Skip to main content

Motoneurons and Motor Pathways

  • Chapter
The Human Nervous System
  • 4498 Accesses

Abstract

The sensory systems create our mental images of the external world. These representations provide us with information and cues that guide the motor systems to generate movements produced by the coordinated contractions and relaxations. The motor systems are hierarchically organized in the central nervous system (CNS) as the spinal neuronal circuits that control the automatic stereotypic reflexes (Chap. 8). Higher centers in the brainstem mediate postural controlled and rhythmic locomotor movements. The highest centers, including the motor areas of the cerebral cortex, initiate and regulate complex skilled voluntary movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Readings

  • Asanuma H. The Motor Cortex. New York: Raven; 1989.

    Google Scholar 

  • Bock G, Goode J, eds. Sensory Guidance of Movement. New York: Wiley; 1998.

    Google Scholar 

  • Brooks VB. The Neural Basis of Motor Control. New York: Oxford University Press; 1986.

    Google Scholar 

  • Capaday C. The special nature of human walking and its neural control. Trends Neurosci. 2002;25:370–376.

    Article  PubMed  CAS  Google Scholar 

  • Dietz V. Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiol. Rev. 1992;72:33–69.

    PubMed  CAS  Google Scholar 

  • Dum RP, Strick PL. Motor areas in the frontal lobe of the primate. Physiol. Behav. 2002;77:677–682.

    Article  PubMed  CAS  Google Scholar 

  • Everts E. Role of motor cortex in voluntary movements in primates. In Brooks VE, ed. Handbook of Physiology. Bethesda, MD: American Physiological Society; 1981;1083–1120.

    Google Scholar 

  • Fukunaga T, Kubo K, Kawakami Y, Fukashiro S, Kanehisa H, Maganaris CN. In vivo behaviour of human muscle tendon during walking. Proc. R. Soc. Lond. B. Biol. Sci. 2001;268:229–233.

    Article  CAS  Google Scholar 

  • Georgopoulos AP. New concepts in generation of movement. Neuron. 1994;13:257–268.

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos AP. Cognitive motor control: spatial and temporal aspects. Curr. Opin. Neurobiol. 2002;12:678–683.

    Article  PubMed  CAS  Google Scholar 

  • Grillner S. Neural networks for vertebrate locomotion. Sci. Am. 1996;274:64–69.

    Article  PubMed  CAS  Google Scholar 

  • Grillner S. The motor infrastructure: from ion channels to neuronal networks. Nature Rev. Neurosci. 2003;4:573–586.

    Article  CAS  Google Scholar 

  • Grillner S, Wallen P. Innate versus learned movements—a false dichotomy? Prog. Brain Res. 2004;143:3–12.

    PubMed  Google Scholar 

  • Halsband U, Freund HJ. Motor learning. Curr Opin Neurobiol. 1993;3:940–949.

    Article  PubMed  CAS  Google Scholar 

  • Lam T, Pearson KG. The role of proprioceptive feedback in the regulation and adaptation of locomotor activity. Adv Exp Med Biol. 2002;508:343–355.

    PubMed  Google Scholar 

  • Lieber R. Skeletal Muscle Structure, Function, & Plasticity: The Physiological Basis of Rehabilitation. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2002.

    Google Scholar 

  • Lieber RL, Friden J. Clinical significance of skeletal muscle architecture. Clin Orthop. 2001;383:140–151.

    Article  PubMed  Google Scholar 

  • MacNeilage PF, Davis BL. Motor mechanisms in speech ontogeny: phylogenetic, neurobiological and linguistic implications. Curr. Opin. Neurobiol. 2001;11:696–700.

    Article  PubMed  CAS  Google Scholar 

  • McCrea DA. Spinal circuitry of sensorimotor control of locomotion. J Physiol. 2001;533:41–50.

    Article  PubMed  CAS  Google Scholar 

  • Pearson K. Motor systems. Curr Opin Neurobiol. 2000;10:649–654.

    Article  PubMed  CAS  Google Scholar 

  • Phillips C. Movements of the hand. Liverpool: Liverpool University Press; 1986.

    Google Scholar 

  • Rizzolatti G, Luppino G. The cortical motor system. Neuron. 2001;31:889–901.

    Article  PubMed  CAS  Google Scholar 

  • Rothwell J. Control of Human Voluntary Movement. 2nd ed. New York: Chapman & Hall; 1994.

    Google Scholar 

  • Ungerleider LG, Doyon J, Karni A. Imaging brain plasticity during motor skill learning. Neurobiol. Learn. Mem. 2002;78:553–564.

    Article  PubMed  Google Scholar 

  • Wiesendanger M, Wise SP. Current issues concerning the functional organization of motor cortical areas in nonhuman primates. Adv. Neurol. 1992;57:117–134.

    PubMed  CAS  Google Scholar 

  • Wing A, Haggard P, and Flanagan J. Hand and Brain: The Neurophysiology and Psychology of Hand Movements. San Diego: Academic; 1996.

    Google Scholar 

  • Wise SP. The primate premotor cortex fifty years after Fulton. Behav. Brain Res. 1985;18:79–88.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this chapter

Cite this chapter

(2005). Motoneurons and Motor Pathways. In: The Human Nervous System. Humana Press. https://doi.org/10.1007/978-1-59259-730-7_11

Download citation

Publish with us

Policies and ethics