Skip to main content

Disorders of Hemoglobin Structure and Synthesis

  • Chapter

Abstract

All human hemoglobins have a tetrameric structure, consisting of two identical α-like (α or ζ) and two β-like (ε, γ, δ, or β) globin chains, each linked to a heme group.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  • Beutler E. Hemoglobinopathies associated with unstable hemoglobin. In: Beutler E, Lichtman MA, Coller BS, Kipps TJ, eds. Williams Hematology, 5th ed. New York: McGraw-Hill, 1995.

    Google Scholar 

  • Bianco I, Cappabianca MP, Foglietta E, et al. Silent thalassemias: genotypes and phenotypes. Haematologica 1997; 82: 269–280.

    PubMed  CAS  Google Scholar 

  • Bunn HF, Forget BG. Hemoglobin: Molecular, Genetic and Clinical Aspects. Philadelphia: WB Saunders, 1986.

    Google Scholar 

  • Charache S, Terrin ML, Moore RD, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. N Engl J Med 1995; 332: 1317–1322.

    Article  PubMed  CAS  Google Scholar 

  • Craig JE, Rochette J, Fisher CA, et al. Dissecting the loci controlling fetal haemoglobin production on chromosomes l 1p and 6q by the regressive approach. Nat Genet 1996; 12: 58–64.

    Article  PubMed  CAS  Google Scholar 

  • Crossley M, Orkin SH. Regulation of the f 3-globin locus. Curr Opin Genet Dev 1993; 3: 232–237.

    Article  PubMed  CAS  Google Scholar 

  • Dover GJ, Smith KD, Chang YC, et al. Fetal hemoglobin levels in sickle cell disease and normal individuals are partially controlled by an X-linked gene located at Xp22.2. Blood 1992; 80: 816–824.

    PubMed  CAS  Google Scholar 

  • Embury SH, Hebbel RP, Mohandas N, Steinberg MH. Sickle Cell Disease: Basic Principles and Clinical Practice. New York: Raven, 1994.

    Google Scholar 

  • Gibbons RJ, Picketts DJ, Villard L, Higgs DR. X-linked mental retardation associated with a thalassaemia (ATR-X syndrome) results from mutations in a putative global transcriptional regulator. Cell 1995; 80: 837–845.

    Article  PubMed  CAS  Google Scholar 

  • Grosveld F, van Assendelft GB, Breaves DR, Kollias G. Position-independent, high-level expression of the human y-globin gene in trans-genic mice. Cell 1987; 51: 975–985.

    Article  PubMed  CAS  Google Scholar 

  • Higgs DR, Weatherall DJ. Bailliére’s Clinical Haematology. International Practice and Research: The Haemoglobinopathies. London: Bailliére Tindall, 1993.

    Google Scholar 

  • Ho PJ, Hall GW, Luo LY, Weatherall DJ, Thein SL. Beta thalassemia intermedia: is it possible to consistently predict phenotype from genotype? Br J Haemat 1998; 100: 70–78.

    Article  CAS  Google Scholar 

  • Lau YL, Chan LC, Chan YY, et al. Prevalence and genotypes of alpha-and beta-thalassemia carriers in Hong Kong-implications for population screening. N Engl J Med 1997; 336: 1298–1301.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi K, Kaneto Y, Kawai H, et al. X-linked dominant control of F-cells in normal adult life: characterization of the Swiss type as hereditary persistence of fetal hemoglobin regulated dominantly by gene(s) on X chromosome. Blood 1988; 72: 1854–1860.

    PubMed  CAS  Google Scholar 

  • Olivieri NF, Brittenham GM. Iron-chelating therapy and the treatment of thalassemia. Blood 1997; 89: 739–761.

    PubMed  CAS  Google Scholar 

  • Olivieri NF, Brittenham GM, Matsui D, et al. Iron-chelation therapy with oral deferiprone in patients with thalassemia major. N Engl J Med 1995; 332: 918–922.

    Article  PubMed  CAS  Google Scholar 

  • Orkin SH. Transcription factors and hematopoietic development. J Biol Chem 1995; 270: 4955–4958.

    Article  PubMed  CAS  Google Scholar 

  • Pâszty C. Transgenic and gene knock-out mouse models of sickle cell anemia and the thalassemias. Curr Opin Hematol 1997; 4: 88–93.

    Article  PubMed  Google Scholar 

  • Pâszty C, Brion CM, Manci E, Witkowska HE, Stevens ME, Mohandas N, Rubin EM. Transgenic knockout mice with exclusively human sickle hemoglobin and sickle cell disease. Science 1997; 278: 876–878.

    Article  PubMed  Google Scholar 

  • Perkins AC, Gaensler KM, Orkin SH. Silencing of human fetal globin expression is impaired in the absence of the adult beta-globin gene activator protein EKLF. Proc Natl Acad Sci USA 1996;93:12, 267–12, 271.

    Google Scholar 

  • Rochette J, Craig JE, Thein SL. Fetal hemoglobin levels in adults. Blood Reviews 1994; 8: 213–224.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers GP, Rachmilewitz EA. Novel treatment options in the severe (3-globin disorders. Br J Haematol 1995; 91: 263–268.

    Article  PubMed  CAS  Google Scholar 

  • Ryan TM, Ciavatta DJ, Townes TM. Knockout-transgenic mouse model of sickle cell disease. Science 1997; 278: 873–876.

    Article  PubMed  CAS  Google Scholar 

  • Serjeant GR. Sickle Cell Disease, 2nd ed. Oxford: Oxford University Press, 1992.

    Google Scholar 

  • Stamatoyannopoulos G, Nienhuis AW, Majerus PW, Varmus HE. The Molecular Basis of Blood Diseases, 2nd ed. Philadelphia: WB Saunders, 1994.

    Google Scholar 

  • Stamatoyannopoulos JA, Nienhuis AW. Therapeutic approaches to hemoglobin switching in treatment of hemoglobinopathies. Annu Rev Med 1993; 43: 497–521.

    Article  Google Scholar 

  • Stasiak A, West SC, Egelman EH. Sickle cell anemia research and a recombinant DNA technique. Science 1997; 277: 460–462.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg MH, Lu Z-H, Barton FB, Terrin ML, Charache S, Dover GJ. Multicenter Study of Hydroxyurea: fetal hemoglobin in sickle cell anemia: determinants of response to hydroxyurea. Blood 1997; 89: 1078–1088.

    PubMed  CAS  Google Scholar 

  • Their) SL. Dominant ß thalassaemia: molecular basis and pathophysiology. Br J Haematol 1992; 80: 273–277.

    Article  Google Scholar 

  • Weatherall DJ, Clegg JB. The Thalassaemia Syndromes. Oxford: Blackwell Scientific, 1981.

    Google Scholar 

  • Wilkie AOM, Buckle VJ, Harris PC, et al. Clinical features and molecular analysis of the a thalassemia/mental retardation syndromes. I. Cases due to deletions involving chromosome band 16p13.3. Am J Hum Genet 1990; 46: 1112–1126.

    PubMed  CAS  Google Scholar 

  • Yang B, Kirby S, Lewis J, Detloff PJ, Maeda N, Smithies O. A mouse model for beta 0-thalassemia. Proc Natl Acad Sci USA 1995;92: 11, 608–11, 612.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thein, S.L., Rochette, J. (1998). Disorders of Hemoglobin Structure and Synthesis. In: Jameson, J.L. (eds) Principles of Molecular Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-726-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-726-0_20

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6272-3

  • Online ISBN: 978-1-59259-726-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics