Skip to main content

Abstract

Since early 2001, a draft of the map of the entire base-pair sequence of human DNA has been generally available to the scientific community, permitting a range of projects that would previously have been unimaginable. Among those projects will be programmatic explorations of the genetic etiology of human disease. That research will facilitate the development of tests that can identify those at risk for a variety of disorders. Innovative therapies based on genetic information can then be designed, which will provide more effective treatments, and perhaps even methods of prevention or cure. In psychiatry, the syndrome that is perhaps most likely to benefit from such research is schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsuang MT, Faraone SV, Green AI. Schizophrenia and other psychotic disorders. In: Armand M, Nicholi J, eds. The Harvard Guide to Psychiatry. Cambridge, MA: Harvard University Press, 1999.

    Google Scholar 

  2. Gottesman II. Schizophrenia Genesis: The Origin of Madness. New York: Freeman, 1991.

    Google Scholar 

  3. Gottesman II. Origins of schizophrenia: past as prologue. In: Plomin R, McClearn GE, eds. Nature, Nurture, and Psychology. Washington, DC: American Psychological Association, 1993:231–244.

    Google Scholar 

  4. Kendler KS, Gruenberg AM, Tsuang MT. A family study of the subtypes of schizophrenia. Am J Psychiatry 1988; 145:57–62.

    PubMed  CAS  Google Scholar 

  5. Tsuang MT, Vandermey R. Genes and the Mind: Inheritance of Mental Illness. London: Oxford University Press, 1980.

    Google Scholar 

  6. Faraone SV, Tsuang MT. Familial links between schizophrenia and other disorders: application of the multifactorial polygenic model. Psychiatry: Interpersonal and Biological Processes 1988; 51:37–47.

    CAS  Google Scholar 

  7. Parnas J, Cannon TD, Jacobsen B, Schulsinger H, Schulsinger F, Mednick SA. Lifetime DSM-III-R diagnostic outcomes in the offspring of schizophrenic mothers. Results from the Copenhagen high-risk study. Arch Gen Psychiatry 1993; 50:707–714.

    PubMed  CAS  Google Scholar 

  8. Kendler KS, McGuire M, Gruenberg AM, O’Hare A, Spellman M, Walsh D. The Roscommon Family Study. I. Methods, diagnosis of probands, and risk of schizophrenia in relatives. Arch Gen Psychiatry 1993; 50:527–540.

    PubMed  CAS  Google Scholar 

  9. Maier W, Lichtermann D, Minges J, et al. Continuity and discontinuity of affective disorders and schizophrenia. Results of a controlled family study. Arch Gen Psychiatry 1993; 50: 871–883.

    PubMed  CAS  Google Scholar 

  10. Cornblatt BA, Keilp JG. Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophr Bull 1994; 20:31–46.

    PubMed  CAS  Google Scholar 

  11. Faraone SV, Tsuang D, Tsuang MT. Psychiatric Genetics: A Guide for Mental Health Professionals. New York: Guilford, 1999.

    Google Scholar 

  12. Kendler KS. Overview: a current perspective on twin studies of schizophrenia. Am J Psychiatry 1983; 140:1413–1425.

    PubMed  CAS  Google Scholar 

  13. Prescott CA, Gottesman II. Genetically mediated vulnerability to schizophrenia. Psychiatr Clin North Am 1993; 16:245–267.

    PubMed  CAS  Google Scholar 

  14. Gottesman II, Bertelsen A. Confirming unexpressed genotypes for schizophrenia. Risks in the offspring of Fischer’ s Danish identical and fraternal discordant twins. Arch Gen Psychiatry 1989; 46:867–872.

    PubMed  CAS  Google Scholar 

  15. McGuffin P, Farmer AE, Gottesman II, Murray RM, Reveley AM. Twin concordance for operationally defined schizophrenia. Confirmation of familiality and heritability. Arch Gen Psychiatry 1984; 41:541–545.

    PubMed  CAS  Google Scholar 

  16. Farmer AE, McGuffin P, Gottesman II. Twin concordance for DSM-III schizophrenia: scrutinizing the validity of the definition. Arch Gen Psychiatry 1987; 44:634–641.

    PubMed  CAS  Google Scholar 

  17. Onstad S, Skre I, Torgersen S, Kringlen E. Twin concordance for DSM-III-R schizophrenia. Acta Psychiatr Scand 1991; 83:395–401.

    PubMed  CAS  Google Scholar 

  18. Cannon T, Kaprio J, Lonnqvist J, Huttunen M, Koskenvuo M. The genetic epidemiology of schizophrenia in a Finnish twin cohort. Arch Gen Psychiatry 1998; 55:67–74.

    PubMed  CAS  Google Scholar 

  19. Heston LL. Psychiatric disorders in foster home-reared children of schizophrenic mothers. Br J Psychiatry 1966; 112:819–825.

    PubMed  CAS  Google Scholar 

  20. Kety SS, Rosenthal D, Wender PH, Schulsinger F. The types and prevalence of mental illness in the biological and adoptive families of adopted schizophrenics. J Psychiatr Res 1968; 1:345–362.

    Google Scholar 

  21. Kety SS. Schizophrenic illness in the families of schizophrenic adoptees: findings from the Danish national sample. Schizophr Bull 1988; 14:217–222.

    PubMed  CAS  Google Scholar 

  22. Kety SS, Wender PH, Jacobsen B, et al. Mental illness in the biological and adoptive relatives of schizophrenic adoptees. Replication of the Copenhagen study in the rest of Denmark. Arch Gen Psychiatry 1994; 51:442–455.

    PubMed  CAS  Google Scholar 

  23. Kendler KS, Gruenberg AM, Kinney DK. Independent diagnoses of adoptees and relatives as defined by DSM-III in the provincial and national samples of the Danish adoption study of schizophrenia. Arch Gen Psychiatry 1994; 51:456–468.

    PubMed  CAS  Google Scholar 

  24. Tienari P, Wynne L. Adoption studies of schizophrenia. Ann Med 1994; 26:233–237.

    PubMed  CAS  Google Scholar 

  25. McGue M, Gottesman II. The genetic epidemiology of schizophrenia and the design of linkage studies. Eur Arch Psychiatry Clin Neurosci 1991; 240:174–181.

    PubMed  CAS  Google Scholar 

  26. Gottesman II, Shields J. Schizophrenia: The Epigenetic Puzzle. Cambridge, England: Cambridge University Press, 1982.

    Google Scholar 

  27. Siever LJ, Kalus OF, Keefe RSE. The boundaries of schizophrenia. Psychiatr Clin North Am 1993; 16:217–244.

    PubMed  CAS  Google Scholar 

  28. Baron M, Gruen R, Asnis L, Kane J. Familial relatedness of schizophrenia and schizotypal states. Am J Psychiatry 1983; 140:1437–1442.

    PubMed  CAS  Google Scholar 

  29. Baron M, Gruen R, Asnis L, Lord S. Familial transmission of schizotypal and borderline personality disorders. Am J Psychiatry 1985; 142:927–934.

    PubMed  CAS  Google Scholar 

  30. Kendler KS, Masterson CC, Ungaro R, Davis KL. A family history study of schizophreniarelated personality disorders. Am J Psychiatry 1984; 141:424–427.

    PubMed  CAS  Google Scholar 

  31. Gunderson JG, Siever LJ, Spaulding E. The search for a schizotype: crossing the border again. Arch Gen Psychiatry 1983; 40:15–22.

    PubMed  CAS  Google Scholar 

  32. Siever LJ, Gunderson JG. Genetic determinants of borderline conditions. Schizophr Bull 1979; 5:59–86.

    PubMed  CAS  Google Scholar 

  33. Torgersen S. Relationship of schizotypal personality disorder to schizophrenia: genetics. Schizophr Bull 1985; 11:554–563.

    PubMed  CAS  Google Scholar 

  34. Coryell WH, Zimmerman M. Personality disorder in the families of depressed, schizophrenic, and never-ill probands. Am J Psychiatry 1989; 146:496–502.

    PubMed  CAS  Google Scholar 

  35. Squires-Wheeler E, Skodol AE, Bassett A, Erlenmeyer-Kimling L. DSM-III-R schizotypal personality traits in offspring of schizophrenic disorder, affective disorder, and normal control parents. J Psychiatr Res 1989; 23:229–239.

    PubMed  CAS  Google Scholar 

  36. Battaglia M, Torgersen S. Schizotypal disorder: at the crossroads of genetics and nosology. Acta Psychiatr Scand 1996; 94:303–310.

    PubMed  CAS  Google Scholar 

  37. Kendler KS, McGuire M, Gruenberg AM, O’Hare A, Spellman M, Walsh D. The Roscommon Family Study. III. Schizophrenia-related personality disorders in relatives. Arch Gen Psychiatry 1993; 50:781–788.

    PubMed  CAS  Google Scholar 

  38. Rogers KL, Winokur G. The genetics of schizoaffective disorder and the schizophrenia spectrum. In: Tsuang MT, Simpson JC, eds. Handbook of Schizophrenia: Vol. 3. Nosology, Epidemiology, & Genetics. New York: Elsevier, 1988.

    Google Scholar 

  39. Kendler KS, Tsuang MT. Nosology of paranoid, schizophrenic, and other paranoid psychoses. Schizophr Bull 1981; 7:594–610.

    PubMed  CAS  Google Scholar 

  40. Kendler KS, Hayes P. Paranoid psychosis (delusional disorder) and schizophrenia. Arch Gen Psychiatry 1981; 38:547–551.

    PubMed  CAS  Google Scholar 

  41. Winokur G. Familial psychopathology in delusional disorder. Compr Psychiatry 1985; 26: 241–248.

    PubMed  CAS  Google Scholar 

  42. Kendler K. Diagnostic approaches to schizotypal personality disorder: a historical perspective. Schizophr Bull 1985; 11:538–553.

    PubMed  CAS  Google Scholar 

  43. Faraone SV, Green AI, Seidman LJ, Tsuang MT. “Schizotaxia”: clinical implications and new directions for research. Schizophr Bull 2001; 27:1–18.

    PubMed  CAS  Google Scholar 

  44. Battaglia M, Bernardeschi L, Franchini L, Bellodi L, Smeraldi E. A family study of schizotypal disorder. Schizophr Bull 1995; 21:33–45.

    PubMed  CAS  Google Scholar 

  45. Faraone SV, Kremen WS, Lyons MJ, Pepple JR, Seidman LI, Tsuang MT. Diagnostic accuracy and linkage analysis: how useful are schizophrenia spectrum phenotypes? Am J Psychiatry 1995; 152:1286–1290.

    PubMed  CAS  Google Scholar 

  46. Faraone SV, Seidman LJ, Kremen WS, Pepple JR, Lyons MJ, Tsuang MT. Neuropsychological functioning among the nonpsychotic relatives of schizophrenic patients: a diagnostic efficiency analysis. J Abnorm Psychol 1995; 104:286–304.

    PubMed  CAS  Google Scholar 

  47. Faraone SV, Tsuang MT. Quantitative models of the genetic transmission of schizophrenia. Psychol Bull 1985; 98:41–66.

    PubMed  CAS  Google Scholar 

  48. Tsuang MT, Gilbertson MW, Faraone SV. The genetics of schizophrenia: Current knowledge and future directions. Schizophr Res 1991; 4:157–171.

    PubMed  CAS  Google Scholar 

  49. Crabbe JC, Belknap JK, Buck KJ. Genetic animal models of alcohol and drug abuse. Science 1994; 264:1715–1723.

    PubMed  CAS  Google Scholar 

  50. Gottesman II. Twins: en route to QTLs for cognition. Science 1997; 276:1522–1523.

    PubMed  CAS  Google Scholar 

  51. Plomin R, Pedersen NL, Lichtenstein P, McClearn GE. Variability and stability in cognitive abilities are largely genetic later in life. Behav Genet 1994; 24:207–215.

    PubMed  CAS  Google Scholar 

  52. Takahashi JS, Pinto LH, Vitaterna MH. Forward and reverse approaches to behavior in the mouse. Science 1994; 264:1724–1732.

    PubMed  CAS  Google Scholar 

  53. McGue M, Bouchard TJ Jr, Iacono WG, Lykken DT. Behavioral genetics of cognitive ability: a life-span perspective. In: Plomin R, McClearn GE, eds. Nature, Nurture, and Psychology. Washington, DC: American Psychological Association, 1993:59–76.

    Google Scholar 

  54. Risch N, Baron M. Segregation analysis of schizophrenia and related disorders. Am J Hum Genet 1984; 36:1039–1059.

    PubMed  CAS  Google Scholar 

  55. Vogler GP, Gottesman II, McGue MK, Rao DC. Mixed model segregation analysis of schizophrenia in the Lindelius Swedish pedigrees. Behav Genet 1990; 20:461–472.

    PubMed  CAS  Google Scholar 

  56. Risch N. Genetic linkage and complex diseases, with special reference to psychiatric disorders. Genet Epidemiol 1990; 7:3–7.

    PubMed  CAS  Google Scholar 

  57. Terwilliger JD, Zollner S, Laan M, Paabo S. Mapping genes through the use of linkage disequilibrium generated by genetic drift: “drift mapping” in small populations with no demographic expansion. Hum Hered 1998; 48:138–154.

    PubMed  CAS  Google Scholar 

  58. Lander E, Kruglyak L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11:241–247.

    PubMed  CAS  Google Scholar 

  59. Badner J, Gershon E. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7:405–411.

    PubMed  CAS  Google Scholar 

  60. Levinson DF, Lewis CM, Wise LH. 16 contributing groups. Meta-analysis of genome scans for schizophrenia. Am J Med Genet (Neuropsychiatric Genetics) 2002; 114:700–701.

    Google Scholar 

  61. St Clair D, Blackwood D, Muir W, et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336:13–16.

    PubMed  CAS  Google Scholar 

  62. Millar JK, Christie S, Semple CA, Porteus DJ. Chromosomal location and genomic structure of the human translin-associated factor X gene (TRAX; TSNAX) revealed by intergenic splicing to DISC 1, a gene disrupted by a translocation segregating with schizophrenia. Genomics 2000; 67:69–77.

    PubMed  CAS  Google Scholar 

  63. Hovatta L, Terwilliger J, Lichtermann D, et al. Schizophrenia in the genetic isolate of Finland. Am J Med Genet (Neuropsychiatric Genetics) 1997; 74:353–360.

    CAS  Google Scholar 

  64. Hovatta I, Varilo T, Suvisaari J, et al. A genomewide screen for schizophrenia genes in an isolated Finnish subpopulation, suggesting multiple susceptibility loci. Am J Hum Genet 1999; 65:1114–1124.

    PubMed  CAS  Google Scholar 

  65. Brzustowicz LM, Hodgkinson KA, Chow EWC, Honer WG, Basett AS. Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. Science 2000; 288: 678–682.

    PubMed  CAS  Google Scholar 

  66. Shaw SH, Kelly M, Smith AB, et al. A genome-wide search for schizophrenia susceptibility genes. Am J Med Genet (Neuropsychiatric Genetics) 1998; 81:364–376.

    CAS  Google Scholar 

  67. Badner JA, Gershon ES, Berrettini WH, et al. Evidence of linkage disequilibrium between bipolar disorder and D18S53. Psychiatr Genet 1995; 5:S16.

    Google Scholar 

  68. Bassett AS, McGillivray BC, Jones BD, Pantzar JT. Partial trisomy of chromosome 5 cosegregating with schizophrenia. Lancet 1988; 1:799–801.

    PubMed  CAS  Google Scholar 

  69. Sherrington R, Brynjolfsson J, Petursson H, et al. Localization of a susceptibility locus for schizophrenia on chromosome 5. Nature 1988; 336:164–167.

    PubMed  CAS  Google Scholar 

  70. McGuffin P, Sargeant M, Hetti G, Tidmarsh S, Whatley S, Marchbanks RM. Exclusion of a schizophrenia susceptibility gene from the chromosome 5q11-q13 region: new data and a reanalysis of previous reports. Am J Hum Genet 1990; 47:524–535.

    PubMed  CAS  Google Scholar 

  71. Schwab SG, Eckstein GN, Hallmayer J, et al. Evidence suggestive of a locus on chromosome 5g31 contributing to susceptibility for schizophrenia in German and Israeli families by multipoint affected sib-pair linkage analysis. Mol Psychiatry 1997; 2:156–160.

    PubMed  CAS  Google Scholar 

  72. Straub RE, MacLean CJ, O’Neill FA, Walsh D, Kendler KS. Support fora possible schizophrenia vulnerability locus in region 5q21-q31 in Irish families. Mol Psychiatry 1997; 2:148–155.

    PubMed  CAS  Google Scholar 

  73. Gurling HM, Kalsi G, Brynjolfson J, et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21–22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3–24 and 20q12.1–11.23. Am J Hum Genet 2001; 68:661–673.

    PubMed  CAS  Google Scholar 

  74. Wang S, Sun CE, Walczak CA, et al. Evidence for a susceptibility locus for schizophrenia on chromosome 6pter-p22. Nat Genet 1995; 10:41–46.

    PubMed  Google Scholar 

  75. Straub RE, MacLean CJ, O’Neill FA, et al. A potential vulnerability locus for schizophrenia on chromosome 6p24–22: evidence for genetic heterogeneity. Nat Genet 1995; 11:287–293.

    PubMed  CAS  Google Scholar 

  76. Cao Q, Martinez M, Zhang J, et al. Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees. Genomics 1997; 43:1–8.

    PubMed  CAS  Google Scholar 

  77. Antonarakis SE, Blouin J-L, Pulver AE, et al. Schizophrenia susceptibility and chromosome 6p24–22. Nat Genet 1995; 11:235–236.

    PubMed  CAS  Google Scholar 

  78. Schwab SG, Albus M, Hallmayer J, et al. Evaluation of a susceptibility gene for schizophrenia on chromosome 6p by multipoint affected sib-pair linkage analysis. Nat Genet 1995; 11: 325–327.

    PubMed  CAS  Google Scholar 

  79. Maziade M, Bissonnette L, Rouillard E, et al. 6p24–22 region and major psychoses in the eastern Quebec population. Am J Med Genet (Neuropsychiatric Genetics) 1997; 74:311–318.

    CAS  Google Scholar 

  80. Blouin J, Dombroski BA, Nath SK, et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 28:70–73.

    Google Scholar 

  81. Kendler KS, MacLean CJ, O’Neill FA, et al. Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish Study of High-Density Schizophrenia Families. Am J Psychiatry 1996; 153:1534–1540.

    PubMed  CAS  Google Scholar 

  82. Pulver AE. Search for schizophrenia susceptibility genes. Biol Psychiatry 2000; 47:221–230.

    PubMed  CAS  Google Scholar 

  83. Pulver AE, Mulle J, Nestadt G, et al. Genetic heterogeneity in schizophrenia: stratification of genome scan data using co-segregating related phenotypes. Mol Psychiatry 2000; 5:650–653.

    PubMed  CAS  Google Scholar 

  84. Kunugi H, Curtis D, Vallada HP, et al. A linkage study of schizophrenia with DNA markers from chromosome 8p21-p22 in 25 multiplex families. Schizophr Res 1996; 22:61–68.

    PubMed  CAS  Google Scholar 

  85. Coon H, Jensen S, Holik J, et al. Genomic scan for genes predisposing to schizophrenia. Am J Med Genet (Neuropsychiatric Genetics) 1994; 54:59–71.

    CAS  Google Scholar 

  86. Moises HW, Yang L, Kristbjarnarson H, et al. An international two-stage genome-wide search for schizophrenia susceptibility genes. Nat Genet 1995; 11:321–324.

    PubMed  CAS  Google Scholar 

  87. Barr CL, Kennedy JL, Pakstis AJ, et al. Progress in a genome scan for linkage in schizophrenia in a large Swedish kindred. Am J Med Genet (Neuropsychiatric Genetics) 1994; 54:51–58.

    CAS  Google Scholar 

  88. Kaufmann CA, Suarez B, Malaspina D, et al. NIMH genetics initiative Millennium schizophrenia consortium: linkage analysis of African-American pedigrees. Am J Med Genet (Neuropsychiatric Genetics) 1998; 81:282–289.

    CAS  Google Scholar 

  89. Straub RE, MacLean CJ, Martin RB, et al. A schizophrenia locus may be located in region 10p15-p11. Am J Med Genet (Neuropsychiatric Genetics) 1998; 81:296–301.

    CAS  Google Scholar 

  90. Schwab SG, Hallmayer J, Albus M, et al. Further evidence for a susceptibility locus on chromosome l Op 14-p l l in 72 families with schizophrenia by non-parametric linkage analysis. Am J Med Genet (Neuropsychiatric Genetics) 1998; 81:302–307.

    CAS  Google Scholar 

  91. Levinson DF, Holmans P, Straub RE, et al. Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III. Am J Hum Genet 2000; 67:652–663.

    PubMed  CAS  Google Scholar 

  92. Maziade M, Raymond V, Cliche D, et al. Linkage results on 11Q21–22 in Eastern Quebec pedigrees densely affected by schizophrenia. Am J Med Genet (Neuropsychiatric Genetics) 1995; 60:522–528.

    CAS  Google Scholar 

  93. Craddock N, Lendon C. New susceptibility gene for Alzheimer’s disease on chromosome 12? Lancet 1998; 352:1720–1721.

    PubMed  CAS  Google Scholar 

  94. Lin MW, Curtis D, Williams N, et al. Suggestive evidence for linkage of schizophrenia to markers on chromosome 13q14.1-q32. Psychiatr Genet 1995; 5:117–126.

    PubMed  CAS  Google Scholar 

  95. Antonarakis SE, Blouin JL, Curran M, Luebbert H, Kazazian HH, Dombroski B, et al. Linkage and sibpair analysis reveal a potential schizophrenia susceptibility gene on 13q32. Am J Hum Genet 1996; 59:A210.

    Google Scholar 

  96. Kalsi G, Chen C-H, Smyth C, Brynjolfsson J, Sigmundsson T, Curtis D, et al. Genetic linkage analysis in an Icelandic/British family fails to exclude the putative chromosome 13q14.1-q32 schizophrenia susceptibility locus. Am J Hum Genet 1996; 59:A388.

    Google Scholar 

  97. Lin MW, Sham P, Hwu HG, Collier D, Murray R, Powell JF. Suggestive evidence for linkage of schizophrenia to markers on chromosome 13 in Caucasian but not Oriental population. Hum Genet 1997; 99:417–420.

    PubMed  CAS  Google Scholar 

  98. Brzustowicz LM, Honer WG, Chow EW, et al. Linkage of familial schizophrenia to chromosome 13q32. Am J Hum Genet 1999; 65:1096–1103.

    PubMed  CAS  Google Scholar 

  99. Freedman R, Coon H, Myles-Worsley M, et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 1997; 94:587–592.

    PubMed  CAS  Google Scholar 

  100. Adler LE, Freedman R, Ross RG, Olincy A, Waldo MC. Elementary phenotypes in the neurobiological and genetic study of schizophrenia. Biol Psychiatry 1999; 46:8–18.

    PubMed  CAS  Google Scholar 

  101. Leonard S, Gault J, Moore T, et al. Further investigation of a chromosome 15 locus in schizophrenia: analysis of affected sibpairs from the NIMH Genetics Initiative. Am J Med Genet (Neuropsychiatric Genetics) 1998; 81:308–312.

    CAS  Google Scholar 

  102. Stober G, Saar K, Ruschendorf F, et al. Splitting schizophrenia: periodic catatonia-susceptibility locus on chromosome 15q15. Am J Hum Genet 2000; 67:1201–1207.

    PubMed  CAS  Google Scholar 

  103. Craddock N, Lendon C. Chromosome Workshop: chromosomes 11, 14, and 15. Am J Med Genet (Neuropsychiatric Genetics) 1999; 88:244–254.

    CAS  Google Scholar 

  104. Curtis D. Chromosome 21 workshop. Am J Med Genet (Neuropsychiatric Genetics) 1999; 88:272–275.

    CAS  Google Scholar 

  105. Coon H, Holik J, Hoff M, et al. Analysis of chromosome 22 markers in 9 schizophrenia pedigrees. Am J Med Genet (Neuropsychiatric Genetics) 1994; 54:72–79.

    CAS  Google Scholar 

  106. Pulver AE, Karayiorgou M, Wolyneic P, et al. Sequential strategy to identify a susceptibility gene for schizophrenia: report of potential linkage on on chromosome 22q12-q13.1: part 1. Am J Med Genet (Neuropsychiatric Genetics) 1994; 54:36–43.

    CAS  Google Scholar 

  107. Polymeropoulos MH, Coon H, Byerley W, et al. Search for a schizophrenia susceptibility locus on human chromosome 22. Am J Med Genet (Neuropsychiatric Genetics) 1994; 54: 93–99.

    CAS  Google Scholar 

  108. Pulver AE, Karayiorgou M, Lasseter VK, et al. Follow-up of a report of a potential linkage for schizophrenia on chromosome 22q12-q13.1: part 2. Am J Med Genet (Neuropsychiatric Genetics) 1994; 54:44–50.

    CAS  Google Scholar 

  109. Lasseter VK, Pulver AE, Wolyniec PS, et al. Follow-up report of potential linkage for schizophrenia on chromosome 22q: part 3. Am J Med Genet (Neuropsychiatric Genetics) 1995; 60:172–173.

    CAS  Google Scholar 

  110. Moises HW, Yang L, Haysteen B, et al. Evidence for linkage disequilibrium between schizophrenia and locus D22S278 on the long arm of chromosome 22. Am J Med Genet (Neuropsychiatric Genetics) 1995; 60:465–467.

    CAS  Google Scholar 

  111. Vallada HP, Collier D, Sham P, et al. Linkage studies on chromosome 22 in familial schizophrenia. Am J Med Genet (Neuropsychiatric Genetics) 1995; 60:139–146.

    CAS  Google Scholar 

  112. Schizophrenia Collaborative Linkage Group (Chromosome 22). A combined analysis of D22S278 marker alleles in affected sib-pairs: support for a susceptibility locus at chromosomen 22q12. Am J Med Genet (Neuropsychiatric Genetics) 1996; 67:40–45.

    Google Scholar 

  113. Dann J, DeLisi LE, Devoto M, et al. A linkage study of schizophrenia to markers within Xp 11 near the MAOB gene. Psychiatry Res 1997; 70:131–143.

    PubMed  CAS  Google Scholar 

  114. DeLisi LE, Friedrich U, Wahlstrom J, et al. Schizophrenia and sex chromosome anomalies. Schizophr Bull 1994; 20:495–505.

    PubMed  CAS  Google Scholar 

  115. Kalsi G, Gamble D, Curtis D, et al. No evidence for linkage of schizophrenia to DXS7 at chromosome Xp 11 . Psychiatr Genet 1999; 9:197–199.

    PubMed  CAS  Google Scholar 

  116. DeLisi LE, Shaw S, Sherrington R, et al. Failure to establish linkage on the X chromosome in 301 families with schizophrenia or schizoaffective disorder. Am J Med Genet (Neuropsychiatric Genetics) 2000; 96:335–341.

    CAS  Google Scholar 

  117. Moldin SO, Gottesman, II. At issue: genes, experience, and chance in schizophrenia—positioning for the 21st century. Schizophr Bull 1997; 23:547–561.

    PubMed  CAS  Google Scholar 

  118. Tsuang MT. Genetics, epidemiology and the search for the causes of schizophrenia. Am J Psychiatry 1994; 151:3–6.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Faraone, S.V., Glatt, S.J., Taylor, L. (2004). The Genetic Basis of Schizophrenia. In: Stone, W.S., Faraone, S.V., Tsuang, M.T. (eds) Early Clinical Intervention and Prevention in Schizophrenia. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-729-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-729-1_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9833-2

  • Online ISBN: 978-1-59259-729-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics