Skip to main content

Mammary Epithelial Stem Cells

  • Chapter
Adult Stem Cells

Abstract

Mammary gland development and function would not be possible without tissue-specific stem cells. The cycle of pregnancy-associated proliferation, differentiation, apoptosis, and remodeling, which may occur many times during the mammalian reproductive lifespan, can only be explained by the presence of a long-lived population of stem cells with a near-unlimited capacity to generate functional cells. The aim of this chapter, therefore, is to review the evidence for the presence of stem cells in the mammary gland, to describe the progress in isolating and characterizing these stem cells, to discuss the role of stem cells in mammary gland carcinogenesis, and to speculate whether mammary stem cells share properties with stem cells in other adult tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Howard, B. A., and Gusterson, B. A. (2000). Human breast development. J Mammary Gland Biol Neoplasia 5, 119–137.

    Article  PubMed  CAS  Google Scholar 

  2. Taylor-Papadimitriou, J., Millis, R., Burchell, J., Nash, R., Pang, L., and Gilbert, J. (1986). Patterns of reaction of monoclonal antibodies HMFG-1 and -2 with benign breast tissues and breast carcinomas. J Exp Pathol 2, 247–260.

    PubMed  CAS  Google Scholar 

  3. Gusterson, B. A., Monaghan, P., Mahendran, R., Ellis, J., and O’Hare, M. J. (1986). Identification of myoepithelial cells in human and rat breasts by anti-common acute lymphoblastic leukemia antigen antibody Al2. J Natl Cancer Inst 77, 343–349.

    PubMed  CAS  Google Scholar 

  4. Taylor-Papadimitriou, J., Wetzels, R., and Ramaekers, F. (1992). Intermediate filament protein expression in normal and malignant human mammary epithelial cells. Cancer Treat Res 61, 355–378.

    Article  PubMed  CAS  Google Scholar 

  5. Taylor-Papadimitriou, J., Stampfer, M., Bartek, J., et al. (1989). Keratin expression in human mammary epithelial cells cultured from normal and malignant tissue: relation to in vivo phenotypes and influence of medium. J Cell Sci 94, 403–413.

    PubMed  Google Scholar 

  6. Latza, U., Niedobitek, G., Schwarting, R., Nekarda, H., and Stein, H. (1990). Ber-EP4: new monoclonal antibody which distinguishes epithelia from mesothelial. J Clin Pathol 43, 213–219.

    Article  PubMed  CAS  Google Scholar 

  7. Emerman, J. T., Stingl, J., Petersen, A., Shpall, E. J., and Eaves, C. J. (1996). Selective growth of freshly isolated human breast epithelial cells cultured at low concentrations in the presence or absence of bone marrow cells. Breast Cancer Res Treat 41, 147–159.

    Article  PubMed  CAS  Google Scholar 

  8. Joshi, K., Smith, J. A., Perusinghe, N., and Monoghan, P. (1986). Cell proliferation in the human mammary epithelium. Differential contribution by epithelial and myoepithelial cells. Am J Pathol 124, 199–206.

    Google Scholar 

  9. Clarke, R. B., Howell, A., Potten, C. S., and Anderson, E. (1997). Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57, 4987–4991.

    PubMed  CAS  Google Scholar 

  10. Petersen, O. W., Hoyer, P. E., and van Deurs, B. (1987). Frequency and distribution of estrogen receptor-positive cells in normal, nonlactating human breast tissue. Cancer Res 47, 5748–5751.

    PubMed  CAS  Google Scholar 

  11. Wellings, S. R., Jensen, H. M., and Marcum, R. G. (1975). An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst 55, 231–273.

    PubMed  CAS  Google Scholar 

  12. Hovey, R. C., McFadden, T. B., and Akers, R. M. (1999). Regulation of mammary gland growth and morphogenesis by the mammary fat pad: a species comparison. J Mammary Gland Biol Neoplasia 4, 53–68.

    Article  PubMed  CAS  Google Scholar 

  13. Sakakura, T. (1987). Mammary embryogenesis. In: Neville, M. C., and Daniel, C. W., eds., The Mammary Gland. Development, Regulation and Function. New York: Plenum Press, pp. 37–66.

    Google Scholar 

  14. Daniel, C. W., and Smith, G. H. (1999). The mammary gland: a model for development. J Mammary Gland Biol Neoplasia 4, 3–8.

    Article  PubMed  CAS  Google Scholar 

  15. Robinson, G. W., Karpf, A. B., and Kratochwil, K. (1999). Regulation of mammary gland development by tissue interaction. J Mammary Gland Biol Neoplasia 4, 9–19.

    Article  PubMed  CAS  Google Scholar 

  16. Hovey, R. C., Trott, J. F., and Vonderhaar, B. K. (2002). Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia 7, 17–38.

    Article  PubMed  Google Scholar 

  17. Russo, J., and Russo, I. H. (1987). Development of the human mammary gland. In: Neville, M. C., and Daniel, C. W., eds., The Mammary Gland. Development, Regulation and Function. New York: Plenum Press, pp. 67–93.

    Google Scholar 

  18. Mintz, B., and Slemmer, G. (1969). Gene control of neoplasia. I. Genotypic mosaicism in normal and preneoplastic mammary glands of allophenic mice. J Natl Cancer Inst 43, 87–109.

    Google Scholar 

  19. Propper, A. Y. (1978). Wandering epithelial cells in the rabbit embryo milk line. A preliminary scanning electron microscope study. Dev Biol 67, 225–231.

    Google Scholar 

  20. Heuberger, B., Fitzka, I., Wasner, G., and Kratochwil, K. (1982). Induction of androgen receptor formation by epithelium-mesenchyme interaction in embryonic mouse mammary gland. Proc Natl Acad Sci U S A 79, 2957–2961.

    Article  PubMed  CAS  Google Scholar 

  21. Daniel, C. W., and Silberstein, G. B. (1987). Postnatal development of the rodent mammary gland. In: Neville, M. C., and Daniel, C. W., eds., The Mammary Gland. Development, Regulation and Function. New York: Plenum Press, pp. 3–36.

    Google Scholar 

  22. Andres, A. C., and Strange, R. (1999). Apoptosis in the estrous and menstrual cycles. J Mammary Gland Biol Neoplasia 4, 221–228.

    Article  PubMed  CAS  Google Scholar 

  23. Richert, M. M., Schwertfeger, K. L., Ryder, J. W., and Anderson, S. M. (2000). An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia 5, 227–241.

    Article  PubMed  CAS  Google Scholar 

  24. Howlett, A. R., and Bissell, M. J. (1993). The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithelial Cell Biol 2, 79–89.

    PubMed  CAS  Google Scholar 

  25. Russo, J., Hu, Y. F., Silva, I. D., and Russo, I. H. (2001). Cancer risk related to mammary gland structure and development. Microsc Res Tech 52, 204–223.

    Article  PubMed  CAS  Google Scholar 

  26. Ormerod, E. J., and Rudland, P. S. (1986). Regeneration of mammary glands in vivo from isolated mammary ducts. J Embryol Exp Morphol 96, 229–243.

    PubMed  CAS  Google Scholar 

  27. Kordon, E. C., and Smith, G. H. (1998). An entire functional mammary gland may comprise the progeny from a single cell. Development 125, 1921–1930.

    PubMed  CAS  Google Scholar 

  28. Tsai, Y. C., Lu, Y., Nichols, P. W., Zlotnikov, G., Jones, P. A., and Smith, H. S. (1996). Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Res 56, 402–404.

    PubMed  CAS  Google Scholar 

  29. Lakhani, S. R., Chaggar, R., Davies, S., et al. (1999). Genetic alterations in “normal” luminal and myoepithelial cells of the breast. J Pathol 189, 496–503.

    Article  PubMed  CAS  Google Scholar 

  30. Gudjonsson, T., Villadsen, R., Nielsen, H. L., Ronnov-Jessen, L., Bissell, M. J., and Petersen, O. W. (2002). Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev 16, 693–706.

    Article  PubMed  CAS  Google Scholar 

  31. Stingl, J., Eaves, C. J., Kuusk, U., and Emerman, J. T. (1998). Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 63, 201–213.

    Article  PubMed  CAS  Google Scholar 

  32. Stingl, J., Eaves, C. J., Zandieh, I., and Emerman, J. T. (2001). Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat 67, 93–109.

    Article  PubMed  CAS  Google Scholar 

  33. Smith, G. H., and Medina, D. (1988). A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J Cell Sci 90, 173–183.

    PubMed  Google Scholar 

  34. Chepko, G., and Smith, G. H. (1997). Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue Cell 29, 239–253.

    Article  PubMed  CAS  Google Scholar 

  35. Smith, G. H., and Chepko, G. (2001). Mammary epithelial stem cells. Microsc Res Tech 52, 190–203.

    Article  PubMed  CAS  Google Scholar 

  36. Potten, C. S., and Morris, R. J. (1988). Epithelial stem cells in vivo. J Cell Sci Suppl 10, 45–62.

    PubMed  CAS  Google Scholar 

  37. Potten, C. S., and Loeffler, M. (1990). Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110, 1001–1020.

    Google Scholar 

  38. Zeps, N., Dawkins, H. J., Papadimitriou, J. M., Redmond, S. L., and Walters, M. I. (1996). Detection of a population of long-lived cells in mammary epithelium of the mouse. Cell Tissue Res 286, 525–536.

    Article  PubMed  CAS  Google Scholar 

  39. Welm, B. E., Tepera, S. B., Venezia, T., Graubert, T. A., Rosen, J. M., and Goodell, M. A. (2002). Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245, 42–56.

    Article  PubMed  CAS  Google Scholar 

  40. Clarke, R. B., Howell, A., Potten, C. S., and Anderson, E. (2000). P27(KIP1) expression indicates that steroid receptor-positive cells are a non-proliferating, differentiated subpopulation of the normal human breast epithelium. Eur J Cancer 36 (Suppl. 4), S28 - S29.

    Article  PubMed  CAS  Google Scholar 

  41. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., and Mulligan, R. C.

    Google Scholar 

  42. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183, 1797–1806.

    Google Scholar 

  43. Alvi, A. J., Clayton, H., Joshi, C., et al. (2003). Functional and molecular characterisation of mammary side population cells. Breast Cancer Res 5, R1 - R8.

    Article  PubMed  Google Scholar 

  44. Bocker, W., Moll, R., Poremba, C., et al. (2002). Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new cell biological concept. Lab Invest 82, 737–746.

    PubMed  Google Scholar 

  45. Orkin, S. H. (2000). Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet 1, 57–64.

    Article  PubMed  CAS  Google Scholar 

  46. Jones, P. H. (1997). Epithelial stem cells. Bioessays 19, 683–690.

    Article  PubMed  CAS  Google Scholar 

  47. Daniel, C. W., De Ome, K. B., Young, J. T., Blair, K. B., and Faulkin, L. J., Jr. (1968). The in vivo lifespan of normal and preneoplastic mouse mammary glands: a serial transplantation study. Proc Natl Acad Sci U S A 61, 53–60.

    Article  PubMed  CAS  Google Scholar 

  48. Daniel, C. W., and Young, L. J. (1971). Influence of cell division on an aging process. Life span of mouse mammary epithelium during serial propagation in vivo. Exp Cell Res 65, 27–32.

    Google Scholar 

  49. Young, L. J., Medina, D., DeOme, K. B., and Daniel, C. W. (1971). The influence of host and tissue age on life span and growth rate of serially transplanted mouse mammary gland. Exp Gerontol 6, 49–56.

    Article  PubMed  CAS  Google Scholar 

  50. Hayflick, L. (1992). Aging, longevity, and immortality in vitro. Exp Gerontol 27, 363–368.

    Article  PubMed  CAS  Google Scholar 

  51. Wagner, K. U., Boulanger, C. A., Henry, M. D., Sgagias, M., Hennighausen, L., and Smith, G. H. (2002). An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development 129, 1377–1386.

    PubMed  CAS  Google Scholar 

  52. Russo, I. H., and Russo, J. (1978). Developmental stage of the rat mammary gland as determinant of its susceptibility to 7,12-dimethylbenz[ajanthracene. J Natl Cancer Inst 61, 1439–1449.

    PubMed  CAS  Google Scholar 

  53. McGregor, H., Land, C. E., Choi, K., et al. (1977). Breast cancer incidence among atomic bomb survivors, Hiroshima and Nagasaki, 1950–69. J Natl Cancer Inst 59, 799–811.

    PubMed  CAS  Google Scholar 

  54. Spradling, A., Drummond-Barbosa, D., and Kai, T. (2001). Stem cells find their niche. Nature 414, 98–104.

    Article  PubMed  CAS  Google Scholar 

  55. Nishimura, E. K., Jordan, S. A., Oshima, H., et al. (2002). Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416, 854–860.

    Article  PubMed  CAS  Google Scholar 

  56. Potten, C. S., Owen, G., and Booth, D. (2002). Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 115, 2381–2388.

    PubMed  CAS  Google Scholar 

  57. Potten, C. S., Booth, C., and Pritchard, D. M. (1997). The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol 78, 219–243.

    Article  PubMed  CAS  Google Scholar 

  58. Shoker, B. S., Jarvis, C., Sibson, D. R., Walker, C., and Sloane, J. P. (1999). Oestrogen receptor expression in the normal and pre-cancerous breast. J Pathol 188, 237–244.

    Article  PubMed  CAS  Google Scholar 

  59. Lakhani, S. R., Collins, N., Stratton, M. R., and Sloane, J. P. (1995). Atypical ductal hyperplasia of the breast: clonal proliferation with loss of heterozygosity on chromosomes 16q and 17p. J Clin Pathol 48, 611–615.

    Article  PubMed  CAS  Google Scholar 

  60. Lakhani, S. R., Slack, D. N., Hamoudi, R. A., Collins, N., Stratton, M. R., and Sloane, J. P. (1996). Detection of allelic imbalance indicates that a proportion of mammary hyperplasia of usual type are clonal, neoplastic proliferations. Lab Invest 74, 129–135.

    PubMed  CAS  Google Scholar 

  61. Petersen, B. E., Bowen, W. C., Patrene, K. D., et al. (1999). Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170.

    Article  PubMed  CAS  Google Scholar 

  62. Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74.

    Article  PubMed  CAS  Google Scholar 

  63. Lako, M., Armstrong, L., Cairns, P. M., Harris, S., Hole, N., and Jahoda, C. A. (2002). Hair follicle dermal cells repopulate the mouse haematopoietic system. J Cell Sci 115, 3967–3974.

    Article  PubMed  CAS  Google Scholar 

  64. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, E., Clarke, R.B. (2004). Mammary Epithelial Stem Cells. In: Turksen, K. (eds) Adult Stem Cells. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-732-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-732-1_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-392-3

  • Online ISBN: 978-1-59259-732-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics