Skip to main content

Receptor- and Carrier-Mediated Transport Systems for Folates and Antifolates

Exploitation for Folate-Based Chemotherapy and Immunotherapy

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Eukaryotic cells lack the possibility of de novo biosynthesis of reduced folate cofactors that are required as one-carbon donors in the biosynthesis of thymidylate, purines, and amino acids (1).For this reason, cellular folate homeostasis depends on the delivery of reduced folate cofactors from extracellular fluids. At a physiological pH, the negatively charged α- and γ-carboxyl groups of the glutamate side chain of reduced folate cofactors change these molecules into divalent anions that cannot simply pass the plasma membrane but require (a) specific transport system(s) for their cellular entry. The importance of folate metabolism in tumor cells has been recognized for a long time as a potential target for chemotherapy (26). Historically, classical folate analogs such as aminopterin (AMT) and methotrexate (MTX) were recognized to disrupt folate metabolism through inhibition of dihydrofolate reductase (DHFR) (7). More recently, folate analogs were synthesized that could target other key enzymes in folate metabolism, including thymidylate synthase (TS) (8, 9) glycinamide ribonucleotide transformylase (GARTFase) (10, 11) and folylpolyglutamate synthetase (FPGS) (12). A number of these novel antifolates have demonstrated potential clinical activity (3,1318). The majority of these folate analogs share the common feature that efficient membrane transport is the first determining factor in exerting their biological activity. This chapter will mainly focus on the role of two folate transport systems that are considered to be of the greatest relevance from the perspective of mediating folate homeostasis and the delivery of folate-based chemotherapeutic drugs into tumor cells. These transporters include the reduced folate carrier (RFC) (1922) and a membrane-associated folate receptor (MFR) (2225) also referred to as membrane-associated folate-binding protein (mFBP). A summary of some molecular, biochemical, and functional properties of these transporters will be given (see e.g., Table 1) along with a few examples how these properties (see Fig. 2A, B, below) may be translated into an improved biological/cytotoxic activity of antifolate drugs (see Table 2).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stockstad ELR. Historical perspective on key advances in the biochemistry and physiology of folates. In: (Picciano, MF, Stokstad, ELR, Greogory, JF eds.) Folic Acid Metabolism in Health and Disease. Wiley-Liss, New York, 1990, pp. 1–21.

    Google Scholar 

  2. Hitchings GH. Nobel lecture in physiology or medicine 1988: selective inhibitors of dihydrofolate reductase. In Vitro Cell Dev Biol 1989; 25:303–310.

    Article  PubMed  CAS  Google Scholar 

  3. lBertino JR. Ode to methotrexate. J Clin Oncol 1993; 11:5–14.

    Google Scholar 

  4. Schornagel JH, McVie JG. The clinical pharmacology of methotrexate, a review. Cancer Treat Rev 1983; 10:53–75.

    Article  PubMed  CAS  Google Scholar 

  5. Jukes TJ. Searching for the magic bullets: early approaches to chemotherapy-antifolates, methotrexate. Cancer Res 1987; 47:5528–5536.

    PubMed  CAS  Google Scholar 

  6. Goldman ID, Matherly LH. The cellular pharmacology of methotrexate. Pharmacol Ther 1985; 28:77–102.

    Article  PubMed  CAS  Google Scholar 

  7. Huennekens FM, Duffy TH, Vitols KS. Folic acid metabolism and disruption by pharmacologic agents. NCI Monographs 1987; 5:1–7.

    PubMed  Google Scholar 

  8. Harrap KH, Jackman AL, Newell DR, Taylor GA, Hughes LR, Calvert AH. Thymidylate synthase: a target for anticancer drug design. Adv Enzyme Regul 1989; 29:161–179.

    Article  PubMed  CAS  Google Scholar 

  9. Duch DS, Banks S, Dev IK, Dickerson SH, Ferone R, Health LS, Humphreys J, Knick V, Pendergast W, Singer S, Smith GK, Waters K, Wilson HR. Biochemical and cellular pharmacology of 1843U89, a novel benzoquinazoline inhibitor of thymidylate synthase. Cancer Res 1993; 53:810–818.

