Skip to main content

Hepatic Veno-Occlusive Disease

  • Chapter
  • 142 Accesses

Part of the book series: Contemporary Hematology ((CH))

Abstract

The clinical syndrome of hepatic veno-occlusive disease (VOD) after hematopoietic stem cell transplantation (HSCT) is characterized by liver enlargement and pain, fluid retention, weight gain, and jaundice (1–3). Its onset is typically by d +30 after stem cell transplantation (SCT), although later onset has been described (4). As the diagnosis is based on clinical criteria, the incidence reported and severity seen is variable, ranging from 10% to 60%, and may be influenced by differences in conditioning regimens and patient characteristics (5,6). Prognosis is also variable. Mild disease is defined by no apparent adverse effect from liver dysfunction with complete resolution of symptoms and signs. Moderate disease is characterized by adverse effects of liver dysfunction requiring therapy such as diuresis for fluid retention and analgesia for right upper-quadrant pain but with eventual complete resolution. The majority of patients fall into the mild to moderate category, but a significant fraction of VOD is severe, and although occasional patients may recover, most are essentially incurable, with a fatality rate approaching 100% (5,7). VOD is considered to be part of the spectrum of nonmyeloid organ injury syndromes that can occur after high-dose therapy and SCT, which include idiopathic pneumonitis, diffuse alveolar hemorrhage, thrombotic microangiopathy, and capillary-leak syndrome. There is a growing body of evidence indicating that early injury to vascular endothelium either directly by the conditioning regimen or indirectly through the production of certain cytokines is a common denominator of these events (8–10). This may explain why VOD is more common in allogeneic SCT (a11oSCT), where there is a greater degree of cytokine dysregulation and immune dysfunction, as compared to autologous SCT (autoSCT) (5).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McDonald GB, Sharma P, Matthews DE, et al. Venocclusive disease of the liver after bone marrow transplantation: diagnosis, incidence, and predisposing factors. Hepatology 1984; 4: 116–122.

    Article  PubMed  CAS  Google Scholar 

  2. Bearman SI. The syndrome of hepatic veno-occlusive disease after marrow transplantation. Blood 1995; 85: 3005–3020.

    PubMed  CAS  Google Scholar 

  3. Richardson PG, Guinan EC. The pathology, diagnosis and treatment of hepatic veno-occlusive disease: current status and novel approaches. Br J Haematol 1999; 107: 485–493.

    Article  PubMed  CAS  Google Scholar 

  4. Lee JL, Gooley T, Bensinger W, et al. Venocclusive disease of the liver after high-dose chemotherapy with alkylating agents: incidence, outcome and risk factors. Hepatology 1997; 26 (pt 2): 149A.

    Google Scholar 

  5. Cameras E, Bertz H, Arcese W, et al. Incidence and outcome of hepatic veno-occlusive disease after blood or marrow transplantation: a prospective cohort study of the European Group for Blood and Marrow Transplantation. European Group for Blood and Marrow Transplantation Chronic Leukemia Working Party. Blood 1998; 92: 3599–3604.

    Google Scholar 

  6. McDonald GB. Venocclusive disease of the liver following marrow transplantation. Marrow Transplant Rev 1993; 3: 49–56.

    Google Scholar 

  7. McDonald GB, Hinds MS, Fisher LD, et al. Veno-occlusive disease of the liver and multiorgan failure after bone marrow transplantation: a cohort study of 355 patients. Ann Intern Med 1993; 118: 255–267.

    PubMed  CAS  Google Scholar 

  8. Holler E, Kolbe HJ, Moller A, et al. Increased serum levels of TNFa precede major complications of bone marrow transplantation. Blood 1990; 75: 1011–1016.

    PubMed  CAS  Google Scholar 

  9. Krenger W, Hill GR, Ferrara JLM. Cytokine cascades in acute graft-versus-host disease. Transplantation 1997; 64: 553–558.

    Article  PubMed  CAS  Google Scholar 

  10. Baglin TP. Veno-occlusive disease of the liver complicating bone marrow transplantation. Bone Marrow Transplant 1994; 13: 1–4.

    PubMed  CAS  Google Scholar 

  11. Shirai M, Nagashima K, Iwasaki S, et al. A light and scanning electron microscopic study of hepatic veno-occlusive disease. Acta Pathol Jpn 1987; 37: 1961–1971.

    PubMed  CAS  Google Scholar 

  12. Shulman HM, McDonald GB, Matthews D, et al. An analysis of hepatic venocclusive disease and centrilobular hepatic degeneration following bone marrow transplantation. Gastroenterology 1980; 79: 1178–1191.

    PubMed  CAS  Google Scholar 

  13. Shulman HM, Fisher LB, Schoch HG, et al. Venoocclusive disease of the liver after marrow transplantation: histological correlates of clinical signs and symptoms. Hepatology 1994; 19: 1171–1180.

    Article  PubMed  CAS  Google Scholar 

  14. Shulman HM, Gown AM, Nugent DJ. Hepatic veno-occlusive disease after bone marrow transplantation. Immunohistochemical identification of the material within occluded central venules. Am J Pathol 1987; 127: 549–558.

    PubMed  CAS  Google Scholar 

  15. DeLeve L, Shulman HM, McDonald GB. Toxic injury to hepatic sinusoids: sinusoidal obstruction syndrome (veno-occlusive disease). Semin Liver Dis 2002; 22: 27–42.

    Article  PubMed  Google Scholar 

  16. DeLeve LD. Cellular target of cyclophosphamide toxicity in the murine liver: role of glutathione and site of metabolic activation. Hepatology 1996; 24: 830–837.

    Article  PubMed  CAS  Google Scholar 

  17. Allen JR, Carstens LA, Katagiri GJ. Hepatic veins of monkeys with veno-occlusive disease. Sequential ultrastructural changes. Arch Pathol 1969; 87: 279–289.

    PubMed  CAS  Google Scholar 

  18. Ridker PN, McDermont WV. Hepatotoxicity due to comfrey herb tea [letter; comment] [see comments]. Am JMed 1989; 87: 701.

    CAS  Google Scholar 

  19. Traber PG, Chianale J, Gumucio JJ. Physiologic significance and regulation of hepatocellular heterogeneity [see comments]. Gastroenterology 1988; 95: 1130–1143.

    PubMed  CAS  Google Scholar 

  20. el Mouelhi M, Kauffman FC. Sublobular distribution of transferases and hydrolases associated with glucuronide, sulfate and glutathione conjugation in human liver. Hepatology 1986; 6: 450–456.

    Article  PubMed  CAS  Google Scholar 

  21. Deleve LD. Dacarbazine toxicity in murine liver cells: a model of hepatic endothelial injury and glutathione defense. J Pharmacol Exp Ther 1994; 268: 1261–1270.

    PubMed  CAS  Google Scholar 

  22. Teicher BA, Crawford JM, Holden SA, et al. Glutathione monoethyl ester can selectively protect liver from high dose BCNU or cyclophosphamide. Cancer 1988; 62: 1275–1281.

    Article  PubMed  CAS  Google Scholar 

  23. Grochow LB. Busulfan disposition: the role of therapeutic monitoring in bone marrow transplantation induction regimens. Semin Oncol 1993; 20: 18–25.

    PubMed  CAS  Google Scholar 

  24. Hassan M, Oberg G, Bekassy AN, et al. Pharmacokinetics of high-dose busulphan in relation to age and chronopharmacology. Cancer Chemother Pharmacol 1991; 28: 130–134.

    Article  PubMed  CAS  Google Scholar 

  25. Schuler U, Schroer S, Kuhnle A, et al. Busulfan pharmacokinetics in bone marrow transplant patients: is drug monitoring warranted? Bone Marrow Transplant 1994; 14: 759–765.

    PubMed  CAS  Google Scholar 

  26. Yeager AM, Wagner JE Jr, Graham ML, et al. Optimization of busulfan dosage in children undergoing bone marrow transplantation: a pharmacokinetic study of dose escalation. Blood 1992; 80: 2425 2428.

    Google Scholar 

  27. Slattery JT, Kalhorn TF, McDonald GB, et al. Conditioning regimen-dependent disposition of cyclophosphamide and hydroxycyclophosphamide in human marrow transplantation patients. J Clin Oncol 1996; 14: 1484–1494.

    PubMed  CAS  Google Scholar 

  28. DeLeve LD. Glutathione defense in non-parenchymal cells. Semin Liver Dis 1998; 18: 403–413.

    Article  PubMed  CAS  Google Scholar 

  29. Wang X, Kanel GC, DeLeve LD. Support of sinusoidal endothelial cell glutathione prevents hepatic veno-occlusive disease in the rat. Hepatology 2000; 31: 428–434.

    Article  PubMed  CAS  Google Scholar 

  30. Ringden O, Remberger M, Lehmann S, et al. N-Acetylcysteine for hepatic veno-occlusive disease after allogeneic stem cell transplantation. Bone Marrow Transplant 2000; 25: 993–996.

    Article  PubMed  CAS  Google Scholar 

  31. Catani L, Gugliotta L, Vianelli N, et al. Endothelium and bone marrow transplantation. Bone Marrow Transplant 1996; 17: 277–280.

    PubMed  CAS  Google Scholar 

  32. Salat C, Holler E, Reinhardt B, et al. Parameters of the fibrinolytic system in patients undergoing BMT: elevation of PAI-1 in veno-occlusive disease. Bone Marrow Transplant 1994; 14: 747–750.

    PubMed  CAS  Google Scholar 

  33. Salat C, Holler E, Kolbe HJ, et al. Plasminogen activator inhibitor-1 confirms the diagnosis of hepatic veno-occlusive disease in patients with hyperbilirubinemia after bone marrow transplant. Blood 1997; 89: 2184–2188.

    PubMed  CAS  Google Scholar 

  34. Richardson P, Guinain E. Hepatic veno-occlusive disease following hematopoietic stem cell transplantation. Acta Haematol 2001; 106: 57–68.

    Article  PubMed  CAS  Google Scholar 

  35. Richardson P, Hoppensteadt D, Elias A, et al. Elevation of tissue factor pathway inhibitor [TFPI], thrombomodulin [TM] and plasminogen activator inhibitor-1 [PAI-1] levels in stem cell transplant [SCT]-associated veno-occlusive disease [VOD] and changes seen with the use of defibrotide [DF]. Blood 1997; 90: 219a.

    Google Scholar 

  36. Richardson PG, Hoppensteadt DA, Elias AD, et al. Elevation of endothelial stress products and trends seen in patients with severe veno-occlusive disease treated with defibrotide. Thromb Haemost 1999; 3185 (Suppl): 628.

    Google Scholar 

  37. Nurnberger W, Michelmann I, Burdach S, et al. Endothelial dysfunction after bone marrow transplantation: increase of soluble thrombomodulin and PAI-1 in patients with multiple transplant-related complications. Ann Hematol 1998; 76: 61–65.

    Article  PubMed  CAS  Google Scholar 

  38. Sato Y, Asada Y, Hara S, et al. Hepatic stellate cells (Ito cells) in veno-occlusive disease of the liver after allogeneic bone marrow transplantation. Histopathology 1999; 34: 66–70.

    Article  PubMed  CAS  Google Scholar 

  39. Bianchi M, Tracey KJ. The role of TNF in complications of marrow transplantation. Marrow Transplant Rev 1993/94; 3: 57–61.

    Google Scholar 

  40. Scrobohaci ML, Drouet L, Monem-Mansi A, et al. Liver veno-occlusive disease after bone marrow transplantation changes in coagulation parameters and endothelial markers. Thromb Res 1991; 63: 509–519.

    Article  PubMed  CAS  Google Scholar 

  41. Ferra C, de Sanjose S, Gallardo D, et al. IL-6 and IL-8 levels in plasma during hematopoietic progenitor transplantation. Haematologica 1998; 83: 1082–1087.

    PubMed  CAS  Google Scholar 

  42. Schots R, Kaufman L, Van Riet I, et al. Monitoring of C-reactive protein after allogeneic bone marrow transplantation identifies patients at risk of severe transplant-related complications and mortality. Bone Marrow Transplant 1998; 22: 79–85.

    Article  PubMed  CAS  Google Scholar 

  43. Anscher MS, Peters WP, Reisenbichler H, et al. Transforming growth factor beta as a predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer. N Engl J Med 1993; 328: 1592–1598.

    Article  PubMed  CAS  Google Scholar 

  44. Eltumi M, Trivedi P, Hobbs J, et al. Monitoring of veno-occlusive disease after bone marrow transplantation by serum aminopropepide of type III procollagen. Lancet 1993; 342: 518–521.

    Article  PubMed  CAS  Google Scholar 

  45. Park YD, Yasui M, Yoshimoto T, et al. Changes in hemostatic parameters in hepatic veno-occlusive disease following bone marrow transplantation. Bone Marrow Transplant 1997; 19: 915–920.

    Article  PubMed  CAS  Google Scholar 

  46. Rio B, Bauduer F, Arrago JP, et al. N-Terminal peptide of type III procollagen: a marker for the development of hepatic veno-occlusive disease after BMT and a basis for determining the timing of prophylactic heparin. Bone Marrow Transplant 1993; 11: 471–472.

    PubMed  CAS  Google Scholar 

  47. Eltumi M, Trivedi P, Hobbs JR, et al. Monitoring of veno-occlusive disease after bone marrow transplantation by serum aminopropeptide of type III procollagen [see comments]. Lancet 1993; 342: 518–521.

    Article  PubMed  CAS  Google Scholar 

  48. Heikinheimo M, Halila R, Fasth A. Serum procollagen type III is an early and sensitive marker for veno-occlusive disease of the liver in children undergoing bone marrow transplantation. Blood 1994; 83: 3036–3040.

    PubMed  CAS  Google Scholar 

  49. Collins PW, Gutteridge CN, O’Driscoll A, et al. von Willebrand factor as a marker of endothelial cell activation following BMT. Bone Marrow Transplant 1992; 10: 499–506.

    PubMed  CAS  Google Scholar 

  50. Harper PL, Jarvis J, Jennings I, et al. Changes in the natural anticoagulants following bone marrow transplantation. Bone Marrow Transplant 1990; 5: 39–42.

    PubMed  CAS  Google Scholar 

  51. Haire WD, Ruby EI, Gordon BG, et al. Multiple organ dysfunction syndrome in bone marrow transplantation. JAMA 1995; 274: 1289–1295.

    Article  PubMed  CAS  Google Scholar 

  52. Faioni EM, Krachmalnicoff A, Bearman SI, et al. Naturally occuring anticoagulants and bone marrow transplantation: plasma protein C predicts the development of venocclusive disease of the liver. Blood 1993; 81: 3458–3462.

    PubMed  CAS  Google Scholar 

  53. Sudhoff T, Heins M, Sohngen D, et al. Plasma levels of D-dimer and circulating endothelial adhesion molecules in veno-occlusive disease of the liver following allogeneic bone marrow transplantation. EurJHaematol 1998; 60: 106–111.

    CAS  Google Scholar 

  54. Oh H, Tahara T, Bouvier M, et al. Plasma thrombopoietin levels in marrow transplant patients with veno-occlusive disease of the liver. Bone Marrow Transplant 1998; 22: 675–679.

    Article  PubMed  CAS  Google Scholar 

  55. Nevill TJ, Barnett MJ, Klingemann H-G, et al. Regimen-related toxicity of busulfan-cyclophosphamide conditioning regimen in 70 patients undergoing allogeneic bone marrow transplantation. J Clin Oncol 1991; 9: 1224–1232.

    PubMed  CAS  Google Scholar 

  56. Matute-Bello G, McDonald GD, Hinds MS, et al. Association of pulmonary function testing abnormalities and severe veno-occlusive disease of the liver after marrow transplantation. Bone Marrow Transplant 1998; 21: 1125–1130.

    Article  PubMed  CAS  Google Scholar 

  57. Hagglund H, Remberger M, Klaesson S, et al. Norethisterone treatment, a major risk-factor for veno-occlusive disease in the liver after allogeneic bone marrow transplantation [see comments]. Blood 1998; 92: 4568–4572.

    PubMed  CAS  Google Scholar 

  58. Soiffer R, Dear K, Rabinowe SN, et al. Hepatic dysfunction follwoing T-cell-depleted allogeneic bone marrow transplantation. Transplantation 1991; 52: 1014–1019.

    Article  PubMed  CAS  Google Scholar 

  59. Moscardo F, Sanz GF, De la Rubia J. Marked reduction in the incidence of hepatic veno-occlusive disease after allogeneic hematopoietic stem cell transplantation with CD34+ positive selection. Bone Marrow Transplant 2001; 27: 983–988.

    Article  PubMed  CAS  Google Scholar 

  60. Ringden O, Ruutu T, Remberger M, et al. A randomized trial comparing busulfan with total body irradiation as conditioning in allogeneic marrow transplant recipients with leukemia: a report from the Nordic Bone Marrow Transplantation Group. Blood 1994; 83: 2723–2730.

    PubMed  CAS  Google Scholar 

  61. Styler MJ, Crilley P, Biggs J. Hepatic dysfunction following busulfan and cyclophosphamide myeloblation: a retrospective, multicenter analysis. Bone Marrow Transplant 1996; 18: 171–176.

    PubMed  CAS  Google Scholar 

  62. Rozman C, Cameras E, Qian C, et al. Risk factors for hepatic veno-occlusive disease following HLA-identical sibling bone marrow transplants for leukemia. Bone Marrow Transplant 1996; 17: 75–80.

    PubMed  CAS  Google Scholar 

  63. Fisher DC, Vredenburgh JJ, Petros WP, et al. Reduced mortality following bone marrow transplantation for breast cancer with the addition of peripheral blood progenitor cells is due to a marked reduction in veno-occlusive disease of the liver. Bone Marrow Transplant 1998; 21: 117–122.

    Article  PubMed  CAS  Google Scholar 

  64. Korbling M, Katz RL, Khanna A, et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med 2002; 346: 738–746.

    Article  PubMed  Google Scholar 

  65. Tack DK, Letendre L, Kamath P, et al. Development of hepatic veno-occlusive disease after Mylotarg infusion for relapsed acute myeloid leukemia. Bone Marrow Transplant 2001; 28: 895–897.

    Article  PubMed  CAS  Google Scholar 

  66. McDonald GB. Management of hepatic sinusoidal obstruction syndrome following treatment with gemtuzmab ozogamicin (Mylotarg®). Clin Lymphoma 2002; 2: 535 - S39.

    Google Scholar 

  67. Brown BP, Abu-Yousef M, Farner R, et al. Doppler sonography: a noninvasive method for evaluation of hepatic venocclusive disease. Am J Roentgenol 1990; 154: 721–724.

    Article  CAS  Google Scholar 

  68. Hosoki T, Kuroda C, Tokunaga K, et al. Hepatic venous outflow obstruction: evaluation with pulsed duplex sonography. Radiology 1989; 170: 733–737.

    PubMed  CAS  Google Scholar 

  69. Nicolau C, Concepcio B, Carreras E, et al. Sonographic diagnosis and hemodynamic correlation in veno-occlusive disease of the liver. J Ultrasound Med 1993; 12: 437–440.

    PubMed  CAS  Google Scholar 

  70. Sonneveld P, Lameris JS, Cornelissen J, et al. Color-flow imaging sonography of portal and hepatic vein flow to monitor fibrinolytic therapy with r-TPA for veno-occlusive disease following myeloablative treatment. Bone Marrow Transplant 1998; 21: 731–734.

    Article  PubMed  CAS  Google Scholar 

  71. van den Bosch MA, van Hoe L. MR imaging findings in two patients with hepatic veno-occlusive disease following bone marrow transplantation [in process citation]. Eur Radiol 2000; 10: 1290–1293.

    Article  PubMed  CAS  Google Scholar 

  72. Cameras E, Granena A, Navasa M, et al. Transjugular liver biopsy in BMT. Bone Marrow Transplant 1993; 11: 21–26.

    Google Scholar 

  73. Shulman HM, Gooley T, Dudley MD, et al. Utility of transvenous liver biopsies and wedged hepatic venous pressure measurements in sixty marrow transplant recipients. Transplantation 1995; 59: 1015–1022.

    Article  PubMed  CAS  Google Scholar 

  74. Bearman SI, Anderson GL, Mori M, et al. Venocclusive disease of the liver: Development of a model for predicting fatal outcome after marrow transplantation. J Clin Oncol 1993; 11: 1729–1736.

    PubMed  CAS  Google Scholar 

  75. Barrett J, Childs R. Non-myeloblative stem cell transplants. Br J Haematol 2000; 111: 6–17.

    Article  PubMed  CAS  Google Scholar 

  76. Maris M, Sandmaier BM, Maloney DG, et al. Non-myeloblative hematopoietic stem cell transplantation. Transfus Clin Biol 2001; 8: 231–234.

    Article  PubMed  CAS  Google Scholar 

  77. Tse WT, Beyer W, Pendleton JD, et al. Genetic Polymorphisms in glutathione-S-transferase and plasminogen activator inhibitor and risk of veno-occlusive disease (VOD). in American Society of Hematology. 2000. San Francisco: The Journal of American Society of Hematology.

    Google Scholar 

  78. Poonkuzhali S, Vidya S, Shaji RV, et al. Glutathione S-transferase gene polymorphism and risk of major undergoing allogeneic bone marrow transplantation. Blood 2001; 98: 852a.

    Google Scholar 

  79. Haire WD, Cavet J, Pavletic SZ, et al. Tumor necrosis factor d3 allele predicts for organ dysfunction after allogeneic blood stem cell transplantation (ABSCT). in American Society of Hematology. 2000. San Francisco: Journal of the American Society of Hematology.

    Google Scholar 

  80. Ohashi K, Tanabe J, Watanabe R, et al. The Japanese multicenter open randomized trial of ursodeoxycholic acid prophylaxis for hepatic veno-occlusive disease after stem cell transplantation. Am J Hematol 2000; 64: 32–38.

    Article  PubMed  CAS  Google Scholar 

  81. Essell JH, Schroeder MT, Harman GS, et al. Ursodiol prophylaxis against hepatic complications of allogeneic bone marrow transplantation. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 1998; 128: 975–981.

    PubMed  CAS  Google Scholar 

  82. Ruutu T, Eriksson B, Remes K, et al. Ursodiol prevention of hepatic complications in allogeneic stem cell transplantation: results of a prospective, randomized, placebo-controlled trial. Bone Marrow Transplant 1999; 23: 756 [Abstract].

    Google Scholar 

  83. Jonas CR, Puckett AB, Jones DP, et al. Plasma antioxidant status after high-dose chemotherapy: a randomized trial of parenteral nutrition in bone marrow transplantation patients. Am J Clin Nutr 2000; 72: 181–189.

    PubMed  CAS  Google Scholar 

  84. Goringe AP, Brown S, O’Callaghan U, et al. Glutamine and vitamin E in the treatment of hepatic veno-occlusive disease following high-dose chemotherapy. Bone Marrow Transplant 1998; 21: 829–832.

    CAS  Google Scholar 

  85. Khoury H, Adkins D, Trinkaus K, et al. Treatment of hepatic veno-occlusive disease with high dose corticosteroids: an update on 28 stem cell transplant recipients. Blood 1998; 92: 1132 [Abstract].

    Google Scholar 

  86. Ferra C, Sanjose S, Lastra CF, et al. Pentoxifylline, ciprofloxacin and prednisone failed to prevent transplant-related toxicities in bone marrow transplant recipients and were associated with an increased incidence of infectious complications. Bone Marrow Transplant 1997; 20: 1075–1080.

    Article  PubMed  CAS  Google Scholar 

  87. 87. Clift RA, Bianco JA, Appelbaum FR, et al. A randomized controlled trial of pentoxifylline for the prevention of regimen-related toxicities in patients undergoing allogeneic marrow transplantation. Blood 1993; 82:2025 2030.

    Google Scholar 

  88. Attal M, Huguet F, Rubie H. Prevention of hepatic veno-occlusive disease after bone marrow transplantation by continuous infusion of low-dose heparin: a prospective, randomized trial. Blood 1992; 79: 2834–2840.

    PubMed  CAS  Google Scholar 

  89. Bearman SI, Hinds MS, Wolford JL. A pilot study of continuous infusion heparin for the prevention of hepatic veno-occlusive disease after bone marrow transplantation. Bone Marrow Transplant 1990; 5: 407–411.

    PubMed  CAS  Google Scholar 

  90. Marsa-Vila L, Gorin NC, Laporte JP. Prophylactic heparin does not prevent liver veno-occlusive disease following autologous bone marrow transplantation. Eur J Haematol 1991; 47: 346–352.

    Article  PubMed  CAS  Google Scholar 

  91. Budinger MD, Bouvier M, Shah A, et al. Results of a phase 1 trial of anti-thrombin III as prophylaxis in bone marrow transplant patients at risk for venocclusive disease. Blood 1996; 88: 172a [Abstract].

    Google Scholar 

  92. Lee JH, Lee KH, Choi JS, et al. Veno-occlusive disease (VOD) of the liver in Korean patients following allogeneic bone marrow transplantation (BMT): efficacy of recombinant human tissue plasminogen activator (rt-PA) treatment. J Korean Med Sci 1996; 11: 118–126.

    PubMed  CAS  Google Scholar 

  93. Or R, Nagler A, Shpilberg O, et al. Low molecular weight heparin for the prevention of veno-occlusive disease of the liver in bone marrow transplantation patients. Transplantation 1996; 61: 1067–1071.

    Article  PubMed  CAS  Google Scholar 

  94. Vaughan DE, Plavin SR, Schafer AI. PGE1 accelerates thrombolysis by tissue plasminogen activator. Blood 1989; 73: 1213–1217.

    PubMed  CAS  Google Scholar 

  95. Gluckman E, Jolivet I, Scrobohaci ML. Use of prostaglandin El for prevention of liver veno-occlusive disease in leukaemic patients treated by allogeneic bone marrow transplantation. Br J Haematol 1990; 74: 277–281.

    Article  PubMed  CAS  Google Scholar 

  96. Schriber JR, Milk BJ, Baer MR. A randomized phase II trial comparing heparin (Hep) +1- prostaglandin El (PG) to prevent hepatotoxicity (HT) following bone marrow transplantation (BMT): preliminary results. Blood 1996; 88: 1642.

    Google Scholar 

  97. Bearman SI, Shuhart MC, Hinds MS, et al. Recombinant human tissue plasminogen activator for the treatment of established severe venocclusive disease of the liver after bone marrow transplantation. Blood 1992; 80: 2458–2462.

    PubMed  CAS  Google Scholar 

  98. Leahey AM, Bunin NJ. Recombinant human tissue plasminogen activator for the treatment of severe hepatic veno-occlusive disease in pediatric bone marrow transplant patients. Bone Marrow Transplant 1996; 17: 1101–1104.

    PubMed  CAS  Google Scholar 

  99. Richardson P, Bearman SI. Prevention and treatment of hepatic venocclusive disease after high-dose cytoreductive therapy. Leuk Lymphoma 1998; 31; 267–277.

    Article  PubMed  CAS  Google Scholar 

  100. Haire WD, Stephens LC, Ruby EI. Antithrombin III (AT3) treatment of organ dysfunction during bone marrow transplantation (BMT) results of a pilot study. Blood 1996; 88: 458a [Abstract].

    Google Scholar 

  101. Strasser SI, McDonald GB. Gastrointestinal and hepatic complications. In: Forman SJ, Blume KG, Thomas ED, eds. Hematopoietic Cell Transplantation 2nd ed. Boston: Blackwell Scientific, 1998.

    Google Scholar 

  102. Morris JD, Harris RE, Hashmi R, et al. Antithrombin-III for the treatment of chemotherapy-induced organ dysfunction following bone marrow transplantation. Bone Marrow Transplant 1997; 20: 871–878.

    Article  PubMed  CAS  Google Scholar 

  103. Ibrahim A, Pico JL, Maraninchi D, et al. Hepatic veno-occlusive disease following bone marrow transplantation treated by prostaglandin El. Bone Marrow Transplant 1991; 7 (suppl): 53.

    PubMed  Google Scholar 

  104. Bianchi G, Barone D, Lanzarotti E, et al. Defibrotide, a single-stranded polydeoxyribonucleotide acting as an adenosine receptor agonist. Eur J Pharmacol 1993; 238: 327–334.

    Article  PubMed  CAS  Google Scholar 

  105. Eissner G, Multhoff G, Gerbitz A, et al. Fludarabine induces apoptosis, activation, and allogenicity in human endothelial and epithelial cells: protective effect of defibrotide. Blood 2002; 100: 334–340.

    Article  PubMed  CAS  Google Scholar 

  106. Bracht F, Schror, K. Isolation and identification of aptamers from defibrotide that act as thrombin antagonists in vitro. Biochem Biophys Res Commun 1994; 200: 933–936.

    Article  PubMed  CAS  Google Scholar 

  107. Berti F, Rossoni G, Biasi G, et al. Defibrotide by enhancing prostacyclin generation prevents endothelin-I induced contraction in human saphenous veins. Prostaglandins 1990; 40: 337–350.

    PubMed  CAS  Google Scholar 

  108. Coccheri S, Biagi G. Defibrotide. Cardiovasc Drug Rev 1991; 9: 172–196.

    Article  CAS  Google Scholar 

  109. Fareed J. Modulation of endothelium by heparin and related polyelectrolytes. In: Nicolaides A, Novo S, eds. Advances in Vascular Pathology 1997. Amsterdam: Elsevier Science, 1997.

    Google Scholar 

  110. Zhou Q, Chu X, Ruan, C. Defibrotide stimulates expression of thrombomodulin in human endothelial cells. Thromb Hemost 1994; 71: 507–510.

    CAS  Google Scholar 

  111. Palmer KJ, Goa KL. Defibrotide: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in vascular disorders. Drugs 1993; 45: 259–294.

    Article  PubMed  CAS  Google Scholar 

  112. Coccheri S, Biagi G, Legnani C, et al. Acute effects of defibrotide, an experimental antithrombotic agent, on fibrinolysis and blood prostanoids in man. Eur J Clin Pharmacol 1988; 35: 151–156.

    Article  PubMed  CAS  Google Scholar 

  113. Ulutin ON. Antithrombotic effect and clinical potential of defibrotide. SeminThromb Hemost 1993; 19: 186–191.

    Google Scholar 

  114. Jamieson A, Alcock P, Tuffin DP. The action of polyanionic agents defibrotide and pentosan sulphate on fibrinolytic activity in the laboratory rat. Fibrinolysis 1996; 10: 27–35.

    Google Scholar 

  115. Bonomini V, Vangelista A, Frasca GM. A new antithrombotic agent in the treatment of acute renal failure due to hemolytic-uremic syndrome and thrombotic thrombocytopenic purpura [letter]. Nephron 1984; 37: 144.

    Article  PubMed  CAS  Google Scholar 

  116. Viola F, Marubini S, Coccheri G, et al. Improvement of walking distance by defibrotide in patients with intermittent claudication: results of a randomized, placebo-controlled study (the DICLIS study). Thromb Haemost 2000; 83: 672–677.

    Google Scholar 

  117. Falanga A, Marchetti M, Vignoli A, et al. Defibrotide (DF) modulates tissue factor expression by microvascular endothelial cells. Blood 1999; 94: 146a.

    Google Scholar 

  118. Falanga A, Marchetti M, Vignoli A, et al. Impact of defibrotide on the fibrinolytic and procoagulant properties of endothelial cell macro-and micro-vessels. Blood 2000; 96: 53a.

    Google Scholar 

  119. Richardson PG, Elias AD, Krishnan A, et al. Treatment of severe veno-occlusive disease with defibrotide: compassionate use results in response without significant toxicity in a high-risk population. Blood 1998; 92: 737–744.

    PubMed  CAS  Google Scholar 

  120. Abecasis M, Ferreira I, Guimaraes A, et al. Defibrotide as salvage therapy for hepatic veno-occlusive disease (VOD). Bone Marrow Transplant 1999; 23: 749 [Abstract].

    Article  Google Scholar 

  121. Salat C, Pihusch R, Fries S, et al. Successful treatment of veno-occlsive disease with defibrotide a report of two cases. Bone Marrow Transplant 1999; 23: 757 (Abstract).

    Google Scholar 

  122. Zinke W, Neumeister P, Linkesch W. Defibrotide an approach in the treatment of severe veno-occlusive disease? Bone Marrow Transplant 1999; 23: 760 (Abstract).

    Google Scholar 

  123. Jenner MJ, Micallef IN, Rohatiner AZ, et al. Successful therapy of transplant-associated veno-occlusive disease with a combination of tissue plasminogen activator and defibrotide [in process citation]. Med Oncol 2000; 17: 333–336.

    Article  PubMed  CAS  Google Scholar 

  124. Chopra R, Eaton JD, Grassi A, et al. Defibrotide for the treatment of hepatic veno-occlusive disease: results of the European compassionate-use study. Br J Haematol 2000; 100: 4337–4343.

    Google Scholar 

  125. Richardson P, Murakami C, Jin Z, et al. Multi-institutional use of defibrotide in 88 patients post stem cell transplant with severe veno-occlusive disease and multi-system organ failure; response without significant toxicity in a high risk population and factors predictive of outcome. Blood 2002; 100: 4337–4343.

    Article  PubMed  CAS  Google Scholar 

  126. Richardson P, Warren D, Momtaz P, et al. Multi-institutional phase II randomized dose finding study of defibrotide (DF) in patients (pts) with severe veno-occlusive disease (VOD) and multi-system organ failure (MOF) post stem cell transplantation (SCT): promising response rate without significant toxicity in a high risk population. Blood 2001; 98: 853a.

    Google Scholar 

  127. Schlitt HJ, Tischler HJ, Ringe B, et al. Allogeneic liver transplantation for hepatic veno-occlusive disease after bone marrow transplantation clinical and immunological considerations. Bone Marrow Transplant 1995; 16: 473–478.

    PubMed  CAS  Google Scholar 

  128. Fried MW, Connaghan DG, Sharma S, et al. Trans jugular intrahepatic protosystemic shunt for the management of severe venocclusive disease following bone marrow transplantation. Hepatology 1996; 24: 588–591.

    Article  PubMed  CAS  Google Scholar 

  129. Smith FO, Johnson MS, Scherer LR, et al.Transjugular intrahepatic portosystemic shunting (TIPS) for the treatment of severe hepatic veno-occlusive disease. Bone Marrow Transplant 1996; 18: 643–646.

    PubMed  CAS  Google Scholar 

  130. Alvarez R, Banares R, Casariego J, et al. Percutaneous intrahepatic portosystemic shunting in the treatment of veno-occlusive disease of the liver after bone marrow transplantation. Gastroenterol Hepatol 2000; 23: 177–180.

    PubMed  CAS  Google Scholar 

  131. Tefferi A, Kumar S, Wolf R, et al. Charcoal hemofiltration for hepatic veno-occulsive disease after hematopoietic stem cell transplantation. Bone Marrow Transplant 2001; 28: 997–999.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richardson, P.G. (2004). Hepatic Veno-Occlusive Disease. In: Soiffer, R.J. (eds) Stem Cell Transplantation for Hematologic Malignancies. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-733-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-733-8_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6588-5

  • Online ISBN: 978-1-59259-733-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics