Skip to main content
Book cover

The Skeleton pp 147–157Cite as

Retinoid Signaling and Skeletal Development

  • Chapter
  • 212 Accesses

Abstract

Interest in the role of retinoid signaling during skeletal development was generated as early as the 1930s, when studies revealed the effects of vitamin A on fetal development. Both hyper- and hypovitaminosis A in mothers resulted in offspring with a wide range of severe malformations, with skeletal deformities being particularly dramatic. Since those initial studies, retinoic acid (RA) was found to be a much more potent teratogen than vitamin A (1). An important role for retinoid signaling in many stages of skeletogenesis has been revealed, including the early stages of cartilage formation through to the formation and remodeling of bone. RA inhibits chondrocyte differentiation in vivo and in vitro (for review, see ref. 2), whereas it appears to stimulate chondrocyte hypertrophy. These effects on chondrogenesis correlate with changes in expression of many cartilage-specific genes. RA, therefore, is important at multiple stages during skeletogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kochhar, D. M. (1967) Teratogenic activity of retinoic acid. Acta Pathol. Microbiol. Scand. 70,398–404.

    Article  CAS  PubMed  Google Scholar 

  2. Underhill, T. M. and Weston, A. D. (1998) Retinoids and their receptors in skeletal development. Micro. Res. Tech. 43,137–155.

    Article  CAS  Google Scholar 

  3. Chambon, P. (1996) A decade of molecular biology of retinoic acid receptors. FASEB J. 10,940–954.

    CAS  PubMed  Google Scholar 

  4. Glass, C. K. and Rosenfeld, M. G. (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dey. 14,121–141.

    CAS  Google Scholar 

  5. Giguere, V. (1994) Retinoic acid receptors and cellular retinoid binding proteins: complex interplay in retinoid signaling. Endo. Rev. 15,61–79.

    CAS  Google Scholar 

  6. White, J. A., Guo, Y. D., Baetz, K., Beckett-Jones, B., Bonasoro, J., Hsu, K. E., et al. (1996) Identification of the retinoic acidinducible all-trans-retinoic acid 4-hydroxylase. J. Biol. Chem. 271,29922–29927.

    Article  CAS  PubMed  Google Scholar 

  7. Niederreither, K., McCaffery, P., Drager, U. C., Chambon, P., and Dolle, P. (1997) Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech Dev. 62.67–78.

    Article  CAS  PubMed  Google Scholar 

  8. Hall, B. K. and Miyake, T. (1992) The membranous skeleton: The role of cell condensations in vertebrate skeletogenesis. Anat. Embrvol. 186,107–124.

    CAS  Google Scholar 

  9. Hall, B. K. and Miyake, T. (1995) Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int. J. Dev. Biol. 39,881–893.

    CAS  PubMed  Google Scholar 

  10. von Schroeder, H. P. and Heersche, J. N. (1998) Retinoic acid responsiveness of cells and tissues in developing fetal limbs evaluated in a RAREhsplacZ transgenic mouse model. J. Orthop. Res. 16,355–64.

    Article  Google Scholar 

  11. Koyama, E., Golden, E. B., Kirsch, T., Adams, S. L., Chandraratna, R. A. S., Michaille, J.-J., et al. (1999) Retinoid signaling is required for chondrocyte maturation and endochondral bone formation during limb skeletogenesis. Biol. 208,375–391.

    CAS  Google Scholar 

  12. Niederreither, K., Subbarayan, V., Dolle, P., and Chambon, P. (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat. Genet. 21,444–448.

    Article  CAS  PubMed  Google Scholar 

  13. de Roos, K., Sonneveld, E., Compaan, B., ten Berge, D., Durston, A. J., and van der Saag, P. T. (1999) Expression of retinoic acid 4-hydroxylast (CYP26) during mouse and Xenopus laevisembryogenesis. Mech. Dev. 82,205–211.

    Article  PubMed  Google Scholar 

  14. Abu-Abed, S., Dolle, P., Metzger, D., Beckett, B., Chambon, P., and Petkovich, M. (2001) The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Deev. 15,226–240.

    Article  CAS  Google Scholar 

  15. Sakai, Y., Meno, C., Fujii, H., Nishino, J., Shiratori, H., Saijoh, Y., et al. (2001) Thc rctinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev. 15,213–225.

    Article  CAS  PubMed  Google Scholar 

  16. Kwasigroch, T. E. and Kochhar, D. M. (1980) Production of congenital limb defects with retinoic acid: phenomenological evidence of progressive differentiation during limb morphogenesis. Anat. Embryo!. 161,105–113.

    Article  CAS  Google Scholar 

  17. Delva, L., Bastie, J. N., Rochette-Egly, C., Kraiba, R., Balitrand, N., Despouy, G., et al. (1999) Physical and functional interactions between cellular retinoic acid binding protein II and the retinoic acid-dependent nuclear complex. Mol. Cell. Biol. 19,7158–7167.

    CAS  PubMed  Google Scholar 

  18. Lampron, C., Rochette-Egly, C., Gorry, P., Dolle, P., Mark, M., Lufkin, T., et al. (1995) Mice deficient in cellular retinoic acid binding protein II (CRABP II) or in both CRABP I and CRABP II are essentially normal. Development 121,539–548.

    CAS  PubMed  Google Scholar 

  19. Kochhar, D. M. (1973) Limb development in mouse embyros. I. Analysis of teratogenic effects of retinoic acid. Teratology 7,289–295.

    Article  CAS  Google Scholar 

  20. Kochhar, D. M. and Aydelotte, M. B. (1974) Susceptible stages and abnormal morphogenesis in the developing mouse limb, analysed in organ culture after transplacental exposure to vitamin A (retinoic acid). J. Embryol. Exp. Morphol. 31,721–734.

    CAS  PubMed  Google Scholar 

  21. Jiang, H., Gyda, M. III, Harnish, D. C., Chandraratna, R. A., Soprano, K. J., Kochhar, D. M., et al. (1994) Teratogenesis by retinoic acid analogs positively correlates with elevation of retinoic acid receptor-f32 mRNA levels in treated embyros. Teratology 50,38–43.

    Article  CAS  PubMed  Google Scholar 

  22. Kwasigroch, T. E., Vannoy, J. F., Church, J. K., and Skalko, R. G. (1986) Retinoic acid enhances and depresses in vitro development of cartilaginous bone anlagen in embryonic mouse limbs. In Vitro Cell. Dev. Biol. 22.150–156.

    Article  CAS  PubMed  Google Scholar 

  23. Kistler, A. (1987) Limb bud cell cultures for estimating the teratogenic potential of compounds. Arch. Toxicol. 60,403–414.

    Article  CAS  PubMed  Google Scholar 

  24. Shapiro, S. S. and Poon, J. P. (1976) Effect of retinoic acid on chondrocyte glycosaminoglycan biosynthesis. Arch. Biochem. Biophys. 174,74–81.

    Article  CAS  PubMed  Google Scholar 

  25. Solursh, M. and Meier, S. (1973) The selective inhibition of mucopolysaccharide synthesis by vitamin A treatment of cultured chick embryo chondrocytes. Calcif. Tissue Res. 13,131–142.

    Article  CAS  PubMed  Google Scholar 

  26. Horton, W. E., Yamada, Y., and Hassell, J. R. (1987) Retinoic acid rapidly reduces cartilage matrix synthesis by altering gene transcription in chondrocytes. Dev. Biol. 123,508–516.

    Article  CAS  PubMed  Google Scholar 

  27. Pennypacker, J. P., Lewis, C. A., and Hassell, J. R. (1978) Altered proteoglycan metabolism in mouse limb mesenchyme cell cultures treated with vitamin A. Arch. Biochem. Biophys. 186,351–358.

    Article  CAS  PubMed  Google Scholar 

  28. Paulsen, D. F., Solursh, M., Langille, R. M., Pang, L., and Chen, W.-D. (1994) Stable, postion-related responses to retinoic acid by chick limb-bud mesenchymal cells in serum-free cultures. In Vitro Cell. Dev. Biol. 30A,181–186.

    Article  CAS  Google Scholar 

  29. Paulsen, D. F., Chen, W.-D., Pang, L., Johnson, B., and Okello, D. (1994) Stage- and region-dependent chondrogenesis and growth of chick wing-bud mesenchyme in serum-containing and defined tissue culture media. Dev. Dyn. 200,39–52.

    Article  CAS  PubMed  Google Scholar 

  30. Mollard, R., Viville, S., Ward, S. J., Decimo, D., Chambon, P., and Dolle, P. (2000) Tissue-specific expression of retinoic acid receptor isoform transcripts in the mouse embryo. Mech Dev. 94,223–232.

    Article  CAS  PubMed  Google Scholar 

  31. Cash, D. E., Bock, C., Schughart, K., Linney, E., and Underhill, T. M. (1997) Retinoic acid receptor a function in vertebrate limb skeletogenesis: a modulator of chondrogenesis. Cell Riol. 136445–457.

    Article  CAS  Google Scholar 

  32. Eckhardt, K. and Schmitt, G. (1994) A retinoic receptora antagonist counteracts retinoid teratogenicity in vitro and reduced incidence and/or severity of malformations in vivo. Toxicol. Lett. 70,299–308.

    Article  CAS  PubMed  Google Scholar 

  33. Kochhar, D. M., Jiang, H., Penner, J. D., Johnson, A. T., and Chandraratna, R. A. S. (1998) The use of a retinoid receptor antagonist in a new model to study vitamin A-dependent developmental events. Int. J. Dev. Biol. 42,601–608.

    CAS  PubMed  Google Scholar 

  34. Jiang, H., Soprano, D. R., Li, S. W., Soprano, K. J., Penner, J. D., Gyda M, III, and Kochhar, D. M. (1995) Modulation of limb bud chondrogenesis by retinoic acid and retinoic acid receptors. Int. J. Dey. Biol. 39,617–627.

    CAS  Google Scholar 

  35. Yamaguchi, M., Nakamoto, M., Honda, H., Nakagawa, T., Fujita, H., Nakamura, T., et al. (1998) Retardation of skeletal development and cervical abnormalities in transgenic mice expressing a dominant-negative retinoic acid receptor in chondrogenic cells. Proc. Natl. Acad. Sci. USA 95,7491–7496.

    Article  CAS  PubMed  Google Scholar 

  36. Weston, A., Rosen, V., Chandraratna, R. A. S., and Underhill, T. M. (2000) Regulation of skeletal progenitor differentiation by the BMP and retinoid signaling pathways. J. Cell Biol. 148,679–690.

    Article  CAS  PubMed  Google Scholar 

  37. Ghyselinck, N. B., Dupe, V., Dierich, A., Messaddeq, N., Garnier, J. M., Rochetteegly, C., et al. (1997) Role of the retinoic acid receptor beta (RAR-13) during mouse development. Int. J. Dev. Biol. 41,425–447.

    CAS  PubMed  Google Scholar 

  38. Lohnes, D., Kastner, P., Dierich, A., Mark, M., LeMeur, M., and Chambon, P. (1993) Function of retinoic acid receptor g in the mouse. Cell 73,643–658.

    Article  CAS  PubMed  Google Scholar 

  39. Lufkin, T., Lohnes, D., Mark, M., Dierich, A., Gorry, P., Gaub, M.-P., et al. (1993) High postnatal lethality and testis degeneration in retinoic acid receptor cα mutant mice. Proc. Natl. Acad. Sci. USA 90,7225–7229.

    Article  CAS  PubMed  Google Scholar 

  40. Luo, J., Pasceri, P., Conlon, R. A., Rossant, J., and Giguere, V. (1995) Mice lacking all isoforms of retinoic acid receptor 1β develop normally and are susceptible to the teratogenic effects of retinoic acid. Mech. Dec. 53.61–71.

    Article  CAS  Google Scholar 

  41. Lohnes, D., Mark, M., Mendelsohn, C., Dolle, P., Dierich, A., Gorry, P., et al. (1994) Function of the retinoic acid receptors (RARs) during development (I) Craniofacial and skeletal abnormalities in RAR double mutants. Development 120,2723–2748.

    CAS  PubMed  Google Scholar 

  42. Mendelsohn, C., Lohnes, D., Decimo, D., Lufkin, T., LeMeur, M., Chambon, P., et al. (1994) Function of the retinoic acid receptors (RARs) during development (II) Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120,2749–2771.

    CAS  PubMed  Google Scholar 

  43. Mascrez, B., Mark, M., Dierich, A., Ghyselinck, N. B., Kastner, P., and Chambon, P. (1998) The RXR alpha liganddependent activation function 2 (AF-2) is important for mouse development. Development 125,4691–4707.

    CAS  PubMed  Google Scholar 

  44. Hurle, J. M., Ganan, Y., and Macias, D. (1989) Experimental analysis of the in vivo chondrogenic potential of the interdigital mesenchvme of the chick lee bud subjected to local ectodermal removal. Dev. Biol. 132,368–374.

    Article  CAS  PubMed  Google Scholar 

  45. Lyons, K. M., Pelton, R. W., and Hogan, B. L. M. (1990) Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for Bone Morphogenetic Protein-2A (BMP-2A). Development 109,833–844.

    CAS  PubMed  Google Scholar 

  46. Jones, C. M., Lyons, K. M., and Hogan, B. L. M. (1991) Involvement of bone morphogenetic protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development 111,531–542.

    CAS  PubMed  Google Scholar 

  47. Zhang, H. and Bradley, A. (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122,2977–2986.

    CAS  PubMed  Google Scholar 

  48. Winnier, G., Blessing, M., Labosky, P. A., and Hogan, B. L. M. (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9,2105–2116.

    Article  CAS  PubMed  Google Scholar 

  49. Zou, H., Wieser, R., Massague, J., and Niswander, L. (1997) Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev. 11,2191–2203.

    Article  CAS  PubMed  Google Scholar 

  50. Yi, S. E., Daluiski, A., Pederson, R., Rosen, V., and Lyons, K. M. (2000) The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127,621–630.

    CAS  PubMed  Google Scholar 

  51. Pizette, S. and Niswander, L. (2000) BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocvtes. Dev. Biol. 219,237–249.

    Article  CAS  PubMed  Google Scholar 

  52. Lefebvre, V., Zhou, G., Mukhopadhyay, K., Smith, C. N., Zhang, Z., Eberspaecher, H., et al. (1996) An 18-base-pair sequence in the mouse Pro-alpha-1(II) collagen gene is sufficient for expression in cartilage and binds nuclear proteins that are selectively expressed in chondrocytes. Mol. Cell. Biol. 16,4512–4523.

    CAS  PubMed  Google Scholar 

  53. Bi, W., Deng, J. M., Zhang, Z., Behringer, R. R., and de Crombrugghe, B. (1999) Sox9 is required for cartilage formation. Nat. Genet. 22,85–89.

    Article  CAS  PubMed  Google Scholar 

  54. Wagner, T. (1994) Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around and SRYrelated gene. Cell 79,1111–1120.

    Article  CAS  PubMed  Google Scholar 

  55. Wright, E., Hargrave, M. R., Christiansen, J., Cooper, L., Kun, J., Evans, T., et al. (1995) The Sry-related gene Sox9is expressed during chondroeenesis in mouse embryos. Nat. Genet. 9,15–20.

    Article  CAS  PubMed  Google Scholar 

  56. Zhao, Q., Eberspaecher, H., Lefebvre, V., and De Crombrugghe, B. (1997) Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev. Dyn. 209,377–386.

    Article  CAS  PubMed  Google Scholar 

  57. Sekiya, I., Tsuji, K., Koopman, P., Watanabe, H., Yamada, Y., Shinomiya, K., et al. (2000) SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J. Biol. Chem. 275.10738–10744.

    Article  CAS  PubMed  Google Scholar 

  58. Karin, M., Liu, Z., and Zandi, E. (1997) AP-1 function and regulation. Curr. Opin. Cell Biol. 9,240–246.

    Article  CAS  PubMed  Google Scholar 

  59. Thomas, D. P., Sunters, A., Gentry, A., and Grigoriadis, A. E. (2000) Inhibition of chondrocyte differentiation in vitro by constitutive and inducible overexpression of the c-fos proto-oncogene. J. Cell Sci. 113,439–450.

    CAS  PubMed  Google Scholar 

  60. Watanabe, H., Saitoh, K., Kameda, T., Murakami, M., Niikura, Y., Okazaki, S., et al. (1997) Chondrocytes as a specific target of ectopic Fos expression in early development. Proc. Natl. Acad. Sci. USA 94,3994–3999.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou, X. F., Shen, X. Q., and Shemshedini, L. (1999) Ligand-activated retinoic acid receptor inhibits AP-1 transactivation by disrupting c-Jun/c-Fos dimerization. Mol. Endocrinol. 13,276–285.

    Article  CAS  PubMed  Google Scholar 

  62. Pfahl, M. (1993) Nuclear receptor/AP-1 interaction. Endocr. Rev. 14,651–658.

    CAS  PubMed  Google Scholar 

  63. Reichardt, H. M., Kaestner, K. H., Tuckermann, J., Kretz, O., Wessely, O., Bock, R., et al. (1998) DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93,531–541.

    Article  CAS  PubMed  Google Scholar 

  64. Underhill, T. M., Kotch, L. E., and Linney, E. (1995) Retinoids and mouse embryonic development. Vit. Horm. 51,403–457.

    Article  CAS  Google Scholar 

  65. Nelson, C. E., Morgan, B. A., Burke, A. C., Laufer, E., DiMambro, E., Murtaugh, L. C., et al. (1996) Analysis of Hox gene expression in the chick limb bud. Development 122,1449–1466.

    CAS  PubMed  Google Scholar 

  66. Bouillet, P., Oulad-Abdelghani, M., Vicaire, S., Garnier, J. M., Schuhbaur, B., Dolle, P., et al. (1995) Efficient cloning of cDNAs of retinoic acid-responsive genes in P19 embryonal carcinoma cells and characterization of a novel mouse gene, Stra 1 (mouse LERK-2/Eplg2). Dev. Biol. 170,420–433.

    Article  CAS  PubMed  Google Scholar 

  67. Boudjelal, M., Taneja, R., Matsubara, S., Bouillet, P., Dolle, P., and Chambon, P. (1997) Overexpression of Stra13, a novel retinoic acid-inducible gene of the basic helix-loop-helix family, inhibits mesodermal and promotes neuronal differentiation of P19 cells. Genes Dev. 11,2052–2065.

    Article  CAS  PubMed  Google Scholar 

  68. Bouillet, P., Sapin, V., Chazaud, C., Messaddeq, N., Decimo, D., Dolle, P., et al. (1997) Developmental expression pattern of Stra6, a retinoic acid-responsive gene encoding a new type of membrane protein. Mech Dev. 63,173–186.

    Article  CAS  PubMed  Google Scholar 

  69. De Luca, F., Uyeda, J. A., Mericq, V., Mancilla, E. E., Yanovski, J. A., Barnes, K. M., et al. (2000) Retinoic acid is a potent regulator of growth plate chondrogenesis. Endocrinology 141,346–353.

    Article  PubMed  Google Scholar 

  70. St-Jacques, B., Hammerschmidt, M., and McMahon, A. P. (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13,2072–2086.

    Article  CAS  PubMed  Google Scholar 

  71. Koyama, E., Iwamoto, M., Enomoto-Iwamoto, M., Adams, S. L., Chandraratna, R. A., and Pacifici, M. (2000) Regulation of indian hedgehog and CBFA1 expression during chondrocyte maturation by retinoid signaling. J. Bone Miner. Res. 15(Suppl 1),5145.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weston, A.D., Underhill, T.M. (2004). Retinoid Signaling and Skeletal Development. In: Massaro, E.J., Rogers, J.M. (eds) The Skeleton. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-736-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-736-9_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-427-2

  • Online ISBN: 978-1-59259-736-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics