Skip to main content

Abstract

Like schizophrenia, the biology of schizotaxia is multidimensional and complex. This point is underscored by other chapters in this volume that focus on abnormalities in brain imaging and sensory gating in nonpsychotic relatives of patients with schizophrenia. The goal of this chapter is to look forward by considering representative neurochemical areas in schizophrenia that are promising but largely unexplored in schizotaxia. In each case, a brief overview of a neurochemical disturbance in schizophrenia is outlined, followed by the relevance of that area for schizotaxia research. Four representative examples are reviewed, starting with abnormalities in dopamine (DA) neurotransmission. As a point of reference, each of the other areas discussed includes a discussion of how it relates to DA function. Moreover, each succeeding area of discussion focuses on a system that has a broader effect on brain function than does DA alone, to highlight the importance of multiple levels of analysis for an understanding of schizotaxia. After the discussion of DA, glutamate (GLU) function in schizophrenia is reviewed, followed by consideration of abnormalities in membrane phospholipids, and then a discussion of glucose regulation. We begin with a brief introduction to the neurochemistry of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gottesman II. Psychopathology through a lifespan genetic prism. Am Psychol 2001; 56:864–878.

    Article  Google Scholar 

  2. Callicott JH, Egan MF, Bertolino A, et al. Hippocampal Nacetyl aspartate in unaffected siblings of patients with schizophrenia: a possible intermediate neurobiological phenotype. Biol Psychiatry 1998; 44:941–950.

    Article  PubMed  CAS  Google Scholar 

  3. Horrobin DF. The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr Res 1998; 30:193–208.

    Article  PubMed  CAS  Google Scholar 

  4. Meltzer HY. Treatment of schizophrenia and spectrum disorders: pharmacotherapy, psychosocial treatments, and neurotransmitter interactions. Biol Psychiatry 1999; 46:1321–1327.

    Article  PubMed  CAS  Google Scholar 

  5. Carlsson A, Waters N, HolmWaters S, TedroffJ, Nilsson M, Carlsson ML. Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 2001; 41:237–260.

    Article  PubMed  CAS  Google Scholar 

  6. Sawa A, Snyder S. Schizophrenia: diverse approaches to a complex disease. Science 2002; 296:692–695.

    Article  PubMed  CAS  Google Scholar 

  7. Carlsson A, Lindqvist M. Effect of chlorpromazine and haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 1963; 20:140–144.

    Article  CAS  Google Scholar 

  8. Meltzer H, McGurk S. The effect of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 1999; 25:233–255.

    Article  PubMed  CAS  Google Scholar 

  9. Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44:660–669.

    Article  PubMed  CAS  Google Scholar 

  10. Weinberger DR, Berman KF, Illowsky BP. Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. III. A new cohort and evidence for a monaminergic mechanism. Arch Gen Psychiatry 1988; 45:609–615.

    Article  PubMed  CAS  Google Scholar 

  11. MeyerLindenberg A, Miletich RS, Kohn PD, et al. Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 2002; 5:267–271.

    Article  CAS  Google Scholar 

  12. Lipska BK, Weinberger DR. Prefrontal cortical and hippocampal modulation of dopaminemediated effects. Adv Pharmacol 1998; 42:806–809.

    Article  PubMed  CAS  Google Scholar 

  13. Cooper JR, Bloom FE, Roth RH. The Biochemical Basis of Neuropharmacology. New York: Oxford University Press, 2003.

    Google Scholar 

  14. Finlay JM, Zigmond MJ. The effects of stress on central dopaminergic neurons: possible clinical implications. Neurochem Res 1997; 22:1387–1394.

    Article  PubMed  CAS  Google Scholar 

  15. Sternberg DE, VanKammen DP, Lerner P, Bunney WE. Schizophrenia: dopamine betahydroxylase activity and treatment response. Science 1982; 216:1423–1425.

    Article  PubMed  CAS  Google Scholar 

  16. Wise CD, Stein L. Dopaminebetahydroxylase deficits in the brains of schizophrenic patients. Science 1973; 181:344–347.

    Article  PubMed  CAS  Google Scholar 

  17. Wyatt RJ, Erdelyi E, Schwartz M, Herman M, Barchas JD. Difficulties in comparing catecholaminerelated enzymes from the brains of schizophrenics and controls. Biol Psychiatry 1978; 13:317–334.

    PubMed  CAS  Google Scholar 

  18. Davidson M, Davis KL. A comparison of plasma homovanillic acid concentrations in schizophrenic patients and normal controls. Arch Gen Psychiatry 1988; 45:561–563.

    Article  PubMed  CAS  Google Scholar 

  19. Green A, Alam M, Sobieraj J, et al. Clozapine response and plasma catecholamines and their metabolites. Psychiatry Res 1993; 46:139–149.

    Article  PubMed  CAS  Google Scholar 

  20. Jentsch JD, Redmond DE, Elsworth JD, Taylor JR, Youngren KD, Roth RH. Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after longterm administration of phencyclidine. Science 1997; 277:953–955.

    Article  PubMed  CAS  Google Scholar 

  21. Bridges PK, Bartlett JR, Sepping P, Kantamaneni BD, Curzon G. Precursors and metabolites of 5hydroxytryptamine and dopamine in the ventricular cerebrospinal fluid of psychiatric patients. Psychol Med 1976; 6:399–405.

    Article  PubMed  CAS  Google Scholar 

  22. Maas JW, Bowden CL, Miller AL, et al. Schizophrenia, psychosis, and cerebral spinal fluid homovanillic acid concentrations. Schizophr Bull 1997; 23:147–154.

    Article  PubMed  CAS  Google Scholar 

  23. Pickar D, Litman RE, Konicki PE, Wolkowitz OM, Breier A. Neurochemical and neural mechanisms of positive and negative symptoms in schizophrenia. Mod Probl Pharmacopsychiatry 1990; 24:124–151.

    PubMed  CAS  Google Scholar 

  24. Sedvall GC, WodeHelgodt B. Aberrant monoamine metabolite levels in CSF and family history of schizophrenia. Their relationships in schizophrenic patients. Arch Gen Psychiatry 1980; 37:1113–1116.

    Article  PubMed  CAS  Google Scholar 

  25. Steinberg JL, Garver DL, Moeller FG, Raese JD, Orsulak PJ. Serum homovanillic acid levels in schizophrenic patients and normal control subjects. Psychiatry Res 1993; 48:93–106.

    Article  PubMed  CAS  Google Scholar 

  26. Lindstrom LH. Low HVA and normal 5HIAA CSF levels in drug-free schizophrenic patients compared to healthy volunteers: correlations to symptomatology and family history. Psychiatry Res 1985; 14:265–273.

    Article  PubMed  CAS  Google Scholar 

  27. Waldo MC, Cawthra E, Adler LE, et al. Auditory sensory gating, hippocampal volume, and catecholamine metabolism in schizophrenics and their siblings. Schizophr Res 1994; 12:93–106.

    Article  PubMed  CAS  Google Scholar 

  28. Amin F, Silverman JM, Siever LJ, Smith CJ, Knott PJ, Davis KL. Genetic antecedents of dopamine dysfunction in schizophrenia. Biol Psychiatry 1999; 45:1143–1150.

    Article  PubMed  CAS  Google Scholar 

  29. Kim J, Kornhuber H, ShcmidBurgk W, Hollander B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 1980; 20:379–383.

    Article  PubMed  CAS  Google Scholar 

  30. Olney J, Farber N. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995; 52:998–1007.

    Article  PubMed  CAS  Google Scholar 

  31. Garland Bunney B, Bunney WE, Carlsson A. Schizophrenia and glutamate. In: Bloom FE, Kupfer DJ, eds. Psychopharmacology: The Fourth Generation of Progress. New York: Raven, 1995:1203–1214.

    Google Scholar 

  32. Coyle J. The glutamatergic dysfunction hypothesis for schizophrenia. Hary Rev Psychiatry 1996; 3:241–253.

    Article  CAS  Google Scholar 

  33. Goff DC, Coyle JT. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 2001; 158:1367–1377.

    Article  PubMed  CAS  Google Scholar 

  34. Goff DC, Tsai G, Manoach DS, Coyle JT. DCycloserine added to neuroleptics for negative symptoms in schizophrenia. Am J Psychiatry 1995; 152:1213–1215.

    PubMed  CAS  Google Scholar 

  35. Eden Evins A, Amico E, Posever TA, Toker R, Goff DC. D-Cycloserine added to risperidone in patients with primary negative symptoms of schizophrenia. Schizophr Res 2002; 56:19–23.

    Article  Google Scholar 

  36. Floresco SB, Blaha CD, Yang CR, Phillips AG. Modulation of hippocampal and amygdalarevoked activity of nucleus accumbens neurons by dopamine: cellular mechanisms of input selection. J Neurosci 2001; 21:2851–2860.

    PubMed  CAS  Google Scholar 

  37. Floresco SB, Todd CL, Grace AA. Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci 2001; 21: 4915–4922.

    PubMed  CAS  Google Scholar 

  38. Floresco SB, Yang CR, Phillips AG, Blaha CD. Basolateral amygdala stimulation evokes glutamate receptordependent dopamine efflux in the nucleus accumbens of the anaesthatized rat. Eur J Neurosci 1998; 10:1241–1251.

    Article  PubMed  CAS  Google Scholar 

  39. Pralong E, Magistretti P, Stoop R. Cellular perspectives on the glutamate-monoamine interactions in limbic lobe structures and their relevance for some psychiatric disorders. Prog Neurobiol 2002; 67:173–202.

    Article  PubMed  CAS  Google Scholar 

  40. Kandel ER. Disorders of thought and volition: schizophrenia. In: Kandel ER, Schwartz JH, Jessell TM, eds. Principles of Neural Science. New York: McGraw-Hill, 2000:1188–1208.

    Google Scholar 

  41. Cohen B, Rosenbaum G, Luby E, Gottlieb J. Comparison of phencyclidine hydrochloride (sernyl) with other drugs: simulation of schizophrenic performance with phencyclidine hydrochloride (sernyl), lysergic acid diethylamide (LSD-25), and amobarbital (Amytal) sodium, II: symbolic and sequential thinking. Arch Gen Psychiatry 1962; 6:79–85.

    Article  Google Scholar 

  42. Malhotra A, Pinals D, Weingartner H, et al. NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 1996; 14:301–307.

    Article  PubMed  CAS  Google Scholar 

  43. Newcomer JW, Farber NB, Jevtovic-Todorovic V, et al. Ketamineinduced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 1999; 20:106–118.

    Article  PubMed  CAS  Google Scholar 

  44. Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA. Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 2001; 25:455–467.

    Article  PubMed  CAS  Google Scholar 

  45. Lahti AC, Koffel B, LaPorte D, Tamminga CA. Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 1995; 13:9–19.

    Article  PubMed  CAS  Google Scholar 

  46. Malhotra A, Pinals D, Adler C, et al. Ketamineinduced exacerbation of psychotic symptoms and cognitive impairment in neurolepticfree schizophrenics. Neuropsychopharmacology 1997; 17:141–150.

    Article  PubMed  CAS  Google Scholar 

  47. Anand A, Charney DS, Oren DA, et al. Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of NmethylDaspartate receptor antagonists. Arch Gen Psychiatry 2000; 57:270–276.

    Article  PubMed  CAS  Google Scholar 

  48. Krystal JH, Anand A, Moghaddam B. Effects of NMDA receptor antagonists: implications for the pathophysiology of schizophrenia. Arch Gen Psychiatry 2002; 59:663–664.

    Article  PubMed  Google Scholar 

  49. Horrobin DF. Schizophrenia: a biochemical disorder? Biomedicine 1980; 32:54–55.

    PubMed  CAS  Google Scholar 

  50. Fenton WS, Hibbeln J, Knable M. Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biol Psychiatry 2000; 47:8–21.

    Article  PubMed  CAS  Google Scholar 

  51. Puri BK, Easton T, Das I, Kidane L, Richardson AJ. The niacin skin flush test in schizophrenia: a replication study. Int J Clin Pract 2001; 55:368–370.

    PubMed  CAS  Google Scholar 

  52. Ward PE, Sutherland J, Glen EMT, Glen AIM. Niacin skin flush in schizophrenia: a preliminary report. Schizophr Res 1998; 29:269–274.

    Article  PubMed  CAS  Google Scholar 

  53. Puri BK, Hirsch SR, Easton T, Richardson AJ. A volumetric biochemical niacin flushbased index that noninvasely detects fatty acid deficiency in schizophrenia. Prog Neuropsychopharm Biol Psychiatry 2002; 26:49–52.

    Article  CAS  Google Scholar 

  54. Messamore E, Hoffman WF, Janowsky A. The niacin skin flush abnormality in schizophrenia: a quantitative doseresponse study. Schizophr Res 2003; 62:251–258.

    Article  PubMed  Google Scholar 

  55. Horrobin DF, Glen AIM, Vaddadi K. The membrane hypothesis of schizophrenia. Schizophr Res 1994; 13:195–207.

    Article  PubMed  CAS  Google Scholar 

  56. Reisbick S, Neuringer M. Omega-3 fatty acid deficiency and behavior: a critical review and directions for future research. In: Yehuda S, Mostafsky D, eds. Handbook of Essential Fatty Acid Biology; Biochemsitry, Physiology, and Behavioral Neurobiology. Totowa, NJ: Humana, 1997:397–426.

    Google Scholar 

  57. Holden RJ, Mooney PA. Schizophrenia is a babetic brain state: an elucidation of impaired metabolism. Med Hypotheses 1994; 43:420–435.

    Article  PubMed  CAS  Google Scholar 

  58. Horrobin DF. Schizophrenia: the illness that made us human. Med Hypotheses 1998; 50: 269–288.

    Article  PubMed  CAS  Google Scholar 

  59. Glen AIM, Cooper JR, Rybaskowski J, Vaddadi K, Brayshaw N, Horrobin DF. Membrane fatty acids, niacin flushing and clinical parameters. Prostaglandins Leukot Essent Fatty Acids 1996; 55:9–15.

    Article  PubMed  CAS  Google Scholar 

  60. Gattaz WF, Brunner J. Phospholipase A2 and the hypofrontality hypothesis of schizophrenia. Prostaglandins Leukot Essent Fatty Acids 1996; 55:109–113.

    Article  PubMed  CAS  Google Scholar 

  61. Ross BM. Brain and blood phospholipases in schizophrenia. Prostaglandins Leukot Essent Fatty Acids 1997; 57:211.

    Google Scholar 

  62. Dienel GA, Hertz L. Glucose and lactate metabolism during brain activation. J Neurosci Res 2001; 66:824–838.

    Article  PubMed  CAS  Google Scholar 

  63. Wenk G. An hypothesis on the role of glucose in the mechanism of action of cognitive enhancers. Psychopharmacology 1989; 99:431–438.

    Article  PubMed  CAS  Google Scholar 

  64. Dwyer DS, Bradley RJ, Kablinger AS, Freeman AM, 3rd. Glucose metabolism in relation to schizophrenia and antipsychotic drug treatment. Ann Clin Psychiatry 2001; 13:103–113.

    PubMed  CAS  Google Scholar 

  65. Sailer CF, Chiodo LA. Glucose suppreses basal firing and haloperidolinduced increases in the firing rate of central dopaminergic neurons. Science 1980; 210:1269–1271.

    Article  Google Scholar 

  66. Lozovsky DB, Sailer CF, Kopin IJ. Dopamine receptor binding is increased in diabetic rats. Science 1981; 214:1031–1033.

    Article  PubMed  CAS  Google Scholar 

  67. Lozovsky DB, Kopin IJ, Saller CF. Modulation of dopamine receptor supersensitivity by chronic insulin: implication in schizophrenia. Brain Res 1985; 343:190–193.

    Article  PubMed  CAS  Google Scholar 

  68. Levin BE. Glucoseregulated dopamine release from substantia nigra neurons. Brain Res 2000; 874:158–164.

    Article  PubMed  CAS  Google Scholar 

  69. Braceland FJ, Meduna LJ, Vaichulis JA. Delayed action of insulin in schizophrenia. Am J Psychiatry 1945; 102:108–110.

    Google Scholar 

  70. Schimmelbusch W, Mueller P, Sheps J. The positive correlation between insulin resistance and duration of hospitalization in schizophrenia. Br J Psychiatry 1971; 118:429–436.

    Article  PubMed  CAS  Google Scholar 

  71. Mukherjee S, Schnur DB, Reddy R. Family history of type 2 diabetes in schizophrenic patients. Lancet 1989; 1:495.

    Article  PubMed  CAS  Google Scholar 

  72. Ryan MCM, Thakore JH. Physical consequences of schizophrenia and its treatment: the metabolic syndrome. Life Sci 2002; 71:239–257.

    Article  PubMed  CAS  Google Scholar 

  73. Popli AP, Konicki PE, Jurjus GJ, Fuller MA, Jaskiw GE. Clozapine and associated diabetes mellitus. J Clin Psychiat 1997; 58:108–111.

    Article  CAS  Google Scholar 

  74. Hagg S, Joelsson L, Mjorndal T, Spigset O, Oja G, Dahlqvist R. Prevalence of diabetes and impaired glucose tolerance in patients treated with clozapine compared with patients treated with conventional depot neuroleptic medications. J Clin Psychiat 1998; 59:294–299.

    Article  CAS  Google Scholar 

  75. Lindenmayer J-P, Patel R. Olanzapineinduced ketoacidosis with diabetes mellitus. Am J Psychiatry 1999; 156:1471.

    PubMed  CAS  Google Scholar 

  76. Newcomer JW, Haupt DW, Fucetola R, et al. Abnormalities in glucose regulation during antipsychotic treatment of schizophrenia. Arch Gen Psychiatry 2002; 59:337–345.

    Article  PubMed  CAS  Google Scholar 

  77. Wright P, Sham PC, Gilvarry CM, et al. Autoimmune diseases in the pedigrees of schizophrenic and control subjects. Schizophr Res 1996; 20:261–7.

    Article  PubMed  CAS  Google Scholar 

  78. Stone WS, Faraone SV, Su J, Tarbox SI, Van Eerdewegh P, Tsuang MT. Evidence for linkage between regulatory enzymes in glycolysis and schizophrenia in a multiplex sample. Neuropsychiat Genet, in press.

    Google Scholar 

  79. Cloninger CR, Kaufmann CA, Faraone SV, et al. Genomewide search for schizophrenia susceptibility loci: the NIMH Genetics Initiative and Millennium Consortium. Am J Med Genet (Neuropsychiat Genet) 1998; 81:275–281.

    Article  CAS  Google Scholar 

  80. Hall JL, Gonder-Frederick LA, Chewning WW, Silveira J, Gold PE. Glucose enhancement of performance on memory tests in young and aged humans. Neuropsychologia 1989; 27: 1129–1138.

    Article  PubMed  CAS  Google Scholar 

  81. Stone WS, Wenk GL, Olton DS, Gold PE. Poor blood glucose regulation predicts sleep and memory deficits in normal aged rats. J Gerontol: Biol Sci Med Sci 1990; 45:B169–B173.

    Google Scholar 

  82. Messier C, Desrochers A, Gagnon M. Effect of glucose, glucose regulation and word imagery value on human memory. Behav Neurosci 1999; 113:431–438.

    Article  PubMed  CAS  Google Scholar 

  83. McNay EC, Fries TM, Gold PE. Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand in a spatial task. Proc Natl Acad Sci USA 2000; 97: 2881–2885.

    Article  PubMed  CAS  Google Scholar 

  84. McNay EC, McCarty RC, Gold PE. Fluctuations in brain glucose concentration during behavioral testing: dissociations between brain areas and between brain and blood. Neurobiol Learn Mem 2001; 75:325–337.

    Article  PubMed  CAS  Google Scholar 

  85. Newcomer JW, Craft S, Fucetola R, et al. Glucoseinduced increase in memory performance in patients with schizophrenia. Schizophr Bull 1999; 25:321–335.

    Article  PubMed  CAS  Google Scholar 

  86. Stone WS, Seidman LJ, Wojcik JD, Green AI. Glucose effects on cognition in schizophrenia. Schizophr Res 2003; 62:93–103.

    Article  PubMed  Google Scholar 

  87. Stone WS, Tarbox SI, Wencel H, Seidman LJ. Medial temporal lobe activation following glucose administration in schizophrenia: an fMRI study. Vol. 28. Orlando, FL: Society for Neuroscience Abstracts, 2002.

    Google Scholar 

  88. Faraone SV, Kremen WS, Lyons MJ, Pepple JR, Seidman LJ, Tsuang MT. Diagnostic accuracy and linkage analysis: How useful are schizophrenia spectrum phenotypes? Am J Psychiatry 1995; 152:1286–1290.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Stone, W.S., Glatt, S.J., Faraone, S.V. (2004). The Biology of Schizotaxia. In: Stone, W.S., Faraone, S.V., Tsuang, M.T. (eds) Early Clinical Intervention and Prevention in Schizophrenia. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-729-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-729-1_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9833-2

  • Online ISBN: 978-1-59259-729-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics