Skip to main content

Male Hypogonadism Resulting From Mutations in the Genes for the Gonadotropin Subunits and Their Receptors

  • Chapter

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

The unraveling of the structure of the human genome has allowed for major advances in the diagnostics of inherited diseases. Besides clear disease-causing mutations, the emerging knowledge about single nucleotide and microsatellite polymorphisms in the human genome is adding a new level of complexity to genomic function, providing the structural basis for individual variability of the genome and its phenotypic expression. All mutations can, in principle, be classified as inactivating, activating, or neutral, i.e., with no effect on function of the encoded protein. The hormone ligand mutations that are known today are almost invariably inactivating. The polymorphisms, by definition, are neutral, or they have only minor effects at the functional level. In some cases, they may even offer a functional advantage to their carriers. In the case of hormone receptors, the inactivating mutations block receptor function through a variety of mechanisms, whereas with activating mutations, the receptor becomes constitutively activated in the absence of hormone, or it acquires novel functions not present in the wild-type (WT) receptor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morgan FJ, Kammerman S, Canfield RE. Chemistry of human chorionic gonadotropin. In: Greep RO, Astwood EA, eds. Handbook of Physiology, Vol. II, Female Reproductive System, Part 2. American Physiology Society Edition, Washington, DC, 1973, pp. 311–322.

    Google Scholar 

  2. Sairam MR, Parkoff H. Chemistry of pituitary gonadotropins. In: Greep RO, Astwood EA, eds. Handbook of Physiology, Vol. IV. The Pituitary Gland and Its Neuroendocrine Control, Part 2. American Physiology Society Edition, Washington, DC, 1973, pp. 111–131.

    Google Scholar 

  3. Fiete D, Srivastava V, Hindsgaul O, Baenziger JU. A hepatic reticuloendothelial cell receptor specific for SO4–4GalNAc beta 1,4GlcNAc beta 1,2Man alpha that mediates rapid clearance of lutropin. Cell 1991; 67: 1103–1110.

    Article  PubMed  CAS  Google Scholar 

  4. Bo M, Boime I. Identification of the transcriptionally active genes of the chorionic gonadotropin beta gene cluster in vivo. J Biol Chem 1992; 267: 3179–3184.

    PubMed  CAS  Google Scholar 

  5. Bousfield GR, Perry WM, Ward DN. Gonadotropins. Chemistry and biosynthesis. In: Knobil E, Neill JD, eds. The Physiology of Reproduction, 2nd ed. New York Raven Press, 1994, pp. 1749–1792.

    Google Scholar 

  6. Lapthorn AJ, Harris DC, Littlejohn A, et al. Crystal structure of human chorionic gonadotropin. Nature 1994; 369: 455–461.

    Article  PubMed  CAS  Google Scholar 

  7. Fox KM, Dias JA, Van Royen P. Three-dimensional structure of human follicle-stimulating hormone. Mol Endocrinol 2001; 5: 378–389.

    Article  Google Scholar 

  8. Simoni M, Gromoll J, Nieschlag E. The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocr Rev 1997; 18: 739–773.

    Article  PubMed  CAS  Google Scholar 

  9. Themmen APN, Huhtaniemi IT. Mutations of gonadotropins and gonadotropin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr Rev 2000; 21: 551–583.

    Article  PubMed  CAS  Google Scholar 

  10. Ascoli M, Fanelli F, Segaloff DL. The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev 2002; 23: 141–174.

    Article  PubMed  CAS  Google Scholar 

  11. Rousseau-Merck MF, Misrahi M, Atger M, Loosfelt H, Milgrom E, Berger R. Localization of the human luteinizing hormone/choriogonadotropin receptor gene (LHCGR) to chromosome 2p21. Cytogenet Cell Genet 1990; 54: 77–79.

    Article  PubMed  CAS  Google Scholar 

  12. Rousseau-Merck MF, Atger M, Loosfelt H, Milgrom E, Berger R. The chromosomal localization of the human follicle-stimulating hormone receptor gene (FSHR) on 2p21-p16 is similar to that of the luteinizing hormone receptor gene. Genomics 1993; 15: 222–224.

    Article  PubMed  CAS  Google Scholar 

  13. Gromoll J, Eiholzer U, Nieschlag E, Simoni M. Male hypogonadism caused by homozygous deletion of exon 10 of the luteinizing hormone (LH) receptor: differential action between human chorionic gonadotropin and LH. J Clin Endocrinol Metab 2000; 85: 2281–2286.

    Article  PubMed  CAS  Google Scholar 

  14. Herrlich A, Kuhn B, Grosse R, Schmid A, Schultz G, Gudermann T. Involvement of Gs and Gi proteins in dual coupling of the luteinizing hormone receptor to adenylyl cyclase and phospholipase C. J Biol Chem 1996; 271: 16764–16772.

    Article  PubMed  CAS  Google Scholar 

  15. Huhtaniemi I. Fetal testis—a very special endocrine organ. Eur J Endocrinol 1994; 130: 25–3 1.

    Google Scholar 

  16. Teixeira J, Maheswaran S, Donahoe PK. Mullerian inhibiting substance: an instructive developmental hormone with diagnostic and possible therapeutic applications. Endocr Rev 2001; 22: 657–674.

    Article  PubMed  CAS  Google Scholar 

  17. Adham IM, Emmen JM, Engel W. The role of the testicular factor INSL3 in establishing the gonadal position. Mol Cell Endocrinol 2000; 160: 11–16.

    Article  PubMed  CAS  Google Scholar 

  18. Huhtaniemi IT, Yamamoto M, Ranta T, Jalkanen J, Jaffe RB. Follicle-stimulating hormone receptors appear earlier in the primate fetal testis than in the ovary. J Clin Endocrinol Metab 1987; 65: 1210–1214.

    Article  PubMed  CAS  Google Scholar 

  19. Orth JM. The role of follicle-stimulating hormone in controlling Sertoli cell proliferation in testes of fetal rats. Endocrinology 1984; 115: 1248–1255.

    Article  PubMed  CAS  Google Scholar 

  20. Kaplan SL, Grumbach MM, Aubert ML. The ontogenesis of pituitary hormones and hypothalamic factors in the human fetus: maturation of central nervous system regulation of anterior pituitary function. Recent Prog Horm Res 1976; 32: 161–243.

    PubMed  CAS  Google Scholar 

  21. Forest MG, De Peretti E, Bertrand J. Hypothalamic-pituitary-gonadal relationships in man from birth to puberty. Clin Endocr (Oxf) 1976; 5: 551–569.

    Article  CAS  Google Scholar 

  22. Wu FCW, Butler GE, Kelnar CJH, Stirling HF, Huhtaniemi I. Patterns of pulsatile luteinizing hormone and follicle-stimulating hormone secretion in prepubertal (midchildhood) boys and girls and patients with idiopathic hypogonadotropic hypogonadism (Kallmann’s syndrome): a study using an ultrasensitive time-resolved immunofluorometric assay. J Clin Endocrinol Metab 1991; 72: 1229–1237.

    Article  PubMed  CAS  Google Scholar 

  23. Raivio T, Toppari J, Perheentupa A, McNeilly AS, Dunkel L. Treatment of prepubertal gonadotrophindeficient boys with recombinant human follicle-stimulating hormone. Lancet 1997; 350: 263–264.

    Article  PubMed  CAS  Google Scholar 

  24. Plant TM, Marshall GR. The functional significance of FSH in spermatogenesis and the control of its secretion in male primates. Endocr Rev 2001; 22: 764–786.

    Article  PubMed  CAS  Google Scholar 

  25. Vermeulen A. Andropause. Maturitas 2000; 34: 5–15.

    Article  PubMed  CAS  Google Scholar 

  26. Nishimura R, Shin J, Ji I, et al. A single amino acid substitution in an ectopic alpha subunit of a human carcinoma choriogonadotropin. J Biol Chem 1986; 261: 10475–10477.

    PubMed  CAS  Google Scholar 

  27. Weiss J, Axelrod L, Whitcomb RW, Harris PE, Crowley WF, Jameson JL. Hypogonadism caused by a single amino acid substitution in the beta subunit of luteinizing hormone. N Engl J Med 1992; 326: 179–183.

    Article  PubMed  CAS  Google Scholar 

  28. Pettersson K, Mäkelä MM, Dahlén P, Lamminen T, Huoponen K, Huhtaniemi I. Genetic polymorphism found in the LH beta gene of an immunologically anomalous variant of human luteinizing hormone. Eur J Endocrinol 1994; 130 (suppl 2): 65.

    Google Scholar 

  29. Furui K, Suganuma N, Tsukahara S, et al. Identification of two point mutations in the gene coding luteinizing hormone (LH) beta-subunit, associated with immunologically anomalous LH variants. J Clin Endocrinol Metab 1994; 78: 107–113.

    Article  PubMed  CAS  Google Scholar 

  30. Okuda K, Yamada T, Imoto H, Komatsubara H, Sugimoto O. Antigenic alteration of an anomalous human luteinizing hormone caused by two chorionic gonadotropin-type amino-acid substitutions. Biochem Biophys Res Comm 1994; 200: 584–590.

    Article  PubMed  CAS  Google Scholar 

  31. Liao WX, Roy AC, Chan C, Arulkumaran S, Ratnam SS. A new molecular variant of luteinizing hormone associated with female infertility. Fertil Steril 1998; 69: 102–106.

    Article  PubMed  CAS  Google Scholar 

  32. Jiang M, Lamminen T, Pakarinen P, et al. A novel Ala–3 Thr mutation in signal peptide of human luteinizing hormone beta-subunit: potentiation of the inositol phosphate signalling pathway and attenuation of the adenylate cyclase pathway by recombinant variant hormone. Mol Hum Reprod 2002; 8: 201–212.

    Article  PubMed  CAS  Google Scholar 

  33. Miller-Lindholm AK, Bedows E, Bartels CF, Ramey J, Maclin V, Ruddon RW. A naturally occurring genetic variant in the human chorionic gonadotropin-beta gene 5 is assembly inefficient. Endocrinology 1999; 140: 3496–3506.

    Article  PubMed  CAS  Google Scholar 

  34. Matthews CH, Borgato S, Beck-Peccoz P, et al. Primary amenorrhea and infertility due to a mutation in the beta-subunit of follicle-stimulating hormone. Nat Genet 1993; 5: 83–86.

    Article  PubMed  CAS  Google Scholar 

  35. Phillip M, Arbelle JE, Segev Y, Parvari R. Male hypogonadism due to a mutation in the gene for the beta-subunit of follicle-stimulating hormone. N Engl J Med 1998; 338: 1729–1732.

    Article  PubMed  CAS  Google Scholar 

  36. Layman LC, Lee EJ, Peak DB, et al. Delayed puberty and hypogonadism caused by mutations in the follicle-stimulating hormone beta-subunit gene. N Engl J Med 1997; 337: 607–611.

    Article  PubMed  CAS  Google Scholar 

  37. Lindstedt G, Nyström E, Matthews C, Ernest I, Janson PO, Chatterjee K. Follitropin (FSH) deficiency in an infertile male due to FSH-beta gene mutation. A syndrome of normal puberty and virilization but underdeveloped testicles with azoospermia, low FSH but high lutropin and normal serum testosterone concentrations. Clin Chem Lab Med 1998; 36: 663–665.

    Article  PubMed  CAS  Google Scholar 

  38. Layman LC, Porto ALA, Xie J, et al. FSHP gene mutations in a female with partial breast development and male sibling with normal puberty and azoospermia. J Clin Endocrinol Metab 2002; 87: 3702–3707.

    Article  PubMed  CAS  Google Scholar 

  39. Liao WX, Tong Y, Roy AC, Ng SC. New AccI polymorphism in the follicle-stimulating hormone beta-subunit gene and its prevalence in three Southeast Asian populations. Hum Hered 1999; 49: 181–182.

    Article  PubMed  CAS  Google Scholar 

  40. Kendall SK, Samuelson LC, Saunders TL, Wood RI, Camper SA. Targeted disruption of the pituitary glycoprotein hormone alpha-subunit produces hypogonadal and hypothyroid mice. Genet Dev 1995; 9: 2007–2019.

    Article  CAS  Google Scholar 

  41. Huhtaniemi IT, Korenbrot CC, Jaffe RB. hCG binding and stimulation of testosterone biosynthesis in the human fetal testis. J Clin Endocrinol Metab 1977; 44: 963–967.

    Article  PubMed  CAS  Google Scholar 

  42. Lamminen T, Huhtaniemi I. A common genetic variant of luteinizing hormone; relation to normal and aberrant pituitary-gonadal function. Eur J Pharmacol 2001; 414: 1–7.

    Article  PubMed  CAS  Google Scholar 

  43. Nilsson C, Jiang M, Pettersson K, et al. Determination of a common genetic variant of luteinizing hormone using DNA hybridization and immunoassay. Clin Endocr (Oxf) 1998; 49: 369–376.

    Article  CAS  Google Scholar 

  44. Pettersson K, Ding YQ, Huhtaniemi I. An immunologically anomalous luteinizing hormone variant in a healthy woman. J Clin Endocrinol Metab 1992; 74: 164–171.

    Article  PubMed  CAS  Google Scholar 

  45. Haavisto A-M, Pettersson K, Bergendahl M, Virkamäki A, Huhtaniemi I. Occurrence and biological properties of a common genetic variant of luteinizing hormone. J Clin Endocrinol Metab 1995; 80; 1257–1263.

    Article  PubMed  CAS  Google Scholar 

  46. Manna PR, Joshi L, Reinhold VN, et al. Synthesis, purification, and structural and functional characterization of recombinant form of a common genetic variant of human luteinizing hormone. Hum Mol Genet 2002; 11: 301–315.

    Article  PubMed  CAS  Google Scholar 

  47. Jiang M, Pakarinen P, Zhang F-P, et al. A common polymorphic allele of the human luteinizing hormone beta-subunit gene: additional mutations and differential function of the promoter sequence. Hum Mol Genet 1999; 8: 2037–2046.

    Article  PubMed  CAS  Google Scholar 

  48. Raivio T, Huhtaniemi I, Anttila R, et al. The role of luteinizing hormone-beta gene polymorphism in the onset and progression of puberty in healthy boys. J Clin Endocrinol Metab 1996; 81: 3278–3282.

    Article  PubMed  CAS  Google Scholar 

  49. Kaleva M, Virtanen H, Haavisto A-M, et al. The prevalence of variant luteinizing hormone among cryptorchid boys increases with gestational age, submitted.

    Google Scholar 

  50. van den Beld AW, Huhtaniemi IT, Pettersson K, et al. Luteinizing hormone and different genetic variants, as indicators of frailty in healthy elderly men. J Clin Endocrinol Metab 1999; 84: 1334–1339.

    Article  PubMed  Google Scholar 

  51. Matthews C, Chatterjee VK. Isolated deficiency of follicle-stimulating hormone re-revisited. N Engl J Med 1997; 337: 642.

    Article  PubMed  CAS  Google Scholar 

  52. Lindstedt G, Ernest I, Nyström E, Janson PO. Fall av manlig infertilitet. Klinisk Kemi I Norden 1977; 3: 81–87 (In Swedish).

    Google Scholar 

  53. Tapanainen JS, Aittomäki K, Jiang M, Vaskivuo T, Huhtaniemi IT. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat Genet 1997; 15: 205–206.

    Article  PubMed  CAS  Google Scholar 

  54. Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet 1997; 15: 201–204.

    Article  PubMed  CAS  Google Scholar 

  55. Dierich A, Sairam MR, Monaco L, et al. Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci USA 1998; 95: 13612–13617.

    Article  PubMed  CAS  Google Scholar 

  56. Abel MH, Wootton AN, Wilkins V, Huhtaniemi I, Knight P, Charlton HM. The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology 2000; 141: 1795–1803.

    Article  PubMed  CAS  Google Scholar 

  57. Aittomäki K, Dieguez Lucena JL, Pakarinen P, et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell 1995; 82: 959–968.

    Article  PubMed  Google Scholar 

  58. Baker PJ, Abel MH, Charlton HM, Huhtaniemi IT, O’Shaughnessy PJ. Failure of normal Leydig cell development in FSH receptor deficient mice but not in FSHß-deficient mice. Endocrinology 200; 144: 138–145.

    Google Scholar 

  59. Kremer H, Kraaij R, Toledo SP, et al. Male pseudohermaphroditism due to a homozygous missense mutation of the luteinizing hormone receptor gene. Nat Genet 1995; 9: 160–164.

    Article  PubMed  CAS  Google Scholar 

  60. Misrahi M, Meduri G, Pissard S, et al. Comparison of immunocytochemical and molecular features with the phenotype in a case of incomplete male pseudohermaphroditism associated with a mutation of the luteinizing hormone receptor. J Clin Endocrinol Metab 1997; 82: 2159–2165.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang F-P, Poutanen M, Wilbertz J, Huhtaniemi I. Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice. Mol Endocrinol 2001; 15: 182–193.

    Google Scholar 

  62. Toledo SP, Brunner HG, Kraaij R, et al. An inactivating mutation of the luteinizing hormone receptor causes amenorrhea in a 46,XX female. J Clin Endocrinol Metab 1996; 81: 3850–3854.

    Article  PubMed  CAS  Google Scholar 

  63. Kremer H, Mariman E, Otten BJ, et al. Co-segregation of missense mutations of the luteinizing hormone receptor gene with familial male-limited precocious puberty. Hum Mol Genet 1993; 2: 1779–1783.

    Article  PubMed  CAS  Google Scholar 

  64. Shenker A, Laue L, Kosugi S, Merendino JJ, Jr., Minegishi T, Cutler GBJr. A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 1993; 365: 652–654.

    Article  PubMed  CAS  Google Scholar 

  65. Liu G, Duranteau L, Carel J-C, Monroe J, Doyle DA, Shenker A. Leydig-cell tumors caused by an activating mutation of the gene encoding the luteinizing hormone receptor. N Engl J Med 1999; 341: 1731–1736.

    Article  PubMed  CAS  Google Scholar 

  66. Canto P, Söderlund D, Ramón G, Nishimura E, Méndez JP. Mutational analysis of the luteinizing hormone receptor gene in two individuals with Leydig cell tumors. Am J Med Genet 2002; 108: 148–152.

    Article  PubMed  Google Scholar 

  67. Richter-Unruh A, Wessels HT, Menken U, et al. Male LH-independent sexual precocity in a 3.5-yearold boy caused by somatic activating mutation of the LH receptor in a Leydig cell tumor. J Clin Endocrinol Metab 2002; 87: 1052–1056.

    Article  PubMed  CAS  Google Scholar 

  68. Leschek EW, Chan WY, Diamond DA, et al. Nodular Leydig cell hyperplasia in a boy with male-limited precocious puberty. J Pediatr 2001; 138: 949–951.

    Article  PubMed  CAS  Google Scholar 

  69. Martin MM, Wu S-M, Martin ALA, Rennert OM, Chan W-Y. Testicular seminoma in a patient with a constitutively activating mutation of the luteinzing hormone/chorionic gonadotropin receptor. Eur J Endocrinol 1998; 139: 101–106.

    Article  PubMed  CAS  Google Scholar 

  70. Paschke R, Ludgate M. The thyrotropin receptor in thyroid diseases. N Engl J Med 1997; 337: 1675–1681.

    Article  PubMed  CAS  Google Scholar 

  71. Parma J, Duprez L, Van Sande J, et al. Diversity and prevalence of somatic mutations in the thyrotropin receptor and Gsa genes as a cause of toxic thyroid adenomas. J Clin Endocrinol Metab 1997; 82: 2695–2701.

    Article  PubMed  CAS  Google Scholar 

  72. Russo D, Tumino S, Arturi F, et al. Detection of an activating mutation of the thyrotropin receptor in a case of an autonomously hyperfunctioning thyroid insular carcinoma. J Clin Endocrinol Metab 1997; 82: 735–738.

    Article  PubMed  CAS  Google Scholar 

  73. Fragoso MC, Latronico AC, Carvalho FM, et al. Activating mutation of the stimulatory G protein (gsp) as a putative cause of ovarian and testicular human stromal Leydig cell tumors. J Clin Endocrinol Metab 1998; 83: 2074–2078.

    Article  PubMed  CAS  Google Scholar 

  74. Beau I, Touraine P, Meduri G, et al. A novel phenotype related to partial loss of function mutations of the follicle stimulating hormone receptor. J Clin Invest 1998; 102: 1352–1359.

    Article  PubMed  CAS  Google Scholar 

  75. Touraine P, Beau I, Gougeon A, et al. New natural inactivating mutations of the follicle-stimulating hormone receptor: correlations between receptor function and phenotype. Mol Endocrinol 1999; 13: 1844–1854.

    Article  PubMed  CAS  Google Scholar 

  76. Doherty E, Pakarinen P, Tiitinen A, et al. A novel mutation in the follicle-stimulating hormone receptor inhibiting signal transduction and resulting in primary ovarian failure. J Clin Endocrinol Metab 2002; 57: 1151–1155.

    Article  Google Scholar 

  77. Allen LA, Achermann JC, Pakarinen P, et al. A novel loss of function mutation in exon 10 of the FSH receptor gene causing hypergonadotropic hypogonadism: clinical and molecular characteristics. Hum Reprod 2003; 18: 251–256.

    Article  PubMed  CAS  Google Scholar 

  78. Rannikko A, Pakarinen P, Manna P, et al. Functional characterization of the human FSH receptor with an inactivating Ala189Val mutation. Mol Hum Reprod 2002; 8: 311–317.

    Article  PubMed  CAS  Google Scholar 

  79. Vaskivuo TE, Aittomäki K, Anttonen M, et al. Effects of follicle-stimulating hormone (FSH) and human chorionic gonadotropin in individuals with inactivating mutation of the FSH receptor. Fertil Steril 2002; 78: 108–113.

    Article  PubMed  Google Scholar 

  80. Gromoll J, Simoni M, Nieschlag E. An activating mutation of the follicle-stimulating hormone receptor autonomously sustains spermatogenesis in a hypophysectomized man. J Clin Endocrinol Metab 1996; 81: 1367–1370.

    Article  PubMed  CAS  Google Scholar 

  81. Tao YX, Mizrachi D, Segaloff DL. Chimeras of the rat and human FSH receptors (FSHRs) identify residues that permit or suppress transmembrane 6 mutation-induced constitutive activation of the FSHR via rearrangements of hydrophobic interactions between helices 6 and 7. Mol Endocrinol 2002; 16: 1881–1892.

    Article  PubMed  CAS  Google Scholar 

  82. Gicalglia LR, da Fonte Kohek MB, Carvalho FM, Villares Fragaso MCB, Mendonca BB, Latronico AC. No evidence of somatic activating mutations on gonadotropin receptor genes in sex cord stromal tumors. Fertil Steril 2000; 64: 992–995.

    Article  Google Scholar 

  83. Takakura K, Takebayashi K, Wang H-Q, Kimura F, Kasahara K, Noda Y. Follicle-stimulating hormone receptor gene mutations are rare in Japanese women with premature ovarian failure and polycystic ovary syndrome. Fertil Steril 2001; 75: 207–209.

    Article  PubMed  CAS  Google Scholar 

  84. Tong Y, Liao WX, Roy AC, Ng SC. Absence of mutations in the coding regions of follicle-stimulating hormone receptor gene in Singapore Chinese women with premature ovary failure and polycystic ovary syndrome. Hormone Metab Res 2001; 33: 221–226.

    Article  CAS  Google Scholar 

  85. de la Chesnaye E, Canto P, Ulloa-Aguirre A, Mendez JP. No evidence of mutations in the follicle-stimulating hormone receptor gene in Mexican women wit 46,XX pure gonadal dysgenesis. Am J Med Genet 2001; 98: 129–135.

    Article  Google Scholar 

  86. Montgomery GW, Duffy DL, Hall J, Kudo M, Martin NG, Hsueh AJ. Mutations in the follicle-stimulating hormone receptor and familial dizygotic twinning. Lancet 2001; 357: 773–774.

    Article  PubMed  CAS  Google Scholar 

  87. Perez Mayorga M, Gromoll J, Behre HM, Gassner C, Nieschlag E, Simoni M. Ovarian response to follicle-stimulating hormone (FSH) stimulation depends on the FSH receptor genotype. J Clin Endocrinol Metab 2000; 85: 3365–3369.

    Article  CAS  Google Scholar 

  88. Laven JS, Mulders AG, Simoni M, Gromoll J, Fauser BC. Follicle-stimulating hormone (FSH) receptor genotype in normogonadotropic anovulatory infertile (WHO II) patients and normo-ovulatory controls. The Endocrine Society, Annual Meeting, June 2002, abstract OR60–1.

    Google Scholar 

  89. Mongan NP, Hughes IA, Lim HN. Evidence that luteinising hormone receptor polymorphisms may contribute to male undermasculinisation. Eur J Endocrinol 2002; 147: 103–107.

    Article  PubMed  CAS  Google Scholar 

  90. Ahmed SF, Hughes IA. The genetics of male undermasculinsation. Clin Endocrinol (Oxf) 2002; 56: 1–18.

    Article  CAS  Google Scholar 

  91. Tapanainen JS, Koivunen R, Fauser BC, et al. A new contributing factor to polycystic ovary syndrome: the genetic variant of luteinizing hormone. J Clin Endocrinol Metab 1999; 84: 1711–1715.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huhtaniemi, T. (2004). Male Hypogonadism Resulting From Mutations in the Genes for the Gonadotropin Subunits and Their Receptors. In: Winters, S.J. (eds) Male Hypogonadism. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-727-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-727-7_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-739-6

  • Online ISBN: 978-1-59259-727-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics