Advertisement

Regulation of DNA Repair and Apoptosis by p53 and Its Impact on Alkylating Drug Resistance of Tumor Cells

  • Istvan Boldogh
  • Kishor K. Bhakat
  • Dora Bocangel
  • Gokul C. Das
  • Sankar Mitra
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Eukarytotic cells have developed a highly conserved network of processes to ensure that the damaged genome is repaired before replication or mitotic segregation. This protective mechanism is essential for maintaining genomic integrity and stability, cell viability, and prevention of mutations. The drugs used in the treatment of human malignancies are invariably genotoxic, and their effectiveness is limited by a variety of factors. The most important factor is the tumor cells’ resistance to drugs. Most tumor cells could develop resistance to chemotherapeutic agents, whereas some malignant cells, including prostate carcinomas, melanomas, and gliomas, are intrinsically resistant to most antitumor drugs. For instance, ovarian and small-cell lung cancers are known to respond well to drug treatment initially, only to relapse with the appearance of drug-resistant cells. This acquired drug resistance resulting from genomic instability and consequent plasticity of the genome is encountered in approx 40% of all cancer patients undergoing chemotherapy.

Keywords

Reactive Oxygen Species Production Reactive Oxygen Species Level Alkylating Agent Nuclear Import Cellular Redox State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lawley PD, Phillips DH. DNA adducts from chemotherapeutic agents. Mutat Res 1996; 355:13–40.PubMedCrossRefGoogle Scholar
  2. 2.
    Sanderson BJ, Shield AJ. Mutagenic damage to mammalian cells by therapeutic alkylating agents. Mutat Res 1996;355:41–57.PubMedCrossRefGoogle Scholar
  3. 3.
    Sanderson BJ, Ferguson LR, Denny WA. Mutagenic and carcinogenic properties of plati-num-based anticancer drugs. Mutat Res 1996;355:59–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Coultas L, Strasser A. The molecular control of DNA damage-induced cell death. Apoptosis 2000;5:491–507.PubMedCrossRefGoogle Scholar
  5. 5.
    Mitra S, Kaina B. Regulation of repair of alkylation damage in mammalian genomes. Prog Nucleic Acid Res Mol Biol 1993;44:109–142.PubMedCrossRefGoogle Scholar
  6. 6.
    Fritz G, Kaina B. Genomic differences between O6-methylguanine-DNA methyltransferase proficient (Mex+) and deficient (Mex-) cell lines: possible role of genetic and epigenetic changes in conversion of Mex+ into Mex. Biochem Biophys Res Commun 1992;183:1184–1190.PubMedCrossRefGoogle Scholar
  7. 7.
    Gerson SL. Clinical relevance of MGMT in the treatment of cancer. J Clin Oncol 2002;20:2388–2399.PubMedCrossRefGoogle Scholar
  8. 8.
    Norbury CJ, Hickson ID. Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol 2001;41:367–401.PubMedCrossRefGoogle Scholar
  9. 9.
    Bernstein C, Bernstein H, Payne CM, et al. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 2002;511:145–178.PubMedCrossRefGoogle Scholar
  10. 10.
    Christodoulopoulos G, Fotouhi N, Krajewski S, et al. Relationship between nitrogen mus-tard drug resistance in B-cell chronic lymphocytic leukemia (B-CLL) and protein expression of Bcl-2, Bax, Bcl-X and p53. Cancer Lett 1997;121:59–67.PubMedCrossRefGoogle Scholar
  11. 11.
    Woods DB, Vousden KH. Regulation of p53 function. Exp Cell Res 2001;264:56–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000;408:307–310.PubMedCrossRefGoogle Scholar
  13. 13.
    Teicher BA. Antitumor alkylating agents. In: Cancer: Principles and Practice of Oncology. deVita VTH, Rosenberg SA, eds. Lippincott-Raven, Philadelphia, 1997:405–418.,Google Scholar
  14. 14.
    Rajewsky MF, Engelbergs J, Thomale J, et al. Relevance of DNA repair to carcinogenesis and cancer therapy. Recent Results Cancer Res 1998;154:127–146.PubMedCrossRefGoogle Scholar
  15. 15.
    Snow ET, Foote RS, Mitra S. Kinetics of incorporation of O6-methyldeoxyguanosine mono-phosphate during in vitro DNA synthesis. Biochemistry 1984;23:4289–4294.PubMedCrossRefGoogle Scholar
  16. 16.
    Snow ET, Foote RS, Mitra S. Base-pairing properties of O6-methylguanine in template DNA during in vitro DNA replication. J Biol Chem 1984;259:8095–8100.PubMedGoogle Scholar
  17. 17.
    Lu AL, Welsh K, Clark S, Su SS, et al. Repair of DNA base-pair mismatches in extracts of Escherichia coli. Cold Spring Harb Symp Quant Biol 1984;49:589–596.CrossRefGoogle Scholar
  18. 18.
    Kokkinakis DM, Bocangel DB, Schold SC, et al. Thresholds of O6-alkylguanine-DNA alkyltransferase which confer significant resistance of human glial tumor xenografts to treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea or temozolomide. Clin Cancer Res 2001;7:421–428.PubMedGoogle Scholar
  19. 19.
    Panasci L, Paiement JP, Christodoulopoulos G, et al. Chlorambucil drug resistance in chronic lymphocytic leukemia: the emerging role of DNA repair. Clin Cancer Res 2001;7:454–461.PubMedGoogle Scholar
  20. 20.
    Johnson SW, Swiggard PA, Handel LM, et al. Relationship between platinum-DNA adduct formation and removal and cisplatin cytotoxicity in cisplatin-sensitive and -resistant human ovarian cancer cells. Cancer Res 1994;54:5911–5916.PubMedGoogle Scholar
  21. 21.
    Lin X, Ramamurthi K, Mishima M, Kondo A, et al. p53 interacts with the DNA mismatch repair system to modulate the cytotoxicity and mutagenicity of hydrogen peroxide. Mol Pharmacol 2000;58:1222–1229.PubMedGoogle Scholar
  22. 22.
    Wang XW, Vermeulen W, Coursen JD, et al. The XPB and XPD DNA helicases are com-ponents of the p53-mediated apoptosis pathway. Genes Dev 1996;10:1219–1232.PubMedCrossRefGoogle Scholar
  23. 23.
    Xu GW, Nutt CL, Zlatescu MC, et al. Inactivation of p53 sensitizes U87MG glioma cells to 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res 2001;61:4155–4159.PubMedGoogle Scholar
  24. 24.
    Xu Z, Chen ZP, Malapetsa A, et al. DNA repair protein levels vis-a-vis anticancer drug resistance in the human tumor cell lines of the National Cancer Institute drug screening program. Anticancer Drugs 2002;13:511–519.PubMedCrossRefGoogle Scholar
  25. 25.
    Seo YR, Fishel ML, Amundson S, et al. Implication of p53 in base excision DNA repair: in vivo evidence. Oncogene 2002;21:731–737.PubMedCrossRefGoogle Scholar
  26. 26.
    Morris SM. A role for p53 in the frequency and mechanism of mutation. Mutat Res 2002;511:45–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Jayaraman L, Prives C. Covalent and noncovalent modifiers of the p53 protein. Cell Mol Life Sci 1999;55:76–87.PubMedCrossRefGoogle Scholar
  28. 28.
    Liu Y, Kulesz-Martin M. p53 protein at the hub of cellular DNA damage response pathways through sequence-specific and non-sequence-specific DNA binding. Carcinogenesis 2001;22:851–860.PubMedCrossRefGoogle Scholar
  29. 29.
    Welcsh PL, Owens KN, King MC. Insights into the functions of BRCA1 and BRCA2. Trends Genet 2000:16:69–74.PubMedCrossRefGoogle Scholar
  30. 30.
    Sturzbecher HW, Donzelmann B, Henning W, et al. p53 is linked directly to homolo-gous recombination processes via RAD51/RecA protein interaction. EMBO J 1996; 15:1992–2002.PubMedGoogle Scholar
  31. 31.
    Lu Y, Lian H, Sharma P, Schreiber-Agus N, et al. Disruption of the Cockayne syndrome B gene impairs spontaneous tumorigenesis in cancer-predisposed Ink4a/ARF knockout mice. Mol Cell Biol 2001;21:1810–1818.PubMedCrossRefGoogle Scholar
  32. 32.
    Orren DK, Dianov GL, Bohr VA. The human CSB (ERCC6) gene corrects the transcription-coupled repair defect in the CHO cell mutant UV61. Nucleic Acids Res 1996;24:3317–3322.PubMedCrossRefGoogle Scholar
  33. 33.
    Spillare EA, Robles AI, Wang XW, et al. p53-mediated apoptosis is attenuated in Werner syndrome cells. Genes Dev 1999;13:1355–1360.PubMedCrossRefGoogle Scholar
  34. 34.
    Panasci L, Xu ZY, Bello V, et al. The role of DNA repair in nitrogen mustard drug resistance. Anticancer Drugs 2002;13:211–220.PubMedCrossRefGoogle Scholar
  35. 35.
    Muller C, Christodoulopoulos G, Salles B, et al. DNA-dependent protein kinase activity correlates with clinical and in vitro sensitivity of chronic lymphocytic leukemia lympho-cytes to nitrogen mustards. Blood 1998;92:2213–2219.PubMedGoogle Scholar
  36. 36.
    Sunters A, Springer CJ, Bagshawe KD, et al. The cytotoxicity, DNA crosslinking ability and DNA sequence selectivity of the aniline mustards melphalan, chlorambucil and 4-[bis(2-chloroethyl)amino] benzoic acid. Biochem Pharmacol 1992;44:59–64.PubMedCrossRefGoogle Scholar
  37. 37.
    Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002;23:687–696.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang ZM, Chen ZP, Xu ZY, et al. In vitro evidence for homologous recombinational repair in resistance to melphalan. J Nall Cancer Inst 2001;93:1473–1478.CrossRefGoogle Scholar
  39. 39.
    Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 2001;412:607–614.PubMedCrossRefGoogle Scholar
  40. 40.
    Dynan WS, Yoo S. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 1998;26:1551–1559.PubMedCrossRefGoogle Scholar
  41. 41.
    Douglas P, Moorhead GB, Ye R, et al. Protein phosphatases regulate DNA-dependent pro-tein kinase activity. J Biol Chem 2001;276:18992–18998.PubMedCrossRefGoogle Scholar
  42. 42.
    Smith GC, Jackson SP. The DNA-dependent protein kinase. Genes Dev 1999;13:916–934.PubMedCrossRefGoogle Scholar
  43. 43.
    Okayasu R, Suetomi K, Yu Y, Silver A, et al. A deficiency in DNA repair and DNA-PKcs expression in the radiosensitive BALB/c mouse. Cancer Res 2000;60:4342–4345.PubMedGoogle Scholar
  44. 44.
    Christodoulopoulos G, Muller C, Salles B, et al. Potentiation of chlorambucil cytotoxicity in B-cell chronic lymphocytic leukemia by inhibition of DNA-dependent protein kinase activity using wortmannin. Cancer Res 1998;58:1789–1792.PubMedGoogle Scholar
  45. 45.
    Jhappan C, Yusufzai TM, Anderson S, et al. The p53 response to DNA damage in vivo is independent of DNA-dependent protein kinase. Mol Cell Biol 2000;20:4075–4083.PubMedCrossRefGoogle Scholar
  46. 46.
    Tang W, Willers H, Powell SN. p53 directly enhances rejoining of DNA double-strand breaks with cohesive ends in gamma-irradiated mouse fibroblasts. Cancer Res 1999;59:2562–2565.PubMedGoogle Scholar
  47. 47.
    Bill CA, Yu Y, Miselis NR, et al. A role for p53 in DNA end rejoining by human cell extracts. Mutat Res 1997;385:21–29.PubMedCrossRefGoogle Scholar
  48. 48.
    Gao Y, Ferguson DO, Xie W, et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 2000;404:897–900.PubMedCrossRefGoogle Scholar
  49. 49.
    Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer con-nection. Nature Genet 2001;27:247–254.PubMedCrossRefGoogle Scholar
  50. 50.
    Moynahan ME, Pierce AJ, Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 2001;7:263–272.PubMedCrossRefGoogle Scholar
  51. 51.
    Hakem R, de la Pompa JL, Elia A et al. Partial rescue of Brca 1 (5–6) early embryonic lethality by p53 or p21 null mutation. Nat Genet 1997;16:298–302.PubMedCrossRefGoogle Scholar
  52. 52.
    Jasin M, Berg P. Homologous integration in mammalian cells without target gene selection. Genes Dev 1988;2:1353–1363.PubMedCrossRefGoogle Scholar
  53. 53.
    Jasin M. Chromosome breaks and genomic instability. Cancer Invest 2000;18:78–86.PubMedCrossRefGoogle Scholar
  54. 54.
    Fritz G, Tano K, Mitra S, et al. Inducibility of the DNA repair gene encoding O6-methylguanine-DNA methyltransferase in mammalian cells by DNA-damaging treatments. Mol Cell Biol 1991;11:4660–4668.PubMedGoogle Scholar
  55. 55.
    Tano K, Dunn WC, Darroudi F, et al.Amplification of the DNA repair gene O6-methylguanine-DNA methyltransferase associated with resistance to alkylating drugs in a mammalian cell line. J Biol Chem 1997;272:13250–13254.PubMedCrossRefGoogle Scholar
  56. 56.
    Kokkinakis DM, Hoffman RM, Frenkel EP, et al. Synergy between methionine stress and chemotherapy in the treatment of brain tumor xenografts in athymic mice. Cancer Res 2001;61:4017–4023.PubMedGoogle Scholar
  57. 57.
    Kokkinakis DM, Ahmed MM, Delgado R, et al. Role of O6-methylguanine-DNA methyl-transferase in the resistance of pancreatic tumors to DNA alkylating agents. Cancer Res 1997;57:5360–5368.PubMedGoogle Scholar
  58. 58.
    Biswas T, Ramana CV, Srinivasan G, et al. Activation of human 06-methylguanine-DNA methyltransferase gene by glucocorticoid hormone. Oncogene 1999;18:525–532.PubMedCrossRefGoogle Scholar
  59. 59.
    Boldogh I, Ramana CV, Chen Z, et al. Regulation of expression of the DNA repair gene O6-methylguanine-DNA methyltransferase via protein kinase C-mediated signaling. Cancer Res 1998;58:3950–3956.PubMedGoogle Scholar
  60. 60.
    Bhakat KK, Mitra S. Regulation of the human O(6)-methylguanine-DNA methyltransferase gene by transcriptional coactivators cAMP response element-binding protein-binding pro-tein and p300. J Biol Chem 2000;275:34197–34204.PubMedCrossRefGoogle Scholar
  61. 61.
    Grombacher T, Mitra S, Kaina B. Induction of the alkyltransferase (MGMT) gene by DNA damaging agents and the glucocorticoid dexamethasone and comparison with the response of base excision repair genes. Carcinogenesis 1996;17:2329–2336.PubMedCrossRefGoogle Scholar
  62. 62.
    Ostrowski LE, von Wronski MA, et al. Expression of O6-methylguanine-DNA methyl-transferase in malignant human glioma cell lines. Carcinogenesis 1991;12:1739–1744.PubMedCrossRefGoogle Scholar
  63. 63.
    Wang Y, Kato T, Ayaki H, et al. Correlation between DNA methylation and expression of O6-methylguanine-DNA methyltransferase gene in cultured human tumor cells. Mutat Res 1992;273:221–230.PubMedCrossRefGoogle Scholar
  64. 64.
    Tano K, Shiota S, Collier J, et al. Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine. Proc Nall Acad Sci USA 1990;87:686–690.CrossRefGoogle Scholar
  65. 65.
    Kaina B, Fritz G, Mitra S, et al. Transfection and expression of human O6-methylguanine-DNA methyltransferase (MGMT) cDNA in Chinese hamster cells: the role of MGMT in protection against the genotoxic effects of alkylating agents. Carcinogenesis 1991;12:1857–1867.PubMedCrossRefGoogle Scholar
  66. 66.
    Natarajan AT, Vermeulen S, Darroudi F, et al. Chromosomal localization of human O6-methylguanine-DNA methyltransferase (MGMT) gene by in situ hybridization. Mutagen-esis 1992;7:83–85.CrossRefGoogle Scholar
  67. 67.
    Tatsuka M, Ibeanu GC, Izumi T, et al. Structural organization of the mouse DNA repair gene, N-methylpurine-DNA glycosylase. DNA Cell Biol 1995;14:37–45.PubMedCrossRefGoogle Scholar
  68. 68.
    Roy R, Kennel SJ, Mitra S. Distinct substrate preference of human and mouse N-methylpurine-DNA glycosylases. Carcinogenesis 1996;17:2177–2182.PubMedCrossRefGoogle Scholar
  69. 69.
    Olsson M, Lindahl T. Repair of alkylated DNA in Escherichia coli. Methyl group transfer from O6-methylguanine to a protein cysteine residue. JBiol Chem 1980;255:10569–10571.Google Scholar
  70. 70.
    Hazra TK, Roy R, Biswas T, et al. Specific recognition of O6-methylguanine in DNA by active site mutants of human O6-methylguanine-DNA methyltransferase. Biochemistry 1997;36:5769–5776.PubMedCrossRefGoogle Scholar
  71. 71.
    Srivenugopal KS, Shou J, Mullapudi SR, et al. Enforced expression of wild-type p53 curtails the transcription of the O(6)-methylguanine-DNA methyltransferase gene in human tumor cells and enhances their sensitivity to alkylating agents. Clin Cancer Res 2001;7:1398–1409.PubMedGoogle Scholar
  72. 72.
    Guo W, Liu X, Lee S, Park NH. High O6-methylguanine methyl transferase activity is fre-quently found in human oral cancer cells with p53 inactivation. Int J Oncol 1999;15:817–821.PubMedGoogle Scholar
  73. 73.
    Rolhion C, Penault-Llorca F, Kemeny JL, et al. O(6)-Methylguanine-DNA methyltransferase gene (MGMT) expression in human glioblastomas in relation to patient characteristics and p53 accumulation. Int J Cancer 1999;84:416–420.PubMedCrossRefGoogle Scholar
  74. 74.
    Grombacher T, Eichhorn U, Kaina B. p53 is involved in regulation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) by DNA damaging agents. Oncogene 1998;17:845–851.PubMedCrossRefGoogle Scholar
  75. 75.
    Bocangel DB, Finkelstein S, Schold SC, et al. Multifaceted resistance of gliomas to temozolomide. Clin Cancer Res 2002;8:2725–2734.PubMedGoogle Scholar
  76. 76.
    Nutt CL, Loktionova NA, Pegg AE, et al. O(6)-methylguanine-DNA methyltransferase activity, p53 gene status and BCNU resistance in mouse astrocytes. Carcinogenesis 1999;20:2361–2365.PubMedCrossRefGoogle Scholar
  77. 77.
    Mullapudi SR, Ali-Osman F, Shou J, et al. DNA repair protein 06-alkylguanine-DNA alkyltransferase is phosphorylated by two distinct and novel protein kinases in human brain tumour cells. Biochem J 2000;351 Pt 2:393–402.PubMedCrossRefGoogle Scholar
  78. 78.
    Srivenugopal KS, Mullapudi SR, Shou J, et al. Protein phosphorylation is a regulatory mechanism for O6-alkylguanine-DNA alkyltransferase in human brain tumor cells. Cancer Res 2000;60:282–287.PubMedGoogle Scholar
  79. 79.
    Lage H, Dietel M. Involvement of the DNA mismatch repair system in antineoplastic drug resistance. J Cancer Res Clin Oncol 1999;125:156–165.PubMedCrossRefGoogle Scholar
  80. 80.
    Marti TM, Kunz C, Fleck 0. DNA mismatch repair and mutation avoidance pathways. J Cell Physiol 2002;191:28–41.PubMedCrossRefGoogle Scholar
  81. 81.
    Fink D, Nebel S, Aebi S, et al. The role of DNA mismatch repair in platinum drug resistance. Cancer Res 1996;56:4881–4886.PubMedGoogle Scholar
  82. 82.
    Aebi S, Kurdi-Haidar B, Gordon R, et al. Loss of DNA mismatch repair in acquired resis-tance to cisplatin. Cancer Res 1996;56:3087–3090.PubMedGoogle Scholar
  83. 83.
    de las Alas MM, Aebi S, Fink D, et al. Loss of DNA mismatch repair: effects on the rate of mutation to drug resistance. J Natl Cancer Inst 1997;89:1537–1541.PubMedCrossRefGoogle Scholar
  84. 84.
    Esteller M, Risques RA, Toyota M, et al. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G : C to A : T transition mutations in p53 in human colorectal tumorigenesis. Cancer Res 2001;61:4689–4692.PubMedGoogle Scholar
  85. 85.
    Hickman MJ, Samson LD. Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents. Proc Nall Acad Sci USA 1999;96:10764–10769.CrossRefGoogle Scholar
  86. 86.
    Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biol Med 2000;29:222–230.CrossRefGoogle Scholar
  87. 87.
    Gamaley IA, Klyubin IV. Roles of reactive oxygen species: signaling and regulation of cellular functions. Int Rev Cvtol 1999;188:203–255.CrossRefGoogle Scholar
  88. 88.
    Breen AP, Murphy JA. Reactions of oxyl radicals with DNA. Free Radical Biol Med 1995;18:1033–1077.CrossRefGoogle Scholar
  89. 89.
    Muller I, Niethammer D, Bruchelt G. Anthracycline-derived chemotherapeutics in apoptosis and free radical cytotoxicity. [review]. Int J Mol Med 1998;1:491–494.PubMedGoogle Scholar
  90. 90.
    Mates JM, Sanchez-Jimenez FM. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Mt J Biochem Cell Biol 2000;32:157–170.CrossRefGoogle Scholar
  91. 91.
    Lotem J, Peled-Kamar M, Groner Y, et al. Cellular oxidative stress and the control of apoptosis by wild-type p53, cytotoxic compounds, and cytokines. Proc Natl Acad Sci USA 1996;93:9166–9171.PubMedCrossRefGoogle Scholar
  92. 92.
    Voehringer DW. BCL-2 and glutathione: alterations in cellular redox state that regulate apoptosis sensitivity. Free Radical Biol Med 1999;27:945–950.CrossRefGoogle Scholar
  93. 93.
    Carmody RJ, Cotter TG. Signalling apoptosis: a radical approach. Redox Rep 2001; 6:77–90.PubMedCrossRefGoogle Scholar
  94. 94.
    Keyse SM. Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol 2000;12:186–192.PubMedCrossRefGoogle Scholar
  95. 95.
    Buschmann T, Yin Z, Bhoumik A, et al. Amino-terminal-derived JNK fragment alters expression and activity of c-Jun, ATF2, and p53 and increases H2O2-induced cell death. J Biol Chem 2000;275:16590–16596.PubMedCrossRefGoogle Scholar
  96. 96.
    Rusnak F, Reiter T. Sensing electrons: protein phosphatase redox regulation. Trends Biochem Sci 2000;25:527–529.PubMedCrossRefGoogle Scholar
  97. 97.
    Leonarduzzi G, Arkan MC, Basaga H, et al. Lipid oxidation products in cell signaling. Free Radical Biol Med 2000;28:1370–1378.CrossRefGoogle Scholar
  98. 98.
    Fanger GR, Johnson NL, Johnson GL. MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42. EMBO J 1997;16:4961–4972.PubMedCrossRefGoogle Scholar
  99. 99.
    Fiers W, Beyaert R, Declercq W, et al. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 1999;18:7719–7730.PubMedCrossRefGoogle Scholar
  100. 100.
    Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309–1312.PubMedCrossRefGoogle Scholar
  101. 101.
    Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 1994;54:4313–4320.PubMedGoogle Scholar
  102. 102.
    Tew KD, Dutta S, Schultz M. Inhibitors of glutathione S-transferases as therapeutic agents. Adv Drug Deliv Rev 1997;26:91–104.PubMedCrossRefGoogle Scholar
  103. 103.
    Cheng JZ, Singhal SS, Saini M, et al. Effects of mGST A4 transfection on 4-hydroxynonenal-mediated apoptosis and differentiation of K562 human erythroleukemia cells. Arch Biochem Biophys 1999;372:29–36.PubMedCrossRefGoogle Scholar
  104. 104.
    Yang Y, Sharma R, Cheng JZ, et al. Protection of HLE B-3 cells against hydrogen peroxide-and naphthalene-induced lipid peroxidation and apoptosis by transfection with hGSTA1 and hGSTA2. Invest Ophthalmol Vis Sci 2002;43:434–445.PubMedGoogle Scholar
  105. 105.
    Yin Z, Ivanov VN, Habelhah H, et al. Glutathione S-transferase p elicits protection against H7O2-induced cell death via coordinated regulation of stress kinases. Cancer Res 2000;60:4053–4057.PubMedGoogle Scholar
  106. 106.
    Roy G, Horton JK, Roy R, et al. Acquired alkylating drug resistance of a human ovarian carcinoma cell line is unaffected by altered levels of pro- and anti-apoptotic proteins. Oncogene 2000;19:141–150.PubMedCrossRefGoogle Scholar
  107. 107.
    Horton JK, Roy G, Piper JT, et al. Characterization of a chlorambucil-resistant human ovarian carcinoma cell line overexpressing glutathione S-transferase mu. Biochem Pharmacol 1999;58:693–702.PubMedCrossRefGoogle Scholar
  108. 108.
    Crow JP. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1997;1:145–157.PubMedCrossRefGoogle Scholar
  109. 109.
    Brown JM, Wouters BG. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res 1999;59:1391–1399.PubMedGoogle Scholar
  110. 110.
    Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997;88:323–331.PubMedCrossRefGoogle Scholar
  111. 111.
    Prives C, Hall PA. The p53 pathway. J Pathol 1999;187:112–126.PubMedCrossRefGoogle Scholar
  112. 112.
    Parks D, Bolinger R, Mann K. Redox state regulates binding of p53 to sequence-specific DNA, but not to non-specific or mismatched DNA. Nucleic Acids Res 1997;25:1289–1295.PubMedCrossRefGoogle Scholar
  113. 113.
    Li PF, Dietz R, von Harsdorf R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J 1999;18:6027–6036.PubMedCrossRefGoogle Scholar
  114. 114.
    Polyak K, Xia Y, Zweier JL, et al. A model for p53-induced apoptosis. Nature 1997;389:300–305.PubMedCrossRefGoogle Scholar
  115. 115.
    Flatt PM, Polyak K, Tang LJ, et al. p53-dependent expression of PIG3 during proliferation, genotoxic stress, and reversible growth arrest. Cancer Lett 2000;156:63–72.PubMedCrossRefGoogle Scholar
  116. 116.
    Evan G, Littlewood T. A matter of life and cell death. Science 1998;281:1317–1322.PubMedCrossRefGoogle Scholar
  117. 117.
    Appella E, Anderson CW. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 2001;268:2764–2772.PubMedCrossRefGoogle Scholar
  118. 118.
    Datta K, Babbar P, Srivastava T, et al. p53 dependent apoptosis in glioma cell lines in response to hydrogen peroxide induced oxidative stress. Int J Biochem Cell Biol 2002:34:148–157.PubMedCrossRefGoogle Scholar
  119. 119.
    Phoa N, Epe B. Influence of nitric oxide on the generation and repair of oxidative DNA damage in mammalian cells. Carcinogenesis 2002;23:469–475.PubMedCrossRefGoogle Scholar
  120. 120.
    Wang X, Michael D, de Murcia G, et al. p53 Activation by nitric oxide involves down-regulation of Mdm2. J Biol Chem 2002;277:15697–15702.PubMedCrossRefGoogle Scholar
  121. 121.
    Cobbs CS, Samanta M, Harkins LE, et al. Evidence for peroxynitrite-mediated modifica-tions to p53 in human gliomas: possible functional consequences. Arch Biochem Biophys 2001;394:167–172.PubMedCrossRefGoogle Scholar
  122. 122.
    Ljungman M. Dial 9–1-1 for p53: mechanisms of p53 activation by cellular stress. Neoplasia 2000:2:208–225.PubMedCrossRefGoogle Scholar
  123. 123.
    Xie S, Wang Q, Wu H, et al. Reactive oxygen species-induced phosphorylation of p53 on serine 20 is mediated in part by polo-like kinase-3. J Biol Chem 2001;276:36194–36199.PubMedCrossRefGoogle Scholar
  124. 124.
    Cox LS, Lane DP. Tumour suppressors, kinases and clamps: how p53 regulates the cell cycle in response to DNA damage. Bioessays 1995;17:501–508.PubMedCrossRefGoogle Scholar
  125. 125.
    Yu K, Ravera CP, Chen YN, et al. Regulation of Myc-dependent apoptosis by p53, c-Jun N-terminal kinases/stress-activated protein kinases, and Mdm-2. Cell Growth Differ 1997:8:731–742.PubMedGoogle Scholar
  126. 126.
    Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev 1996;10:1054–1072.PubMedCrossRefGoogle Scholar
  127. 127.
    Rainwater R, Parks D, Anderson ME, et al. Role of cysteine residues in regulation of p53 function. Mol Cell Biol 1995;15:3892–3903.PubMedGoogle Scholar
  128. 128.
    Jayaraman L, Murthy KG, Zhu C, et al. Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev 1997;11:558–570.PubMedCrossRefGoogle Scholar
  129. 129.
    Evans AR, Limp-Foster M, Kelley MR. Going APE over ref-1. Mutat Res 2000;461:83–108.PubMedCrossRefGoogle Scholar
  130. 130.
    Mitra S, Hazra TK, Roy R, et al. Complexities of DNA base excision repair in mammalian cells. Mol Cells 1997:7:305–312.PubMedGoogle Scholar
  131. 131.
    Ramana CV, Boldogh I, Izumi T, et al. Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals. Proc Natl Acad Sci USA 1998;95:5061–5066.PubMedCrossRefGoogle Scholar
  132. 132.
    Gaiddon C, Moorthy NC, Prives C. Ref-1 regulates the transactivation and pro-apoptotic functions of p53 in vivo. EMBO J 1999;18:5609–5621.PubMedCrossRefGoogle Scholar
  133. 133.
    Okamoto K, Prives C. A role of cyclin G in the process of apoptosis. Oncogene 1999; 18:4606–4615.PubMedCrossRefGoogle Scholar
  134. 134.
    Hsieh MM, Hegde V, Kelley MR, et al. Activation of APE/Ref-1 redox activity is mediated by reactive oxygen species and PKC phosphorylation. Nucleic Acids Res 2001;29:3116–3122.PubMedCrossRefGoogle Scholar
  135. 135.
    Xanthoudakis S, Curran T. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J 1992;11:653–665.PubMedGoogle Scholar
  136. 136.
    Kelley MR, Cheng L, Foster R, et al. Elevated and altered expression of the multifunctional DNA base excision repair and redox enzyme Ape l/ref-1 in prostate cancer. Clin Cancer Res 2001;7:824–830.PubMedGoogle Scholar
  137. 137.
    Antonsson B, Conti F, Ciavatta A, et al. Inhibition of Bax channel-forming activity by Bcl-2. Science 1997;277:370–372.PubMedCrossRefGoogle Scholar
  138. 138.
    Yacoub A, Kelley MR, Deutsch WA. The DNA repair activity of human redox/repair protein APE/Ref-1 is inactivated by phosphorylation. Cancer Res 1997;57:5457–5459.PubMedGoogle Scholar
  139. 139.
    Mandlekar S, Kong AN. Mechanisms of tamoxifen-induced apoptosis. Apoptosis 2001;6:469–477.PubMedCrossRefGoogle Scholar
  140. 140.
    Schindl M, Oberhuber G, Pichlbauer EG, et al. DNA repair-redox enzyme apurinic endonu-clease in cervical cancer: evaluation of redox control of HIF-1 alpha and prognostic signifi-cance. Int J Oncol 2001:19:799–802.PubMedGoogle Scholar
  141. 141.
    Puglisi F, Aprile G, Minisini AM, et al. Prognostic significance of Apel/ref-1 subcellular localization in non-small cell lung carcinomas. Anticancer Res 2001;21:4041–4049.PubMedGoogle Scholar
  142. 142.
    Zhou Y, Kok KH, Chun AC, et al. Mouse peroxiredoxin V is a thioredoxin peroxidase that inhibits p53-induced apoptosis. Biochem Biophys Res Commun 2000;268:921–927.PubMedCrossRefGoogle Scholar
  143. 143.
    Tan M, Li S, Swaroop M, Guan K, et al. Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem 1999;274:12061–12066.PubMedCrossRefGoogle Scholar
  144. 144.
    Asher G, Lotem J, Kama R, et al. NQO 1 stabilizes p53 through a distinct pathway. Proc Natl Acad Sci USA 2002;99:3099–3104.PubMedCrossRefGoogle Scholar
  145. 145.
    Phillips RM, Burger AM, Fiebig HH, et al. Genotyping of NAD(P)H:quinone oxidoreduc-tase (NQO 1) in a panel of human tumor xenografts: relationship between genotype status, NQO 1 activity and the response of xenografts to mitomycin C chemotherapy in vivo(1). Biochem Pharmacol 2001;62:1371–1377.PubMedCrossRefGoogle Scholar
  146. 146.
    Yamaoka A, Kuwabara I, Frigeri LG, et al. A human lectin, galectin-3 (epsilon bp/Mac-2), stimulates superoxide production by neutrophils. J Immunol 1995;154:3479–3487.PubMedGoogle Scholar
  147. 147.
    Donald SP, Sun XY, Hu CA, et al. Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res 2001;61:1810–1815.PubMedGoogle Scholar
  148. 148.
    Ji Y, Toader V, Bennett BM. Regulation of microsomal and cytosolic glutathione S-trans-ferase activities by S-nitrosylation. Biochem Pharmacol 2002;63:1397–1404.PubMedCrossRefGoogle Scholar
  149. 149.
    Souza DG, Soares AC, Pinho V, et al. Increased mortality and inflammation in tumor necro-sis factor-stimulated gene-14 transgenic mice after ischemia and reperfusion injury. Am J Pathol 2002;160:1755–1765.PubMedCrossRefGoogle Scholar
  150. 150.
    Chiarugi V, Magnelli L, Gallo 0. Cox-2, iNOS and p53 as play-makers of tumor angiogenesis.review]. Int J Mol Med 1998;2:715–719.PubMedGoogle Scholar
  151. 151.
    Bianchi A, Becuwe P, Franck P, et al. Induction of MnSOD gene by arachidonic acid is mediated by reactive oxygen species and p38 MAPK signaling pathway in human HepG2 hepatoma cells. Free Radical Biol Med 2002;32:1132–1142.CrossRefGoogle Scholar
  152. 152.
    Macmillan-Crow LA, Cruthirds DL. Invited review: manganese superoxide dismutase in disease. Free Radic Res 2001;34:325–336.PubMedCrossRefGoogle Scholar
  153. 153.
    Drane P, Bravard A, Bouvard V, et al. Reciprocal down-regulation of p53 and SOD2 gene expression-implication in p53 mediated apoptosis. Oncogene 2001;20:430–439.PubMedCrossRefGoogle Scholar
  154. 154.
    Pani G, Bedogni B, Anzevino R, et al. Deregulated manganese superoxide dismutase expression and resistance to oxidative injury in p53-deficient cells. Cancer Res 2000; 60:4654–4660.PubMedGoogle Scholar
  155. 155.
    Oberley LW. Anticancer therapy by overexpression of superoxide dismutase. Antioxid Redox Signal 2001;3:461–472.PubMedCrossRefGoogle Scholar
  156. 156.
    Beham A, Marin MC, Fernandez A, et al. Bcl-2 inhibits p53 nuclear import following DNA damage. Oncogene 1997;15:2767–2772.PubMedCrossRefGoogle Scholar
  157. 157.
    Fritsche M, Haessler C, Brandner G. Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene 1993;8:307–318.PubMedGoogle Scholar
  158. 158.
    Schott AF, Apel IJ, Nunez G, et al. Bcl-XL protects cancer cells from p53-mediated apoptosis. Oncogene 1995;11:1389–1394.PubMedGoogle Scholar
  159. 159.
    Wosikowski K, Regis JT, Robey RW, et al. Normal p53 status and function despite the development of drug resistance in human breast cancer cells. Cell Growth Differ 1995;6:1395–1403.PubMedGoogle Scholar
  160. 160.
    Martinez JD, Pennington ME, Craven MT, et al. Free radicals generated by ionizing radia-tion signal nuclear translocation of p53. Cell Growth Differ 1997;8:941–949.PubMedGoogle Scholar
  161. 161.
    Wu HH, Thomas JA, Momand J. p53 protein oxidation in cultured cells in response to pyrrolidine dithiocarbamate: a novel method for relating the amount of p53 oxidation in vivo to the regulation of p53-responsive genes. Biochem J 2000;351:87–93.PubMedCrossRefGoogle Scholar
  162. 162.
    Liang SH, Clarke MF. Regulation of p53 localization. EurJBiochem 2001;268:2779–2783.CrossRefGoogle Scholar
  163. 163.
    Shaulsky G, Goldfinger N, Ben-Ze’ev A, et al. Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol Cell Biol 1990;10:6565–6577.PubMedGoogle Scholar
  164. 164.
    Steggerda SM, Paschal BM. Regulation of nuclear import and export by the GTPase Ran. Int Rev Cytol 2002;217:41–91.PubMedCrossRefGoogle Scholar
  165. 165.
    Giannakakou P, Sackett DL, Ward Y, et al. p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nature Cell Biol 2000;2:709–717.PubMedCrossRefGoogle Scholar
  166. 166.
    Manteuffel-Cymborowska M. Nuclear receptors, their coactivators and modulation of tran-scription. Acta Biochim Pol 1999;46:77–89.Google Scholar
  167. 167.
    Ito A, Lai CH, Zhao X, et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J 2001;20:1331–1340.PubMedCrossRefGoogle Scholar
  168. 168.
    Pomerantz J, Schreiber-Agus N, Liegeois NJ, et al. The Ink4a tumor suppressor gene product, p 19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 1998;92:713–723.PubMedCrossRefGoogle Scholar
  169. 169.
    Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998;92:725–734.PubMedCrossRefGoogle Scholar
  170. 170.
    Momand J, Wu HH, Dasgupta G. MDM2-master regulator of the p53 tumor suppressor protein. Gene 2000;242:15–29.PubMedCrossRefGoogle Scholar
  171. 171.
    Fogal V, Gostissa M, Sandy P, et al. Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J 2000;19:6185–6195.PubMedCrossRefGoogle Scholar
  172. 172.
    Seeler JS, Dejean A. The PML nuclear bodies: actors or extras? Curr Opin Genet Dev 1999;9:362–367.PubMedCrossRefGoogle Scholar
  173. 173.
    Pearson M, Carbone R, Sebastiani C, et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 2000;406:207–210.PubMedCrossRefGoogle Scholar
  174. 174.
    Rodriguez MS, Desterro JM, Lain S, et al. SUMO-1 modification activates the transcrip-tional response of p53. EMBO J 1999;18:6455–6461.PubMedCrossRefGoogle Scholar
  175. 175.
    Gottifredi V, Prives C. Molecular biology. Getting p53 out of the nucleus. Science 2001;292:1851–1852.PubMedCrossRefGoogle Scholar
  176. 176.
    Kobet E, Zeng X, Zhu Y, et al. MDM2 inhibits p300-mediated p53 acetylation and acti-vation by forming a ternary complex with the two proteins. Proc Natl Acad Sci USA 2000;97:12547–12552.PubMedCrossRefGoogle Scholar
  177. 177.
    Stommel JM, Marchenko ND, Jimenez GS, et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 1999;18:1660–1672.PubMedCrossRefGoogle Scholar
  178. 178.
    Shirangi TR, Zaika A, Moll UM. Nuclear degradation of p53 occurs during down-regulation of the p53 response after DNA damage. FASEB J 2002;16:420–422.PubMedGoogle Scholar
  179. 179.
    Kastan MB, Onyekwere 0, Sidransky D, et al. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991;51:6304–6311.PubMedGoogle Scholar
  180. 180.
    van Zandwijk N. N-acetylcysteine (NAC) and glutathione (GSH): antioxidant and chemopreventive properties, with special reference to lung cancer. J Cell Biochem 1995;22(Suppl):24–32.CrossRefGoogle Scholar
  181. 181.
    Whysner J, Williams GM. Butylated hydroxyanisole mechanistic data and risk assessment: conditional species-specific cytotoxicity, enhanced cell proliferation, and tumor promotion. Pharmacol Ther 1996;71:137–151.PubMedCrossRefGoogle Scholar
  182. 182.
    Biaglow JE, Varnes ME, Tuttle SW, et al. The effect of L-buthionine sulfoximine on the aerobic radiation response of A549 human lung carcinoma cells. Int J Radiat Oncol Biol Phys 1986;12:1139–1142.PubMedCrossRefGoogle Scholar
  183. 183.
    Decaudin D, Geley S, Hirsch T, et al. Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res 1997;57:62–67.PubMedGoogle Scholar
  184. 184.
    Marchenko ND, Zaika A, Moll UM. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 2000;275: 16,202–16,212.CrossRefGoogle Scholar
  185. 185.
    Sansome C, Zaika A, Marchenko ND, et al. Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett 2001;488:110–115.PubMedCrossRefGoogle Scholar
  186. 186.
    Moll UM, Zaika A. Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett 2001;493:65–69.PubMedCrossRefGoogle Scholar
  187. 187.
    Donahue RJ, Razmara M, Hoek JB, et al. Direct influence of the p53 tumor suppressor on mitochondrial biogenesis and function. FASEB J 2001;15:635–644.PubMedCrossRefGoogle Scholar
  188. 188.
    Chen L, Agrawal S, Zhou W, et al. Synergistic activation of p53 by inhibition of MDM2 expression and DNA damage. Proc Nall Acad Sci USA 1998;95:195–200.CrossRefGoogle Scholar
  189. 189.
    Ryan KM, Phillips AC, Vousden KH. Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol 2001;13:332–337.PubMedCrossRefGoogle Scholar
  190. 190.
    Prives C. Signaling to p53: breaking the MDM2-p53 circuit. Cell 1998;95:5–8.PubMedCrossRefGoogle Scholar
  191. 191.
    Jayaraman L, Freulich E, Prives C. Functional dissection of p53 tumor suppressor protein. Methods Enzymol 1997;283:245–256.PubMedCrossRefGoogle Scholar
  192. 192.
    Locigno R, Castronovo V. Reduced glutathione system: role in cancer development, preven-tion and treatment. [review]. Int J Oncol 2001;19:221–236.PubMedGoogle Scholar
  193. 193.
    Kirsch M, De Groot H. NAD(P)H, a directly operating antioxidant? FASEB J 2001; 15:1569–1574.PubMedCrossRefGoogle Scholar
  194. 194.
    Gulick AM, Fahl WE. Mammalian glutathione S-transferase: regulation of an enzyme sys-tem to achieve chemotherapeutic efficacy. Pharmacol Ther 1995;66:237–257.PubMedCrossRefGoogle Scholar
  195. 195.
    Mantymaa P, Siitonen T, Guttorm T, et al. Induction of mitochondrial manganese superox-ide dismutase confers resistance to apoptosis in acute myeloblastic leukaemia cells exposed to etoposide. Br J Haematol 2000;108:574–581.PubMedCrossRefGoogle Scholar
  196. 196.
    Izutani R, Asano S, Imano M, Kuroda D, Kato M, Ohyanagi H. Expression of manganese superoxide dismutase in esophageal and gastric cancers. J Gastroenterol 1998;33:816–822.PubMedCrossRefGoogle Scholar
  197. 197.
    Morel Y, Barouki R. Repression of gene expression by oxidative stress. Biochem J 1999;342(Pt 3):481–496.PubMedCrossRefGoogle Scholar
  198. 198.
    Lazo JS, Kuo SM, Woo ES, et al. The protein thiol metallothionein as an antioxidant and protectant against antineoplastic drugs. Chem Biol Interact 1998;111–112:255–262.PubMedCrossRefGoogle Scholar
  199. 199.
    Hayashi S, Takamiya R, Yamaguchi T, et al. Induction of heme oxygenase-1 suppresses venular leukocyte adhesion elicited by oxidative stress: role of bilirubin generated by the enzyme. Circ Res 1999;85:663–671.PubMedCrossRefGoogle Scholar
  200. 200.
    Sies H, Stahl W, Sundquist AR. Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids. Ann NY Acad Sci 1992;669:7–20.PubMedCrossRefGoogle Scholar
  201. 201.
    Crawford DR, Davies KJ. Adaptive response and oxidative stress. Environ Health Perspect 1994;102(Suppl 10):25–28.PubMedCrossRefGoogle Scholar
  202. 202.
    Merad-Saidoune M, Boitier E, Nicole A, et al. Overproduction of Cu/Zn-superoxide dismutase or Bcl-2 prevents the brain mitochondrial respiratory dysfunction induced by glutathione depletion. Exp Neurol 1999;158:428–436.CrossRefGoogle Scholar
  203. 203.
    Lee YJ, Chen JC, Amoscato AA, et al. Protective role of Bcl2 in metabolic oxidative stress-induced cell death. J Cell Sci 2001;114:677–684.PubMedGoogle Scholar
  204. 204.
    Reed JC. Cytochrome c: can’t live with it—can’t live without it. Cell 1997;91:559–562.PubMedCrossRefGoogle Scholar
  205. 205.
    Vander Heiden MG, Chandel NS, Williamson EK, et al. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 1997;91:627–637.CrossRefGoogle Scholar
  206. 206.
    Ellerby LM, Ellerby HM, Park SM, et al. Shift of the cellular oxidation-reduction potential in neural cells expressing Bcl-2. J Neurochem 1996;67:1259–1267.PubMedCrossRefGoogle Scholar
  207. 207.
    Papadopoulos MC, Koumenis IL, Xu L, et al. Potentiation of murine astrocyte antioxidant defence by bcl-2: protection in part reflects elevated glutathione levels. Eur J Neurosci 1998;10:1252–1260.PubMedCrossRefGoogle Scholar
  208. 208.
    Lee M, Hyun DH, Marshall KA, Ellerby LM, et al. Effect of overexpression of BCL-2 on cellular oxidative damage, nitric oxide production, antioxidant defenses, and the proteasome. Free Radical Biol Med 2001:31:1550–1559.CrossRefGoogle Scholar
  209. 209.
    Zamzami N, Marzo I, Susin SA, et al. The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition. Oncogene 1998;16:1055–1063.PubMedCrossRefGoogle Scholar
  210. 210.
    Zhan Q, Kontny U, Iglesias M, et al. Inhibitory effect of Bcl-2 on p53-mediated transactivation following genotoxic stress. Oncogene 1999;18:297–304.PubMedCrossRefGoogle Scholar
  211. 211.
    Durocher D, Jackson SP. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol 2001;13:225–231.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Istvan Boldogh
  • Kishor K. Bhakat
  • Dora Bocangel
  • Gokul C. Das
  • Sankar Mitra

There are no affiliations available

Personalised recommendations