Skip to main content

Strand-Break Repair and Radiation Resistance

  • Chapter
DNA Repair in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 254 Accesses

Abstract

Radiotherapy is at the dawn of a new era, in which molecular radiation biology is coming into use for clinical decision-making. During the last decade of the 20th century, new research and technical developments were achieved. A new three-dimensional (3D) treatment optimization technology became available. In addition new biological principles are better understood for application in the area of clinical radiation oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morgenbesser SD, Williams BO, Jacks T, et al. P53-depdendent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 1994;871:72–74.

    Article  Google Scholar 

  2. Lane D. P53, guardian of the genome. Nature 1992;858:15–16.

    Article  Google Scholar 

  3. Oleinick NL, Chiu S, Friedman LR, et al. DNA—protein crosslinks: new insights into their formation and repair in irradiated mammalian cells. In: Simic MG, Grossman L, Upton AC, eds. Mechanism of DNA Damage and Repair Repair, Plenum, New York, 1986:181–192.

    Chapter  Google Scholar 

  4. Radford IR. Effect of radiomodifying agents on the ratios of X-ray-induced lesions in cellular DNA: use in lethal lesions determination. Int J Radiat Biol 1986;49:621–637.

    Article  CAS  Google Scholar 

  5. Fornace AJ, Little JB. DNA crosslinking induced by X-rays and chemical agents. Biochim Biophys Acta 1977;477:343–355.

    Article  PubMed  CAS  Google Scholar 

  6. Cutler RG. Crosslinkage hypothesis of aging: DNA adducts in chromatin as a primary aging process. In: Smith KD, ed. Aging, Carcinogenesis, and Radiation Biology. Plenum, New York, 1976;443–492.

    Google Scholar 

  7. Cerutti PA. Base damage induced by ionizing radiation. In: Wang SY, ed. Photochemistry and Photobiology of Nucleic Acids. Wang Academic, New York, 1976;vol II:375–401.

    Google Scholar 

  8. Cerutti PA. Effects of ionizing radiation on mammalian cells. Naturwissenschaften 1974;61:51–59.

    Article  PubMed  CAS  Google Scholar 

  9. Patil MS, Locher SE, Hariharan PV. Radiation induced thymine base damage and its excision repair in active and inactive chromatin of HeLa cells. Int J Radiat Biol 1985;48:691–700.

    Article  CAS  Google Scholar 

  10. Brent TP. Purification and characterization of human endonucleases specific for damaged DNA. Analysis of lesions induced by UV or X-radiation. Biochim Biophys Acta 1976;454: 172–183.

    Article  PubMed  CAS  Google Scholar 

  11. Grosovsky AJ, De Boer JG, Drobetsky EA, et al. DNA sequence analysis of ionizing radiation induced mutation in mammalian cells. 8(th) Int Congr Radiat Res 1987; abstract 217.

    Google Scholar 

  12. Ahnström G Edvarsson KA. Radiation-induced single-strand breaks in DNA determined by rate of alkaline strand separation and hydroxylapatite chromatography: an alternative to velocity sedimentation. Int J Radiat Biol 1974;26:493–497.

    Article  Google Scholar 

  13. Coquerelle T, Bopp A, Kessler B, et al. Strand breaks and 5′-end groups in DNA of irradiated thymocytes. Int J Radiat Biol 1973;24:397–404.

    Article  CAS  Google Scholar 

  14. Kohn KW, Erickson, LC, Ewing RAG, et al. Fractionation of DNA from mammalian cells by alkaline elution. Biochemistry 1976 15:4629–4637.

    Article  PubMed  CAS  Google Scholar 

  15. Roots R, Yang, TC, Craise I, et al. Impaired repair capacity of DNA breaks induced in mammalian cellular DNA by accelerated heavy inns Raddiat. Res 1979;78; 38_49

    Article  CAS  Google Scholar 

  16. Sakai K, Okada S. Radiation-induced DNA damage and cellular lethality in cultured mammalian cells. Radiat Res 1984;98:479–490.

    Article  PubMed  CAS  Google Scholar 

  17. Woods WG, Lopez, M, Kalvonjian M. Normal repair of gamma-radiation induced single- and double-strand DNA breaks in retinoblastoma fibroblasts. Biochim Biophys Acta 1982;698:40–48.

    Article  PubMed  CAS  Google Scholar 

  18. Lennartz M, Coquerelle T, Bopp A, et al. Oxygen effect on strand breaks and specific endgroups in DNA of irradiated thymocytes. Int J Radiat Biol 1975;27: 577–587.

    Article  CAS  Google Scholar 

  19. Palcic B, Skarsgard LD. The effects of oxygen on DNA single-strand breaks produced by ionizing radiation in mammalian cells. Int J Radiat Biol 1972;21:417–433.

    Article  CAS  Google Scholar 

  20. Koch CJ, Painter RB. The effects of extreme hypoxia on the repair DNA single-strand breaks in mammalian cells. Radiat Res 1975;64:256–269.

    Article  PubMed  CAS  Google Scholar 

  21. Van der Schans GP, Centen HB, Lohman PHM. The induction of gamma endonucleasesusceptible sites by gamma rays in CHO cells and their cellular repair are not affect by the presence of thiol compounds during irradiation. Mutat Res 1979;59:119–122.

    Article  PubMed  Google Scholar 

  22. Chiu S, Oleinick NL, Friedman LR, et al. Hypersensitivity of DNA in transcriptionally active chromatin to ionizing radiation. Biochim Biophys Acta 1982;699:15–21.

    Article  PubMed  CAS  Google Scholar 

  23. Hariharan PV, Eleczko S, Smith BP, et al. Normal rejoining of DNA strand breaks in ataxia telangiectasia fibroblast lines after low X-ray exposure. Radiat Res 198186:589–597.

    Article  PubMed  CAS  Google Scholar 

  24. Paterson MC, Smith BP, Lohman PHM, et al. Defective excision repair of gamma-ray damaged DNA in human (ataxia telangiectasia) fibroblasts. Nature 1976;260:444–446.

    Article  PubMed  CAS  Google Scholar 

  25. Edgren M, Revesz L, Larsson A. Induction and repair of single-strand DNA breaks after X-irradiation of human fibroblasts deficient in glutathione. hit J Radiat Biol 1981;40:355–363.

    Article  CAS  Google Scholar 

  26. Revesz L, Edgren M. Glutathione dependent yield and repair of single-strand breaks in irradiated cells. Br J Cancer Res 1984;49(Suppl VI):55–60.

    Google Scholar 

  27. Blocher D. DNA double-strand breaks in Ehrlich ascites tumour cells at low doses of X-rays. Determination of induced breaks by centrifugation at reduced speed. Int J Radiat Biol 1982;42:317–328.

    Article  CAS  Google Scholar 

  28. Corry PM, Cole A. Radiation-induced double-strand scissions of the DNA of mammalian metaphase cells. Radiat Res 1968;36:528–543.

    Article  PubMed  CAS  Google Scholar 

  29. Lehman AR, Stevens S. The production and repair of double-strand breaks in cells from normal humans and from patients with Ataxia telangiectasia. Biochim Biophys Acta 1977474:49–60.

    Article  PubMed  CAS  Google Scholar 

  30. Elkind MM. DNA repair and cell repair, are they related? Int J Radiat Oncol Biol Phys 1979;5:1089–1094.

    Article  PubMed  CAS  Google Scholar 

  31. Fankenberg-Schwager M, Frankenberg D, et al. Repair of DNA double-strand breaks in irradiated yeast cells under nongrowth conditions. Radiat Res 1980;82:498–510.

    Article  Google Scholar 

  32. Van der Schans GP, Centen HB, Lohman PHM. DNA lesions induced by ionizing radiation. In: Natarajan AT, Obe G, Altmann H, eds. Progress in Mutation Research. Elsevier, Amsterdam, 1982;vol 4, 285–299.

    Google Scholar 

  33. Van der Schans GP, Paterson MC, Cross WG. DNA strand breaks and rejoining in cultured human fibroblasts exposed to fast neutron or gamma rays. Int J Radiat Biol 1983;44:75–85.

    Article  Google Scholar 

  34. Coquerelle T, Weibezahn KF. Rejoining of DNA double-strand breaks in human fibroblasts and its impairment in one ataxia telangiectasia and two Fanconi strains. J Supramol Struct Cell Biochem 1981;17:369–376.

    Article  PubMed  CAS  Google Scholar 

  35. Resnick MA. The repair of double strand breaks in DNA: a model involving recombination. J Theor Biol 1976;59:97–106.

    Article  PubMed  CAS  Google Scholar 

  36. Weibezahn KF, Coquerelle T. Radiation-induced DNA double-strand breaks are rejoined by ligation and recombination process. Nucleic Acids Res 1981;9:3139–3150.

    Article  PubMed  CAS  Google Scholar 

  37. Radford IR. The level of induced DNA double-strand breakage correlates with cell killing after X-irradiation. Int J Radiat Biol 1990;48:45–54.

    Article  Google Scholar 

  38. Schwartz JL, Rotmensch J, Giovanazzi SM, et al. Faster repair of DNA double-strand breaks in radioresistant human tumour cells. Intl J Radiat Oncol Biol Phys 1988;15:907–912.

    Article  CAS  Google Scholar 

  39. Kelland LR, Edwards SM, Steel G. Induction and rejoining of DNA double-strand breaks in human cervix carcinoma cell lines of differing radiosensitivity. Radiat Res 1988;116:526–538.

    Article  PubMed  CAS  Google Scholar 

  40. Green A, Pager A, Stout PM, et al. Relationships between DNA damage and the survival of radiosensitive mutant Chinese hamster cell lines exposed to gamma-radiation. Part I: intrinsic radiosensitivity. Intl J Radiat Biol 1992;61:465–472.

    Article  PubMed  CAS  Google Scholar 

  41. Alaoui-Jamali MA, Batist G, Lehnert S. Radiation-induced damage to DNA in drug and radiation-resistant sublines of a human breast cancer cell line. Radiat Res 1992;129:37–42.

    Article  PubMed  CAS  Google Scholar 

  42. Chang EH, Pirollo KF, Zou ZQ, et al. Oncogenes in radioresistant, noncancerous skin fibroblasts from a cancer-prone family. Science 1987;234:1036–1039.

    Article  Google Scholar 

  43. Kasid UN, Pfeifer A, Weichselbaum RR, et al. The ras oncogene is associated with a radiationresistant human laryngeal cancer. Science 1987;234:1039–1041.

    Article  Google Scholar 

  44. Fitz Gerald TJ, Daugherty C, Kase K, et al. Activated human N-ras oncogene enhances X-irradiation repair of mammalian cells in vitro less effectively at low dose rate. Am J Cln Oncol 1985;8:517–522.

    Article  CAS  Google Scholar 

  45. Sklar MD. The ras oncogenes increase the intrinsic resistance of NIH 3T3 cells to ionizing radiation. Science 1988;239:645–647.

    Article  PubMed  CAS  Google Scholar 

  46. Ling CC, Endlich B. Radioresistance induced by oncogenic transformation. Radiat Res 1989;120:267–279.

    Article  PubMed  CAS  Google Scholar 

  47. McKenna WG, Weiss MC, Bakanauskas VJ, et al. The role of the H-ras oncogene in radiation resistance and metastasis. Int J Radiat Oncol Biol Phys 1990;18:849–859.

    Article  PubMed  CAS  Google Scholar 

  48. Iliakis G, Metzger L, Muschel RJ, et al. Induction and repair of DNA double strand breaks in radiation-resistant cells obtained by transformation of primary rate embryo cells with oncogenes H-ras and v-myc. Cancer Res 1990;50:6575–6579.

    PubMed  CAS  Google Scholar 

  49. Gordon DJ, Milner AW, Beaney RP, et al. The increase in radioresistance of V79 cells cultured as spheroids is correlated to changes in nuclear morphology. Radiat Res 1990;121:174–179.

    Article  Google Scholar 

  50. Kapiszewska M, Wright WD, Lange CS, et al. DNA supercoiling changes in nucleoids from irradiated L5178Y-S and -R cells. Radiat Res 1989;119:569–575.

    Article  PubMed  CAS  Google Scholar 

  51. Burzio LO, Riquelme PT, Koide SS. ADP ribosylation of rate liver nucleosomal core histones. J Biol Chem 1979;254:3029–3037.

    PubMed  CAS  Google Scholar 

  52. Riquelme PT, Burzio LO, Koide SS. Poly(ADP-ribose) synthetase activity in rat testis mitochondria. J Biol Chem 1979;254:3018–3028.

    PubMed  CAS  Google Scholar 

  53. Endres M, Wang ZQ, Namura S, et al. Ischemic brain injury is mediated by the activation of poly(ADP-ribose) polymerase. J Cereb Blood Flow Metab 1997; 17 1140:1143.

    Google Scholar 

  54. Eliasson MJ, Sampei K, Mandir AS, et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nature Med 1997;3:1089.

    Article  PubMed  CAS  Google Scholar 

  55. Szabo C, Dawson VL. Role of poly(ADP-ribose) synthetase in inflammation and ischaemiareperfusion. Trends Pharmacol Sci 1998:19:287.

    Article  PubMed  CAS  Google Scholar 

  56. Paterson MC, Smith BP, Lohman PH, et al. Defective excision repair of gamma-ray-damaged DNA in human (ataxia telangiectasia) fibroblasts. Nature 1976;260:444–447.

    Article  PubMed  CAS  Google Scholar 

  57. Lavin MF, Davidson M. Repair of strand breaks in superhelical DNA of ataxia telangiectasia lymphoblastoid cells. Cell J Sci 1981;48:383–391.

    CAS  Google Scholar 

  58. Cole J, Arlett CF, Green MH, et al. Comparative human cellular radiosensitivity: II. The survival following gamma-irradiation of unstimulated (GO) T-lymphocytes, T-lymphocyte lines, lymphoblastoid cell lines and fibroblasts from normal donors, from ataxia-telangiectasia patients and from ataxia-telangiectasia heterozygotes. Int J Radiat Biol 1988;54:929–943.

    Article  PubMed  CAS  Google Scholar 

  59. Cornforth MN, Bedford JS. On the nature of a defect in cells from individuals with ataxiatelangiectasia. Science 1985;227:1589–1591.

    Article  PubMed  CAS  Google Scholar 

  60. Marecki JC, McCord JM. The inhibition of poly (ADP-ribose) polymerase enhances growth rates of ataxia telangiectasia cells. Arch Biochem Biophys 2002;402:227–234.

    Article  PubMed  CAS  Google Scholar 

  61. Yu SW, Wang H, Poitras MF, et al. Mediation of poly(ADP-ribose) polymerase- l -dependent cell death by apoptosis-inducing factor. Science 2002;297(5579):259–263.

    Article  PubMed  CAS  Google Scholar 

  62. Tsujimoto Y, Cossman E, Jaffe E, et al. Involvement of the bcl-2 gene in human follicular lymphoma. Science 1985;228:1440–1443.

    Article  PubMed  CAS  Google Scholar 

  63. McDonnell T, Troncosco P, Brisbay S, et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 1992;52:6940–6944.

    PubMed  CAS  Google Scholar 

  64. Bhargava V, Kell D, Van de Rijn M, et al. Bcl-2 immunoreactivity in breast carcinoma correlates with hormone receptor positivity. Am J Pathol 1994;145:535–540.

    PubMed  CAS  Google Scholar 

  65. Reed J, Meister L, Tanaka S, et al. Differential expression of bcl-2 protooncogene in neuroblastoma and other human tumor cell lines of neural origin. Cancer Res 1991;51:6529–6538.

    PubMed  CAS  Google Scholar 

  66. Hockenberry D, Oltvai Z, Yin XM, et al. Bcl-2 functions in an antioxident pathway to prevent apoptosis. Cell 1993;75:241–251.

    Article  Google Scholar 

  67. Sandstrom P, Mannic M, Buttke T. Inhibition of activation-induced death in T cell hybridomas by thiol antioxidants: oxidative stress as a mediator of apoptosis. J Leukocyte Biol 1994;55:221–226.

    PubMed  CAS  Google Scholar 

  68. Kane D, Saralin T, Auton S, et al. Bcl-2 inhibition of neural cell death: decreased generation of reactive oxygen species. Science 1993;262:1274–1276.

    Article  PubMed  CAS  Google Scholar 

  69. Story M, Vochringer D, Malone C, et al. Radiation-induced apoptosis in sensitive and resistant cells isolated from a mouse lymphoma. Int J Radiat Biol 1994;66:659–669.

    PubMed  CAS  Google Scholar 

  70. Overgaard J, Horsman MR. Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 1996;6:10–21.

    Article  PubMed  Google Scholar 

  71. Saunders M, Dische S. Clinical results of hypoxic cell radiosensitization from hyperbaric oxygen to accelerated radiotherapy, carbogen and nicotinamide. BrJ Cancer 1996;27(Suppl): S271-S278.

    Google Scholar 

  72. Overgaard J. Sensitization of hypoxic tumor cells-clinical experience. Int J Radiat Biol 1989;56:801–811.

    Article  PubMed  CAS  Google Scholar 

  73. Werner-Wasik M, Schmid CH, Bornstein L, et al. Prognostic factors for local and distant recurrence in stage I and II cervical carcinoma. Int J Radiat Oncol Biol Phvs 1995;32:1309–1317.

    Article  CAS  Google Scholar 

  74. Fein DA, Le WR, Henlon AL, et al. Pretreatment hemoglobin level influences local control and survival of T1-T2 squamous cell carcinomas of the glottic larynx. J Clin Oncol 1995;13:2077–2083.

    PubMed  CAS  Google Scholar 

  75. Dubray B, Mosseri V, Brunin F, et al. Anemia is associated with lower local-regional control and survival after radiation therapy for head and neck cancer: a prospective study. Radiology 1996;201; 553–558

    PubMed  CAS  Google Scholar 

  76. Dische S, Warburton MF, Saunders MI. Radiation myelitis and survival in the radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys 1988;15:75–81.

    Article  PubMed  CAS  Google Scholar 

  77. Sasai K, Ono K, Hiraoka M, et al. The effect of arterial oxygen content on the results of radiation therapy for epidermoid bronchogenic carcinoma. Int J Radiat Oncol Biol Phys 1989;16:1477–1481.

    Article  PubMed  CAS  Google Scholar 

  78. Cole CJ, Pollack A, Zagars GK, et al. Local control of muscle-invasive bladder cancer: preoperative radiotherapy and cystectomy versus cystectomy alone. Int J Radiat Oncol Biol Phys 1955;32:331–340.

    Article  Google Scholar 

  79. Greven KM, Solin LJ, Hanks GE. Prognostic factors in patients with bladder carcinoma treated with definitive irradiation. Cancer 1990;65:908–912.

    Article  PubMed  CAS  Google Scholar 

  80. Dunphy EP, Peterson IA, Cox RS, et al. The influence of initial hemoglobin and blood pressure levels on results of radiation therapy for carcinoma of the prostate. Int JRadiat Oncol Biol Phys 1989;16:1173–1178.

    Article  CAS  Google Scholar 

  81. Siemann DW, Horsman MR, Chaplin DJ. The radiation response of KHT sarcomas following nicotinamide treatment and carbogen breathing. Radiother Oncol 1994;31: 117–122.

    Article  PubMed  CAS  Google Scholar 

  82. Fenton BM, Lord EM, Paoni SF. Enhancement of tumor perfusion and oxygenation by carbogen and nicotinamide during single- and multifraction irradiation. Radiat Res 2000;153:75–83.

    Article  PubMed  CAS  Google Scholar 

  83. Kaanders JH, Pop LA, Manes HA, et al. Accelerated radiotherapy with carbogen and nicotinamide (ARCON) for laryngeal cancer. Radiother Oncol 1998;48:115–122.

    Article  PubMed  CAS  Google Scholar 

  84. Hoskin PJ, Saunders MI, Dische S. Hypoxic radiosensitizers in radical radiotherapy for patients with bladder carcinoma: hyperbaric oxygen, misonidazole, and accelerated radiotherapy, carbogen, and nicotinamide. Cancer 1999;86:1322–1328.

    Article  PubMed  CAS  Google Scholar 

  85. Overgaard J, Hansen HS, Overgaard M, et al. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5–85. Radiother Oncol 1998;46:135–146.

    Article  PubMed  CAS  Google Scholar 

  86. Von Pawel J, von Rosemeling R, Gatzemeier U, et al. Tirapazamine plus cisplatin versus cisplatin in advanced non-small-cell lung cancer: a report of the international CATAPULT I study group. Cisplatin and tirapazamine in subjects with advanced previously untreated nonsmall-cell lung tumors. J Clin Oncol 2000;18:1351–1359.

    Google Scholar 

  87. Rischin D, Peters L, Hicks R, et al. Phase I trial of concurrent tirapazamine, cisplatin, and radiotherapy in patients with advanced head and neck cancer. J Clin Oncol 2001;19:535–542.

    PubMed  CAS  Google Scholar 

  88. Craighead PS, Pearcey R, Stuart G. A phase I/II evaluation of tirapazamine administered intravenously concurrent with cisplatin and radiotherapy in women with locally advanced cervical cancer. Int J Radiat Oncol Biol Phys 2000;48:791–795.

    Article  PubMed  CAS  Google Scholar 

  89. Kovacs MS, Hocking DJ, Evans JW, et al. Cisplatin anti-tumor potentiation by tirapazamine results from a hypoxia-dependent cellular sensitization to cisplatin. Br J Cancer 1999;80: 1245–1251.

    Article  PubMed  CAS  Google Scholar 

  90. Goldberg Z, Evans J, Birrell G, et al. An investigation of the molecular basis for the synergistic interaction of tirapazamine and cisplatin. hit J Radiat Oncol Phys 2001;49:175–182.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shenouda, G. (2004). Strand-Break Repair and Radiation Resistance. In: Panasci, L.C., Alaoui-Jamali, M.A. (eds) DNA Repair in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-735-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-735-2_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-480-7

  • Online ISBN: 978-1-59259-735-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics