Skip to main content

Cranial Nerves and Chemical Senses

  • Chapter
The Human Nervous System
  • 4496 Accesses

Abstract

Twelve pairs of cranial nerves are peripheral nerves of the brain (see Fig. 14.1). The olfactory and optic nerves are nerves of the cerebrum (telencephalon). The other 10 pairs are nerves of the brainstem (and in one case, partially of the cervical spinal cord). They supply structures of the head and neck and, in the case of the vagus nerve, structures of the trunk. Some cranial nerves contain almost exclusively afferent fibers, others almost exclusively efferent fibers, and a third group contains substantial proportions of both affterent and efferent fibers (see Table 14.1). The afferent fibers arise with one exception, those that mediate unconscious proprioception, from cell bodies located in peripheral ganglia; their central processes enter the brainstem and end in sensory nuclei of termination (see Fig. 14.2). Efferent fibers arise from cell bodies located in brainstem motor nuclei (see Fig. 14.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Readings

  • Axel R. The molecular logic of smell. Sci. Am. 1995;273:154–159.

    Article  PubMed  CAS  Google Scholar 

  • Brodal A. The Cranial Nerves: Anatomy and Anatomico-Clinical Correlations. 2nd ed. Oxford: Blackwell; 1965.

    Google Scholar 

  • Brodal A. Neurological Anatomy in Relation to Clinical Medicine. 3rd ed. New York: Oxford University Press; 1981.

    Google Scholar 

  • Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 1991;65:175–187.

    Article  PubMed  CAS  Google Scholar 

  • Buck LB. Information coding in the mammalian olfactory system. Cold Spring Harbor Symp. Quant. Biol. 1996;61:147–155.

    PubMed  CAS  Google Scholar 

  • Buck LB. The molecular architecture of odor and pheromone sensing in mammals. Cell 2000;100:611–618.

    Article  PubMed  CAS  Google Scholar 

  • Doty RL. Olfaction. Annu. Rev. Psychol. 2001;52:423–452.

    Article  PubMed  CAS  Google Scholar 

  • Doty RL, ed. Handbook of Olfaction and Gustation. 2nd ed. New York: Marcel Dekker; 2003.

    Google Scholar 

  • Finger TE, Silver WL, Restrepo D. The Neurobiology of Taste and Smell. 2nd ed. New York: Wiley-Liss; 2000.

    Google Scholar 

  • Gilbertson TA, Boughter JD Jr. Taste transduction: appetizing times in gustation. NeuroReport 2003;14:905–911.

    Article  PubMed  CAS  Google Scholar 

  • Gilbertson TA, Damak S, Margolskee RF. The molecular physiology of taste transduction. Curr. Opin. Neurobiol. 2000;10:519–527.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand JG, Shepherd GM. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 1997;20:595–631.

    Article  PubMed  CAS  Google Scholar 

  • Kareken DA, Mosnik DM, Doty RL, Dzemidzic M, Hutchins GD. Functional anatomy of human odor sensation, discrimination, and identification in health and aging. Neuropsychology 2003;17:482–495.

    Article  PubMed  Google Scholar 

  • Kauer JS, White J. Imaging and coding in the olfactory system. Annu. Rev. Neurosci. 2001;24:963–979.

    Article  PubMed  CAS  Google Scholar 

  • Korsching S. Olfactory maps and odor images. Curr. Opin. Neurobiol. 2002;12:387–392.

    Article  PubMed  CAS  Google Scholar 

  • Leblanc A. The Cranial Nerves: Anatomy, Imaging, Vascularisation. 2nd ed. New York: Springer-Verlag; 1995.

    Google Scholar 

  • Malnic B, Godfrey PA, Buck LB. The human olfactory receptor gene family. Proc. Natl. Acad. Sci. USA 2004;101:2584–2589.

    Article  PubMed  CAS  Google Scholar 

  • Matsunami H, Montmayeur JP, Buck LB. A family of candidate taste receptors in human and mouse. Nature. 2000;404:601–604.

    Article  PubMed  CAS  Google Scholar 

  • Mombaerts P, Wang F, Dulac C, et al. The molecular biology of olfactory perception. Cold Spring Harbor Symp. Quant. Biol. 1996;61:135–145.

    PubMed  CAS  Google Scholar 

  • Ranganathan R, Buck LB. Olfactory axon pathfinding: who is the Pied Piper? Neuron. 2002;35:599–600.

    Article  PubMed  CAS  Google Scholar 

  • Savic I. Imaging of brain activation by odorants in humans. Curr. Opin. Neurobiol. 2002;12:455–461.

    Article  PubMed  CAS  Google Scholar 

  • Seiden A. Taste and Smell Disorders. Stuttgart: Georg Thieme Verlag; 1997.

    Google Scholar 

  • Strausfeld NJ, Hildebrand JG. Olfactory systems: common design, uncommon origins? Curr Opin Neurobiol. 1999;9:634–639.

    Article  PubMed  CAS  Google Scholar 

  • Wilson-Pauwels L, Akesson E, Stewart P, Spacey S. Cranial Nerves in Health and Disease. 2nd ed. Hamilton Ontario: BC Decker; 2001.

    Google Scholar 

  • Witkin JW. Nervus terminalis, olfactory nerve, and optic nerve representation of luteinizing hormone-releasing hormone in primates. Ann. NY Acad. Sci. 1987;519:174–183.

    Article  PubMed  CAS  Google Scholar 

  • Zou Z, Horowitz LF, Montmayeur JP, Snapper S, Buck LB. Genetic tracing reveals a stereotyped sensory map in the olfactory cortex. Nature 2001;414:173–179.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this chapter

Cite this chapter

(2005). Cranial Nerves and Chemical Senses. In: The Human Nervous System. Humana Press. https://doi.org/10.1007/978-1-59259-730-7_14

Download citation

Publish with us

Policies and ethics