter. J. Macromol. Sci. Phys. B34, 327–356.

    Article  CAS  Google Scholar 

  32. Hosemann, R., Hentschel, M. P., Balta-Calleja, F. J., and Hindeleh, A. M. (1985) Evaluation of the alpha-constant in polymers, biopolymers and catalysts. Exp. Tech. Pins. 33, 135–148.

    CAS  Google Scholar 

  33. Wagner, C. N. J. (1966) Analyses of the broadening and changes in position of peaks in an X-ray powder pattern, in Local atomic arrangements studied by X-ray diffraction (Cohen, J. B. and Hilliard, J. E., eds.), Gordon and Breach Science Publishers, New York, pp. 219–268.

    Google Scholar 

  34. Schour, I. and Hoffman, M. M. (1939) Studies in tooth development I. The 16 microns calcification rhythm in the enamel and dentine from fish to man. J. Dent. Res. 18, 91–102.

    Article  Google Scholar 

  35. Schour, I. and Hoffman, M. M. (1939) Studies in tooth development II. The rate of apposition of enamel and dentine in man and other mammals. J. Dent. Res. 18, 161–175.

    Article  Google Scholar 

  36. Kawasaki, K., Tanaka, S., and Ishikawa, T. (1977) On the incremental lines in human dentine as revealed by tetracycline labelling. J. Anat. 123, 427–436.

    PubMed  CAS  Google Scholar 

  37. Kawasaki, K., Tanaka, S., and Ishikawa, T. (1980) On the daily incremental lines in human dentine. Arch. Oral Biol. 24, 939–943.

    Article  Google Scholar 

  38. Mishima, H., Sakae, T., Kozawa, Y., and Hirai, G. (1988) Structural variations in labial dentine and lingual dentine in the rat incisor. J. Nihon Univ. Sch. Dent. 30, 1–10.

    Article  PubMed  CAS  Google Scholar 

  39. Schour, I. and Steadman, S. R. (1935) The growth and daily rhythm of the incisor of the rat. Anat. Rec. 63, 325–332.

    Article  Google Scholar 

  40. Wiesmann, H. P., Arnold, S., Plate, U., Stratmann, U., Tkotz, Th., Höhling, H. J., et al. (1997) Microstructure and micro composition of sutural mineralization in rat calvaria. Bone 20, 116S.

    Google Scholar 

  41. Wiesmann, H. P., Chi, L., Stratmann, U., Tkotz, Th., Höhling, H. J., and Joss, U. (1998) Sutural mineralization of rat calvaria characterized by atomic-force microscopy and transmission electron microscopy. Cell Tissue Res. 294, 93–97.

    Article  PubMed  CAS  Google Scholar 

  42. Wiesmann, H. P., Arnold, S., Meyer, U., and Joos, U. (1999) Mineral crystal structure of rat calvaria. A comparison of mineral formation and bone resorption. Calcif. Tissue Int. 64. 5108.

    Google Scholar 

  43. Plate, U. and Höhling, H. J. (1994) Morphological and structural studies of early mineral formation in enamel of rat incisors by electron spectroscopic imaging (ES!) and electron spectroscopic diffraction (ESD). Cell Tissue Res. 277, 151–158.

    Article  PubMed  CAS  Google Scholar 

  44. Deutsch, D. and Peer, E. (1982) Development of enamel in human fetal teeth. J. Dent. Res. 61, 1543.

    CAS  Google Scholar 

  45. Leonhardt, H. (1990) Histologie, Zytologie und Mikroanatomie des Menschen. Thieme-Verlag, Stuttgart, New York, 8. Auflage.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arnold, S., Höhling, H.J., Plate, U. (2004). Quantitative Analyses of the Development of Different Hard Tissues. In: Massaro, E.J., Rogers, J.M. (eds) The Skeleton. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-736-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-736-9_19

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-427-2

  • Online ISBN: 978-1-59259-736-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics