Skip to main content

Transgenic Mice as Models of Disease

  • Chapter
Principles of Molecular Medicine

Abstract

Efforts to manipulate the genome have been the constant pursuit of geneticists since the end of the 19th century. Methods to improve the quality of the species have been practiced and perfected by plant breeders. Induction of random mutations by UV-radiation and consequent screening for interesting phenotypes in bacteriophage or fruit flies have set forth a trend to identify the genetic basis of structural and functional malformations in these organisms. The advent of chromosomal mapping and gene cloning techniques and the availability of breeding data in many animal species have made it possible to selectively manipulate the genomes of species such as mice, rats, pigs, and cattle. This technology, called “transgenic animal” technology, has already revolutionized our current understanding of how organisms develop and how several physiological processes are regulated. In addition, transgenic models have increased our understanding of the genetic basis for many human diseases, including cancer. Although gene manipulation is theoretically possible in many species, the mouse has become the obvious choice for several reasons. Mice are relatively inexpensive to maintain and easy to breed, and an exhaustive store of information is already available on chromosomal mapping and linkage analysis of many genes in the mouse. In addition, micromanipulation of mouse embryos is technically easier and more feasible compared to that of other species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  • Aguzzi A, Brandner S, Sure U, Ruedi D, Isenmann S. Transgenic and knock-out mice: Models of neurological disease. Brain Path 1994; 4: 3–20.

    Article  CAS  Google Scholar 

  • Bradley A, Hasty P, Davis A, Ramirez-Solis R. Modifying the mouse: design and desire. Bio/Technology 1992; 10: 534–539.

    Article  PubMed  CAS  Google Scholar 

  • Burright EN, Clark HB, Servadio A, et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 1995; 82: 937–948.

    Article  PubMed  CAS  Google Scholar 

  • Capecchi MR. Targeted gene replacement. Sci Amer 1994; 270: 52–59.

    Article  PubMed  CAS  Google Scholar 

  • Cox GA, Cole NM, Matsumura K, et al. Overexpression of dystrophin in transgenic mice eliminates dystrophic symptoms without toxicity. Nature 1993; 364: 725–729.

    Article  PubMed  CAS  Google Scholar 

  • Giese KP, Martini R, Lemke G, Soriano P, Schachner M. Mouse Po gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 1992; 71: 565–576.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert sr, Developmental Biology. Sunderland, MA: Sinauer Associates, 1994.

    Google Scholar 

  • Glasser SW, Korfhagen TR, Wert SE, WhitsettJA. Transgenic models for study of pulmonary development and disease. AmJ Physiol 1994; 267: L489 - L497.

    CAS  Google Scholar 

  • Grandaliano G, Choudhury G G, Abboud HE. Transgenic animal models as a tool in the diagnosis of kidney diseases. Semin Nephrol 1995; 15: 43–49.

    PubMed  CAS  Google Scholar 

  • Greenhalgh DA, Roop DR. Dissecting molecular carcinogenesis: development of transgenic mouse models by epidermal gene targeting. Adv Cancer Res 1994; 64: 247–296.

    Article  PubMed  CAS  Google Scholar 

  • Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 1994; 103–106.

    Google Scholar 

  • Hammer RE, Palmiter RD, Brinster RL. Partial correction of murine hereditary growth disorder by germ-line incorporation of a new gene. Nature 1984; 311: 65–67.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D. Heritable formation of pancreatic ß-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 1985; 315: 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Henkemeyer M, Rossi DJ, Holmyrad DP, et al. Vascular system defects and neuronal apoptosis in mice lacking Ras GTPase-activating protein. Nature 1995; 377: 695–701.

    Article  PubMed  CAS  Google Scholar 

  • Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995; 378: 206–208.

    Article  PubMed  CAS  Google Scholar 

  • Kendall SK, Samuelson LC, Saunders TL, Wood RI, Camper SA. Targeted disruption of the pituitary glycoprotein hormone alpha-subunit produces hypogonadal and hypothyroid mice. Gen Devel 1995; 9: 2007–2019.

    Article  CAS  Google Scholar 

  • Kreidberg JA, Sariola H, Loring JM, et al. WT-1 is required for early kidney development. Cell 1993; 74: 679–691.

    Article  PubMed  CAS  Google Scholar 

  • Kuehn MR, Bradley A, Robertson EJ, Evans MJ. A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice. Nature 1987; 326: 295–298.

    Article  PubMed  CAS  Google Scholar 

  • Kumar TR, Donehower LA, Bradley A, Matzuk MM. Transgenic mouse models for tumor-suppressor genes. J Int Med 1995; 238: 233–238.

    Article  CAS  Google Scholar 

  • Lamb BT. Making models for Alzheimer’s disease. Nat Genet 1995; 9: 4–6.

    Article  PubMed  CAS  Google Scholar 

  • Luo G, Hofman C, Bronckers ALJJ, Sohocki M, Bradley A, Karsenty G. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Gen & Devel 1995; 9: 2808–2820.

    Article  CAS  Google Scholar 

  • Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994; 77: 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Matzuk MM, Finegold MJ, Su J-GJ, Hseuh AJW, Bradley A. a-Inhibin is a tumor-suppressor gene with gonadal specificity in mice. Nature 1992; 360: 313–319.

    Article  PubMed  CAS  Google Scholar 

  • Matzuk MM. Functional analysis of mammalian members of the transforming growth factor-(3 superfamily. Trends Endocrinol Metab 1995; 6: 120–127.

    Article  PubMed  CAS  Google Scholar 

  • Matzuk MM, Kumar TR, Vassalli A, Bickenbach JR, Roop DR, Bradley A. Functional analysis of activins during mammalian development. Nature 1995; 374: 354–356.

    Article  PubMed  CAS  Google Scholar 

  • McMahon AP, Bradley A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 1990; 62: 1073–1085.

    Article  PubMed  CAS  Google Scholar 

  • Molkentin JD, Black BL, Martin JF, Olson EN. Cooperative activation of muscle gene expression by MEF 2 and myogenic bHLH proteins. Cell 1995; 83: 1125–1136.

    Article  PubMed  CAS  Google Scholar 

  • Morham SG, Langenbach R, Loftin CD, et al. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 1995; 83: 473–482.

    Article  PubMed  CAS  Google Scholar 

  • Nishimori K, Matzuk MM. Transgenic mice in the analysis of reproductive development and function. Reviews of Reproduction, 1996; 1: 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Paigen B, Plump AS, Rubin EM. The mouse as a model for human cardiovascular disease and hyperlipidemia. Cuff Opin Lipidol 1994; 5: 258–264.

    Article  CAS  Google Scholar 

  • Palmiter RD, Brinster RL. Germ-line transmission of mice. Annu Rev Genet 1986; 20: 465–499.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Solis R, Liu P, Bradley A. Chromosome engineering in mice. Nature 1995; 378: 720–724.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Solis R, Zheng H, Whiting J, Krumlauf R, Bradley A. Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments. Cell 1993; 73: 279–294.

    Article  PubMed  CAS  Google Scholar 

  • Sands AT, Abuin A, Sanchez A, Conti CJ, Bradley A. High susceptibility to ultraviolet-induced carcinogenesis in mice lacking XPC. Nature 1995; 377: 162–165.

    Article  PubMed  CAS  Google Scholar 

  • Shawlot W, Behringer RR. Requirement for Lim-1 in head-organizer function. Nature 1995; 374: 425–430.

    Article  PubMed  CAS  Google Scholar 

  • Smithies O, Kim H-S. Targeted gene duplication and disruption for analyzing quantitative genetic traits in mice. Proc Natl Acad Sci USA 1994; 91: 3612–3615.

    Article  PubMed  CAS  Google Scholar 

  • Snouwaert JN, Brigman KK, Latour AM, et al. An animal model for cystic fibrosis made by gene targeting. Science 1992; 257: 1083 1088.

    Google Scholar 

  • Stewart TA. Models of human endocrine disorders in transgenic rodents. Nature 1993; 4: 136–141.

    CAS  Google Scholar 

  • Strober W, Ehrhardt RO. Chronic intestinal inflammation: an unexpected outcome in cytokine or T cell receptor mutant mice. Cell 1993; 75: 203–205.

    Article  PubMed  CAS  Google Scholar 

  • Taverne J. Transgenic mice in the study of cytokine function. Int J Exp Path 1993; 74: 525–546.

    CAS  Google Scholar 

  • Wagner J, Thiele F, Ganten D. Transgenic animals as models for human disease. Clin Exp Hyperten 1995; 17: 593–605.

    Article  CAS  Google Scholar 

  • Wu X, Wakamiya M, Vaishnav S, et al. Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sci USA 1994; 91: 742–746.

    Article  PubMed  CAS  Google Scholar 

  • Zijlstra M, Bix M, Simister NE, Loring JM, Raulet DH, Jaenisch R. Beta 2-microglobulin deficient mice lack CD4–8* cytotoxic T cells. Nature 1990; 344: 742–746.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kumar, T.R., Matzuk, M.M. (1998). Transgenic Mice as Models of Disease. In: Jameson, J.L. (eds) Principles of Molecular Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-726-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-726-0_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6272-3

  • Online ISBN: 978-1-59259-726-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics