Advertisement

The Skeleton pp 249-261 | Cite as

Computer Simulations of Cancellous Bone Remodeling

  • Jacqueline C. van der Linden
  • Harrie Weinans
  • Jan A. N. Verhaar
Chapter

Abstract

The bone remodeling process is essential for the maintenance of our skeleton. It enables adaptation of the bone mass and architecture to changes in external loads (1,2), and it prevents accumulation of damage (3,4). Damage accumulation is prevented by a frequent turnover of the bone tissue by the bone remodeling process: old tissue is replaced by new tissue. Bone remodeling is performed by two types of cells: osteoclasts, which are multinucleated bone resorbing cells, and osteoblasts, which are bone-forming cells. Osteoclasts resorb packets of bone tissue, and osteoblasts replace the resorbed tissue with new mineralized bone tissue (see Fig. 1).

Keywords

Bone Remodel Cancellous Bone Resorption Cavity Bone Remodel Process Connectivity Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frost, H. M. (1987) Bone “mass” and the “mechanostat”: a proposal. Anat. Rec. 219, 1–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Wolff, J. (1892) Das gesetz der transformation der knochen (translated as ‘the law of bone remodeling’ by P. Maquet and R. Furlong), 1986, Springer-Verlag, Berlin. Hirchwild.Google Scholar
  3. 3.
    Burr, D. B. (1993) Remodeling and the repair of fatigue damage. Calcif. Tissue Int. 53(Suppl 1) , S75–S80; discussion S80–S81.PubMedCrossRefGoogle Scholar
  4. 4.
    Mori, S. and Burr, D. B. (1993) Increased intracortical remodeling following fatigue damage. Bone 14, 103–109.PubMedCrossRefGoogle Scholar
  5. 5.
    Klein-Nulend, J., et al. (2002) Donor age and mechanosensitivity of human bone cells. Osteoporos. Int. 13, 137–146.PubMedCrossRefGoogle Scholar
  6. 6.
    Ding, M., et al. (2002) Age-related variations in the microstructure of human tibial cancellous bone. J. Orthop. Res. 20, 615–621.PubMedCrossRefGoogle Scholar
  7. 7.
    Biewener, A. A. (1993) Safety factors in bone strength. Calcif Tissue Int. 53(Suppl 1) , S68–S74.PubMedCrossRefGoogle Scholar
  8. 8.
    Bentolila, V., et al. (1998) Intracortical remodeling in adult rat long bones after fatigue loading. Bone 23, 275–281.PubMedCrossRefGoogle Scholar
  9. 9.
    Burr, D. B., et al. (1985) Bone remodeling in response to in vivo fatigue microdamage. J. Biomech. 18, 189–200.PubMedCrossRefGoogle Scholar
  10. 10.
    Burr, D. B. (2002) Targeted and nontargeted remodeling. Bone 30, 2–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Martin, R. B. (2002) Is all cortical bone remodeling initiated by microdamage? Bone 30, 8–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Parfitt, A. M. (2002) Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30,5–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Parfitt, A. M. (1984) The cellular basis of bone remodeling: the quantum concept reexamined in light of recent advances in the cell biology of bone. Calcif. Tissue Int. 36(Suppl 1) , S37–S45.PubMedCrossRefGoogle Scholar
  14. 14.
    Parfitt, A. M. (1984) Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcif. Tissue Int. 36(Suppl 1) , S123–S128.PubMedCrossRefGoogle Scholar
  15. 15.
    Mosekilde, L. (1990) Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscopy study (uncoupling of unloaded structures). Bone Miner. 10, 13–35.PubMedCrossRefGoogle Scholar
  16. 16.
    Hildebrand, T. and Ruegsegger, P. (1997) A new method for the model-independent assessment of thickness in threedimensional images. J. Microscopy 185, 67–75.CrossRefGoogle Scholar
  17. 17.
    Odgaard, A. (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20, 315–328.PubMedCrossRefGoogle Scholar
  18. 18.
    Odgaard, A. and Gundersen, H. J. (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14, 173–182.PubMedCrossRefGoogle Scholar
  19. 19.
    Kabel, J., et al. (1999) Connectivity and the elastic properties of cancellous bone. Bone 24, 115–120.PubMedCrossRefGoogle Scholar
  20. 20.
    Eriksen, E. F., Melsen, F., and Mosekilde, L. (1984) Reconstruction of the resorptive site in iliac trabecular bone: a kinetic model for bone resorotion in 20 normal individuals. Metab. Bone Dis. Relat. Res. 5. 235–242.PubMedCrossRefGoogle Scholar
  21. 21.
    Jayasinghe, J. A., Jones, S. J., and Boyde, A. (1993) Scanning electron microscopy of human lumbar vertebral trabecular bone surfaces. Virchows. Arch. A Pathol. Anat. Histopathol. 422, 25–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Kimmel, D. B. (1985) A computer simulation of the mature skeleton. Bone 6, 369–372.PubMedCrossRefGoogle Scholar
  23. 23.
    Reeve, J. (1986) A stochastic analysis of iliac trabecular bone dynamics. Clin. Orthop. 213, 264–278.PubMedGoogle Scholar
  24. 24.
    Silva, M. J. and Gibson, L. J. (1997) Modeling the mechanical behavior of vertebral trabecular bone: effects of agerelated changes in microstructure. Bone 21, 191–199.PubMedCrossRefGoogle Scholar
  25. 25.
    Gunaratne, G. H., et al. (2002) Model for bone strength and osteoporotic fractures. Phys. Rev. Leu. 88, 68–101.CrossRefGoogle Scholar
  26. 26.
    Muller, R. and Ruegsegger, P. (1996) Analysis of mechanical properties of cancellous bone under conditions of simulated bone atrophy. J. Biomech. 29, 1053–1060.PubMedCrossRefGoogle Scholar
  27. 27.
    Tayyar, S., et al. (1999) Computer simulation of trabecular remodeling using a simplified structural model. Bone 25, 733–739.PubMedCrossRefGoogle Scholar
  28. 28.
    van der Linden, J. C., Verhaar, J. A., and Weinans, H. (2001) A three-dimensional simulation of age-related remodeling in trabecular bone. J. Bone Miner. Res. 16, 688–696.CrossRefGoogle Scholar
  29. 29.
    Han, Z. H., et al. (1997) Effects of ethnicity and age or menopause on the remodeling and turnover of iliac bone: implications for mechanisms of bone loss. J. Bone Miner. Res. 12, 498–508.PubMedCrossRefGoogle Scholar
  30. 30.
    Grote, H. J., et al. (1995) Intervertebral variation in trabecular microarchitecture throughout the normal spine in relation to age. Bone 16, 301–308.PubMedCrossRefGoogle Scholar
  31. 31.
    Majumdar, S., et al. (1997) Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J. Bone Miner. Res. 12, 111–118.PubMedCrossRefGoogle Scholar
  32. 32.
    Mosekilde, L. (1989) Sex differences in age-related loss of vertebral trabecular bone mass and structure—biomechanical consequences. Bone 10, 425–432.PubMedCrossRefGoogle Scholar
  33. 33.
    van der Linden, J. C., et al. (2001) Mechanical consequences of bone loss in cancellous bone. J. Bone Miner. Res. 16, 457–465.PubMedCrossRefGoogle Scholar
  34. 34.
    Frost, H. M. (1985), The pathomechanics of osteoporoses. Clin. Orthop. 200, 198–225.PubMedGoogle Scholar
  35. 35.
    Parfitt, A. M. (1983) The physiological and clinical significance of bone histomorphometric data, in Bone Histomorphometry: Techniques and Interpretation. CRC Press: Boca Raton, FL, pp. 143–223.Google Scholar
  36. 36.
    Roux, W. (1881) Der Kampf der Theile im Organismu. Leipzig, Engelmann.Google Scholar
  37. 37.
    Odgaard, A., et al. (1997) Fabric and elastic principal directions of cancellous bone are closely related. J. Biomech. 30, 487–495.PubMedCrossRefGoogle Scholar
  38. 38.
    Kinney, J. H. and Ladd, A. J. (1998) The relationship between threedimensional connectivity and the elastic properties of trahecular bone. J. Bone Miner. Res. 13. 839–845.PubMedCrossRefGoogle Scholar
  39. 39.
    Van Rietbergen, B., et al. (1996) Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J. Biomech. 29. 1653–1657.PubMedGoogle Scholar
  40. 40.
    Thomsen, J. S., Ebbesen, E. N., and Mosekilde, L. (2002) Age-related differences between thinning of horizontal and vertical trabeculae in human lumbar bone as assessed by a new computerized method. Bone 31, 136–142.PubMedCrossRefGoogle Scholar
  41. 41.
    Huiskes, R., et al. (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405, 704–706.PubMedCrossRefGoogle Scholar
  42. 42.
    Holick, M. F. (1998) Perspective on the impact of weightlessness on calcium and bone metabolism. Bone 22, 105S–111S.PubMedCrossRefGoogle Scholar
  43. 43.
    Layne, J. E. and Nelson, M. E. (1999) The effects of progressive resistance training on bone density: a review. Med. Sci. Sports Exerc. 31, 25–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Mullender, M., et al. (1998) Effect of mechanical set point of bone cells on mechanical control of trabecular bone architecture. Bone 22, 125–131.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Jacqueline C. van der Linden
  • Harrie Weinans
  • Jan A. N. Verhaar

There are no affiliations available

Personalised recommendations