    PubMed  CAS  Google Scholar 

  10. Beardsley GP, Moroson BA, Taylor EC, Moran RG. A new folate antimetabolite 5;10-dideaza5,6,7,8,-tetrahydrofolate is a potent inhibitor of the de novo purine synthesis. J Biol Chem 1989; 264:328–333.

    PubMed  CAS  Google Scholar 

  11. Boritzki TJ, Bartlett CA, Zhang C, Howland EF, Margosiak SA, Palmer CL, Romines WH, Jackson RC, AG2034: a novel inhibitor of glycinamide ribonucleotide formyltransferase. Invest New Drugs 1996; 14:295–303.

    Article  PubMed  CAS  Google Scholar 

  12. Rosowsky A, Forsch RA, Reich VE, Freisheim JH, Moran RG. Side chain modified 5-deazafolate and 5-deazatetrahydrofolate analogues as mammalian folylpolyglutamate synthetase and glycinamide ribonucleotide formyltransferase inhibitors: Synthesis and in vitro biological evaluation. J Med Chem 1992; 35:1578–1588.

    Article  PubMed  CAS  Google Scholar 

  13. Jackman AL, Calvert AH. Folate-based thymidylate synthase inhibitors as anticancer drugs. Ann Oncol 1995; 6:871–881.

    PubMed  CAS  Google Scholar 

  14. Jackman AL, Boyle FT, Harrap KR. Tomudex TM (ZD1694): from concept to care, a programme in rational drug discovery. Invest New Drugs 1996; 14:305–316.

    Article  PubMed  CAS  Google Scholar 

  15. Rustum YM, Harstick A, Cao S, Vanhoefer U, Yin MB, Wilke H, Seeber S. Thymidylate synthase inhibitors in cancer therapy: direct and indirect inhibitors. J Clin Oncol 1997; 15:389–400.

    PubMed  CAS  Google Scholar 

  16. Peters GJ, Ackland SP. New antimetabolites in preclinical and clinical development. Exp Opin Invest Drugs 1996; 5:637–679.

    Article  CAS  Google Scholar 

  17. Berman EM, Werbel LM. The renewed potential for folate antagonists in contemporary cancer chemotherapy. JMed Chem 1991; 34:479–485.

    Article  CAS  Google Scholar 

  18. Zalcberg JR, Cunningham D, Van Cutsem E, Francois E, Schornagel J, Adenis A, Green M, Iveson A, Azab M, Seymour I. ZD1694: a novel thymidylate synthase inhibitor with substantial activity in the treatment of patients with advanced colorectal cancer. J Clin Oncol 1996; 14:716–721.

    PubMed  CAS  Google Scholar 

  19. Sirotnak FM. Correlates of folate analog transport, phannacokinetics and selective antitumor action. Pharmac Ther 1980; 8:71–104.

    Article  CAS  Google Scholar 

  20. Sirotnak FM. Obligate genetic expression in tumor cells of a fetal membrane property mediating “folate” transport: biological significance and implications for improved therapy of human cancer. Cancer Res 1985; 45:3992–4000.

    PubMed  CAS  Google Scholar 

  21. Ratnam M, Freisheim JH. Proteins involved in the transport of folates and antifolates by normal and neoplastic cells. In: (Picciano, MF, Stokstad, ELR, Greogory, JF) Folic Acid Metabolism in Health and Disease. Wiley-Liss, New York, 1990, pp. 91–120.

    Google Scholar 

  22. Matherly LH. Mechanisms of receptor-mediated folate and antifolate membrane transport in cancer chemotherapy. In: (Georgopapadakou NH, ed) Drug Transport in Antimicrobial and Anticancer Chemotherapy. Marcel Dekker, New York, 1995, pp. 453–524.

    Google Scholar 

  23. Henderson GB. Folate-binding proteins. Ann Rev Nutr 1990; 10:319–335.

    Article  CAS  Google Scholar 

  24. Antony AC. The biological chemistry of folate receptors. Blood 1992; 79:2807–2820.

    PubMed  CAS  Google Scholar 

  25. Antony AC. Folate receptors. Ann Rev Nutr 1996; 16:501–521.

    Article  CAS  Google Scholar 

  26. Dembo M, Sirotnak FM, Moccio DM. Effects of metabolic deprivation on methotrexate transport in L1210 leukemia cells: further evidence for separate influx and efflux systems with different energetic requirements. J Membr Biol 1984; 78:9–17.

    Article  PubMed  CAS  Google Scholar 

  27. Henderson GB, Tsjui JM, Kumar HP. Characterization of the individual transport routes that mediate the influx and efflux of methotrexate in CCRF-CEM human lymphoblastic cells. Cancer Res 1986; 46:1633–1638.

    PubMed  CAS  Google Scholar 

  28. Saxena M, Henderson GB. Identification of efflux systems for large anions and anionic conjugates as the mediators of methotrexate efflux in L1210 cells. Biochem Pharmacol 1996; 51:975–982.

    Article  CAS  Google Scholar 

  29. Zhao R, Seither R, Brigle KE, Sharina IG, Wang PJ, Goldman ID. Impact of overexpression of the reduced folate carrier (RFC1), an anion exchanger, on concentrative transport in murine L1210 leukemia cells. J. Biol Chem 1997; 272:21,207–21,212.

    Article  PubMed  CAS  Google Scholar 

  30. Schlemmer SR, Sirotnak FM. Structural preferences among folate compounds and their analogues for ATPase-mediated efflux by inside-out plasma membrane vesicles derived from L1210 cells. Biochem Pharmacol 1995; 49:1427–1433.

    Article  PubMed  CAS  Google Scholar 

  31. Assaraf YG, Goldman ID. Loss of folic acid exporter function with markedly augmented folate accumulation in lipophilic antifolate-resistant mammalian cells. J Biol Chem 1997; 272:17,460–17,466.

    Article  PubMed  CAS  Google Scholar 

  32. Jansen G, Barr HM, Kathmann I, Peters GJ, Bunni M, Priest DG, Assaraf YG. Altered metabolism of (anti)folates in pyrimethamine resistant Chinese hamster ovary cells. In: (Pfleiderer W, Rokos H, eds) Chemistry and Biology of Pteridines and Folates 1997. Blackwell Science Press, Berlin, 1997, pp. 253–256.

    Google Scholar 

  33. Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Cancer 1994; 73:2432–2343.

    Article  PubMed  CAS  Google Scholar 

  34. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawsky VR, Kamen BA. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992; 52:3396–3401.

    PubMed  CAS  Google Scholar 

  35. Weitman SD, Weinberg AG, Coney LR, Zurawski VR, Jennings DS, Kamen BA. Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Res 1992; 52:6708–6711.

    PubMed  CAS  Google Scholar 

  36. Garin-Chesa P, Campbell I, Saigo PE, Lewis JL, Old LJ, Rettig WJ. Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein. Am J Pathol 1993; 142:557–567.

    PubMed  CAS  Google Scholar 

  37. Selhub J, Dhar GJ, Rosenberg IH. Gastrointestinal absorption of folates and antifolates. Pharmac Ther 1987; 20:397–418.

    Article  Google Scholar 

  38. Halstad CH. Intestinal absorption of dietary folates. In: (Picciano MF, Stokstad ELR, Greogory JF, eds). Folic Acid Metabolism in Health and Disease. Wiley-Liss, New York, 1990, pp. 23–45.

    Google Scholar 

  39. Mason JD. Intestional transport of monoglutamyl folates in mammalian systems. In: (Picciano MF, Stokstad ELR, Greogory JF, eds.) Folic Acid Metabolism in Health and Disease. Wiley-Liss, New York, 1990, pp. 47–63.

    Google Scholar 

  40. Said HM, Ghishan FK, Redha R. Folate transport by human intestinal brush-border membrane vesicles. Am J Physiol 1987; 252:G229–G236.

    Google Scholar 

  41. Zimmerman J. Folic acid transport in organ-cultured mucosa of human intestine. Gastroenterology 1990; 99:964–972.

    PubMed  CAS  Google Scholar 

  42. Kessel D, Hall TC, Roberts D, Wodinsky I. Uptake as a determinant of methotrexate response in mouse leukemia. Science 1965; 150:752.

    Article  PubMed  CAS  Google Scholar 

  43. Goldman ID, Lichtenstein NS, Oliverio VT. Carrier-mediated transport of the folic acid analogue, methotrexate, in the L12101eukemia cell. J Biol Chem 1968; 243:5007–5017.

    PubMed  CAS  Google Scholar 

  44. Goldman ID. A model system for the study of heteroexchange diffusion: methotrexate-folate interactions in L1210 and Ehrlich ascites tumor cells. Biochim Biophys Acta 1971; 223:624–633.

    Article  Google Scholar 

  45. Henderson GB, Zevely EM. Anion exchange mechanism for transport of methotrexate in L1210 cells. Biochem Biophys Res Commun 1981; 99:163–169.

    Article  PubMed  CAS  Google Scholar 

  46. Schuetz JD, Westin EH, Matherly LH, Pincus R, Swerdlow PS, Goldman ID. Membrane protein changes in an L1210 leukemia cell line with a translocation defect in the methotrexate-tetrahydrofolate cofactor transport carrier. J Biol Chem 1989; 264:16,261–16,267.

    PubMed  CAS  Google Scholar 

  47. Yang CH, Sirotnak FM. Interaction between anions and the reduced folate/methotrexate transport system in L1210 plasma membrane vesicles: directional symmetry and anion specificity for differential mobility of loaded and unloaded carrier. J Membr Biol 1984; 79:285–292.

    Article  PubMed  CAS  Google Scholar 

  48. Henderson GB, Zevely EM. Affinity labeling of the 5-methyltetrahydrofolate/methotrexate transport protein in L1210 leukemia cells by treatment with an N-hydroxysuccinimide ester of [3H]methotrexate. JBiol Chem 1984; 259:4558–4562.

    CAS  Google Scholar 

  49. Yang CH, Pain J, Sirotnak FM. Alteration of folate analogue transport inward after induced maturation of HL-60 leukemia cells. J Biol Chem 1992; 267:6628–6634.

    PubMed  CAS  Google Scholar 

  50. Sirotnak FM, Moccio DM, Yang CH. A novel class of genetic variants of the L1210 cell up-regulated for folate analogue transport inward. JBiol Chem 1984; 259:13,139–13,144.

    PubMed  CAS  Google Scholar 

  51. Yang CH, Sirotnak FM, Mines LS. Further studies on a novel class of genetic variants of the L1210 cell with increased folate analogue transport inward. J Biol Chem 1988; 263:9703–9709.

    PubMed  CAS  Google Scholar 

  52. Jansen G, Westerhof GR, Jarmuszewski MJA, Kathmann I, Rijksen G, Schornagel JH. Methotrexate transport in variant human CCRF-CEM cells with elevated levels of the reduced folate carrier: selective effect on carrier-mediated transport of physiological concentrations of reduced folates. J Biol Chem 1990; 265:18,272–18,277.

    PubMed  CAS  Google Scholar 

  53. Matherly LH, Czajkowski CA, Angeles SM. Identification of a highly glycosylated methotrexate membrane carrier in K562 human erythroleukemia cells up-regulated for tetrahydrofolate cofactor and methotrexate transport. Cancer Res 1991; 51:3420–3426.

    PubMed  CAS  Google Scholar 

  54. Freisheim JH, Ratnam M, McAlinden TP, Prasad KMR, Williams FE, Westerhof GR, Schornagel JH, Jansen G. Molecular events in the membrane transport of methotrexate in human CCRF-CEM leukemia cells. Adv Enzyme Regul 1992; 32:17–31.

    Article  PubMed  CAS  Google Scholar 

  55. Jansen G, Mauritz R, Assaraf YG, Sprecher H, Drori S, Kathmann I, Weterhof GR, Priest DG, Bunni M, Pinedo HM, Schornagel JH, Peters GJ. Regulation of carrier-mediated transport of folates and antifolates in methotrexate sensitive and resistant leukemia cells. Adv Enzyme Regul 1997; 35:59–76.

    Article  Google Scholar 

  56. Jansen G, Kathmann I, Westerhof GR, Smid K, Noordhuis P, Peters GJ, Schornagel JH, Ratnam M, McAlinden TP, Freisheim JH, Bunni M, Priest DG, Sprecher H, Assaraf YG. Regulation of carriermediated transport of folates and antifolates in methotrexate-sensitive and resistant cells. In: (Pfleiderer W, Rokos H, eds) Chemistry and Biology of Pteridines and Folates 1997. Blackwell Science Press, Berlin, 1997, pp. 111–122.

    Google Scholar 

  57. Price EM, Ratnam M, Rodeman KM, Freisheim JH. Characterization of the methotrexate transport pathway in murine L1210 leukemia cells: Involvement of a membrane receptor and a cytosolic protein. Biochemistry 1988; 27:7853–7858.

    Article  PubMed  CAS  Google Scholar 

  58. Matherly LH, Angeles SM. Role of N-glycosylation in the structure and function of the methotrexate membrane transporter from CCRF-CEM human lymphoblastic cells. Biochem Pharmacol 1994; 47:1094–1098.

    Article  PubMed  CAS  Google Scholar 

  59. Wong S, Proefke SA, Bhushan A, Matherly LH. Isolation of human cDNAs that restore methotrexate sensitivity and reduced folate carrier activity in methotrexate-transport defective Chinese hamster ovary cells. J Biol Chem 1995; 270:17,468–17,475.

    Article  Google Scholar 

  60. Dixon KH, Lanpher BC, Chiu J, Kelley K, Cowan KH. A novel cDNA restores reduced folate carrier activity and methotrexate sensitivity to transport deficient cells. J Biol Chem 1994; 269:17–20.

    PubMed  CAS  Google Scholar 

  61. Williams FMR, Murray RC, Underhill TM, Flintoff WF. Isolation of a hamster cDNA clone encoding for a function involved in methotrexate uptake. J Biol Chem 1994; 269:5810–5816.

    PubMed  CAS  Google Scholar 

  62. Williams FMR, Flintoff WF. Isolation of a human cDNA that complements a mutant hamster cell defective in methotrexate uptake. J Biol Chem 1995; 17:2987–2992.

    Google Scholar 

  63. Prasad PD, Ramamoorthy S, Leibach FH, Ganapathy V. Molecular cloning of the human placental folate transporter. Biochem Biophys Res Commun 1995; 206:681–687.

    Article  PubMed  CAS  Google Scholar 

  64. Moscow JA, Gong M, He R, Sgagias MK, Dixon KH, Anzick L, Melzer PS, Cowan KH. Isolation of a gene encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Res 1995; 55:3790–3794.

    PubMed  CAS  Google Scholar 

  65. Murray RC, Williams FMR, Williams WF. Structural organization of the reduced folate carrier gene in Chinese hamster ovary cells. J Biol Chem 1996; 271:19,174–19,179.

    Article  PubMed  CAS  Google Scholar 

  66. Tolner B, Roy K, Sirotnak FM. Organization, structure and alternate splicing of the murine RFC-1 gene encoding a folate transporter. Gene 1997; 189:1–7.

    Article  PubMed  CAS  Google Scholar 

  67. Yang-Feng TL, Ma YY, Liang R, Prasad PD, Leibach FH, Ganapathy V. Assignment of the human folate transporter gene to chromosome 21q22.3 by somatic cell hybrid analyses and in situ hybridization. Biochem Biophys Res Commun 1995; 210:874–879.

    Article  PubMed  CAS  Google Scholar 

  68. Wong SC, McQuade R, Proefke SA, Bhushan A, Matherly LH. Human K562 transfectants expressing high levels of reduced folate carrier but exhibiting low transporter activity. Biochem Pharmacol 1997; 53:199–206.

    Article  PubMed  CAS  Google Scholar 

  69. Sprecher H, Jansen G, Drori S, Schornagel JH, Peters GJ, Assaraf YG. Reduced folate carrier gene amplification and overexpression of altered transcripts in human leukemia CEM-7A cells. Proc Am Assoc Cancer Res 1996; 37:381.

    Google Scholar 

  70. Brigle KE, Spinella MJ, Sierra EE, Goldman ID. Characterization of a mutation in the reduced folate carrier in a transport defective L1210 murine leukemia cell line. J Biol Chem 1995; 270:22,974–22,979.

    Article  PubMed  CAS  Google Scholar 

  71. Gong M, Yess J, Connolly T, Ivy Sp, Ohnuma T, Cowan KH, Moscow JA. Molecular mechanism of antifolate transport-deficiency in a methotrexate-resistant MOLT-3 human leukemia cell line. Blood 1997; 89:2494–2499.

    PubMed  CAS  Google Scholar 

  72. Gorlick R, Goker E, Trippett T, Steinherz P, Elisseyeff Y, Mazumdar M, Flintoff WF, Bertino JR. Defective transport is a common mechanism of acquired resistance in acute lymphocytic leukemia and is associated with decreased reduced folate carrier expression. Blood 1997; 89:1013–1018.

    PubMed  CAS  Google Scholar 

  73. Wong SC, Proefke SA, Bushan A, Matherly LH. Mutations of the reduced folate carrier in transport impaired CCRF-CEM cells. Proc Am Assoc Cancer Res 1997; 38:162.

    Google Scholar 

  74. Schlemmer SR, Sirotnak FM. Retentiveness of methotrexate polyglutamates in cultured L1210 cells. Biochem Pharmacol 1993; 45:1261–1266.

    Article  PubMed  CAS  Google Scholar 

  75. Said HM, Nguyen TT, Dyer DL, Cowan KH, Rubin SA. Intestinal folate transport: identification of a cDNA involved in folate transport and the functional expression and distribution of its mRNA. Biochim Biophys Acta 1996; 1281:164–172.

    Article  PubMed  Google Scholar 

  76. Chiao JH, Roy K, Tolner B, Yang CH, Sirotnak FM. RFC-1gene expression regulates folate absorption in mouse small intestine. J Biol Chem 1997; 272:11,165–11,170.

    Article  PubMed  CAS  Google Scholar 

  77. Moscow JA, Connolly T, Myers TG, Cheng CC, Paull K, Cowan KH. Reduced folate carrier (RFC1) expression and anti-folate resistance in transfected and non-selected cell lines. Int J Cancer 1997; 72:184–190.

    Article  PubMed  CAS  Google Scholar 

  78. Matherly LH, Angeles SM, Czajkowski CA. Characterization of transport-mediated methotrexate resistance in human tumor cells with antibodies to the membrane carrier for methotrexate and tetrahydrofolate cofactors. J Biol Chem 1992; 267:23,253–23,260.

    PubMed  CAS  Google Scholar 

  79. Matherly LH, Taub JW, Ravindranath Y, Proefke SA, Wong SC, Gimotty P, Buck S, Wright JE, Rosowsky A. Elevated dihydrofolate reductase and impaired methotrexate transport as elements in methotrexate resistance in childhood acute lymphoblastic leukemia. Blood 1995; 85:500–509.

    PubMed  CAS  Google Scholar 

  80. Chiao JH, Yang CH, Roy K, Pain J, Sirotnak FM. Ligand-directed immunoaffinity purification and properties of the one-carbon, reduced folate carrier. J Biol Chem 1995; 270:29,698–29,704.

    Article  PubMed  CAS  Google Scholar 

  81. Li WW, Tong WP, Bertino JR. Antitumor activity of antifolate inhibitors of thymidylate and purine synthesis in human soft tissue carcinoma cell lines with intrinsic resistance to methotrexate. Clin Cancer Res 1995; 1:631–636.

    PubMed  CAS  Google Scholar 

  82. Smith A, Hum M, Winick NJ, Kamen BA. A case for the use of aminopterin in treatment of patients with leukemia based on metabolic studies of blasts in vitro. Clin Cancer Res 1996; 2:69–73.

    CAS  Google Scholar 

  83. Rots MG, Pieters R, Veerman AJP, Van Zantwijk CH, Noorhuis P, Peters GJ, Jansen G. Mechanisms of methotrexate resistance and its circumvention by novel antifolates in childhood leukemia. In: (Pfleiderer W, Rokos, H, eds.) Chemistry and Biology of Pteridines and Folates 1997. Blackwell Science Press, Berlin, 1997, pp. 175–180.

    Google Scholar 

  84. Peters GJ, Jansen G. Resistance to antimetabolites. In: (Schilsky RL, Milano GA, Retain M, eds.) Principles of Antineoplastic Drug Development and Pharmacology. Marcel Dekker, New York, 1996, pp. 543–585.

    Google Scholar 

  85. Gorlick R, Goker E, Trippett T, Waltham M, Banerjee D, Bertino JR. Intrinsic and acquired resistance to methotrexate in acute leukemia. N Engl J Med 1996; 335:1041–1048.

    Article  PubMed  CAS  Google Scholar 

  86. Trippett T, Schlemmer S, Elisseyeff Y, Goker E, Wachter M, Steinherz P, Tan C, Berman E, Wright JE, Rosowsky A, Schweitzer B, Bertino JR. Defective transport as a mechanism of acquired resistance to methotrexate in patients with acute lymphocytic leukemia. Blood 1992; 80:1158–1162.

    PubMed  CAS  Google Scholar 

  87. Kathmann I, Mauritz R, Noordhuis P, Voorn D, Aardewijn P, Schornagel JH, Pinedo HM, Peters GJ, Jansen G. Mechanisms of resistance against methotrexate and novel antifolates in human CCRF-CEM leukemia cells. In: (Pfleiderer W, Rokos H, eds.) Chemistry and Biology of Pteridines and Folates 1997. Blackwell Science Press, Berlin, 1997, pp. 257–261.

    Google Scholar 

  88. Assaraf YG, Schimke RT. Identification of methotrexate transport deficiency in mammalian cells using fluoresceinated methotrexate and flow cytometry. Proc Natl Acad Sci USA 1987; 84:7154–7158.

    Article  PubMed  CAS  Google Scholar 

  89. Schuetz JD, Matherly LH, Westin EH, Goldman ID. Evidence for a functional defect in the translocation of the methotrexate transport carrier in a methotrexate-resistant murine L1210 leukemia cell line. J Biol Chem 1988; 263:9840–9847.

    PubMed  CAS  Google Scholar 

  90. Jackman AL, Kelland LR, Kimbell R, Gibson W, Aherne GW, Hardcastle A, Boyle FT. Mechanism of acquired resistance to the quinazoline thymidylate synthase inhibitor ZD1694 (Tomudex) in one mouse and three human cell lines. Br J Cancer 1995; 71:914–924.

    Article  PubMed  CAS  Google Scholar 

  91. Takemura Y, Kobayashi H, Gibson W, Kimbell R, Miyachi H, Jackman AL. The influence of drugexposure conditions on the development of resistance to methotrexate or ZD1694 in cultured human leukemia cells. Int J Cancer 1996; 66:29–36.

    Article  PubMed  CAS  Google Scholar 

  92. Mauritz R, Kathmann I, Assaraf YG, Drori S, Schornagel JH, Priest DG, Bunni MA, Pinedo HM, Peters GJ, Jansen G. A novel mechanism of resistance to polyglutamatable antifolates in human CEM leukemia cells. In: (Pfleiderer W, Rokos H, eds.) Chemistry and Biology of Pteridines and Folates 1997. Blackwell Science Press, Berlin, 1997, pp. 157–162.

    Google Scholar 

  93. Tse A, Brigle KE, Moran RG. Dominant mutations in the reduced folate carrier confer resistance to 5,10-dideazatetrahydrofolate (DDATHF) by causing efficient transport of folic acid. Proc Am Assoc Cancer Res 1997; 38:162.

    Google Scholar 

  94. Kane MA, Waxman S. Role of folate binding proteins in folate metabolism. Lab Invest 1989; 60:737–736.

    PubMed  CAS  Google Scholar 

  95. Lacey SW, Sanders JM, Rothberg KG, Anderson RGW, Kamen BA. Complementary DNA for the folate binding protein correctly predicts anchoring to the membrane by phosphatidylinositol. J Clin Invest 1989; 84:715–720.

    Article  PubMed  CAS  Google Scholar 

  96. Luhrs CA, Slomiany BL. A human membrane-associated folate binding protein is anchored by a glycosylphosphatidylinositol tail. J Biol Chem 1989; 264:21,466–21,449.

    Google Scholar 

  97. Elwood PC, Deutsch JC, Kolhouse JF. The conversion of the human membrane-associated folate binding protein (folate receptor) to the soluble folate binding protein by a metalloprotease. J Biol Chem 1990; 266:2346–2353.

    Google Scholar 

  98. Antony AC, Verma RS, Unune AR, LaRosa JA. Identification of a Mg2+-dependent protease in human placenta which cleaves hydrophobic folate binding protein to hydrophilic forms. J Biol Chem 1989; 264:1911–1914.

    PubMed  CAS  Google Scholar 

  99. Jansen G, Kathmann I, Rademaker BC, Braakhuis BJM, Westerhof GR, Rijksen G, Schornagel JH. Expression of a folate binding protein in L1210 cells grown in low folate medium. Cancer Res 49:1959–1963.

    Google Scholar 

  100. Ragoussis J, Senger G, Trowsdale J, Campbell IG. Genomic organization of the human folate receptor genes on chromosome 1 lq 13. Genomics 1992; 14:423–430.

    Article  PubMed  CAS  Google Scholar 

  101. Elwood PC. Molecular cloning and characterization of the human folate-binding protein cDNA from placenta and malignant tissue culture (KB) cells. J Biol Chem 1989; 264:14,893–14,901.

    Google Scholar 

  102. Ratnam M, Marquardt H, Duhring JL, Freisheim JH. Homologous membrane folate binding proteins in human placenta: cloning and sequence of a cDNA. Biochemistry 1989; 28:8249–8254.

    Article  PubMed  CAS  Google Scholar 

  103. Shen F, Ross JF, Wang X, Ratnam M. Identification of a novel folate receptor, a truncated receptor, and receptor type β in hematopoeitic cells: cDNA cloning, expression, immunoreactivity, and tissue specificity. Biochemistry 1994; 33:1209–1215.

    Article  PubMed  CAS  Google Scholar 

  104. Shen F, Wu M, Ross JF, Miller D, Ratnam M. Folate receptor type y is primarily a secretory protein due to lack of an efficient signal for glycosylphosphatidylinositol modification: protein characterization and cell type specificity. Biochemistry 1995; 34:5660–5665.

    Article  PubMed  CAS  Google Scholar 

  105. Yan W, Ratnam M. Preferred sites of glycosylphosphatidylinositol modification in folate receptors and constraints in the primary structure of the hydrophobic portion of the signal. Biochemistry 1995; 34:14,594–14,600.

    Article  PubMed  CAS  Google Scholar 

  106. Luhrs CA. The role of glycosylation in the biosynthesis of and acquisition of ligand-binding activity of the folate binding protein in cultured KB cells. Blood 1991; 77:1171–1180.

    PubMed  CAS  Google Scholar 

  107. Shen F, Zheng X, Wang J, Ratnam M. Identification of amino acid residues that determine the differential ligand specificities of folate receptors a and β. Biochemistry 1997; 36:6157–6163.

    Article  PubMed  CAS  Google Scholar 

  108. Wang X, Shen F, Freisheim JH, Gentry LE, Ratnam M. Differential stereospecificities and affinities of folate receptor isoforms for folate compounds and antifolates. Biochem Pharmacol 1992; 44:1898–1902.

    Article  PubMed  CAS  Google Scholar 

  109. Brigle KE, Spinella MJ, Westin EH, Goldman ID. Increased expression and characterization of two distinct folate binding proteins in murine erythroleukemia cells. Biochem Pharmacol 1994; 47:337–345.

    Article  PubMed  CAS  Google Scholar 

  110. Brigle KE, Westin EH, Houghton MT, Goldman ID. Characterization of two cDNAs encoding folate binding proteins from L1210 murine leukemia cells. J Biol Chem 1991; 266:17,243–17,249.

    PubMed  CAS  Google Scholar 

  111. Hjelle JT, Christensen EI, Carone FA, Selhub J. Cell fractionation and electron microscope studies of kidney folate-binding protein. Am J Physiol 1991; 260:C338–C346.

    Google Scholar 

  112. Rijnboutt S, Jansen G, Posthuma G, Hynes JB, Schornagel JH, Strous GJAM. Endocytosis of GPIlinked membrane folate receptor-a. J Cell Biol 1996; 132:35–47.

    Article  PubMed  CAS  Google Scholar 

  113. Anderson RGW, Kamen BA, Rothberg KG, Lacey SW. Potocytosis; sequestration and transport of small molecules by caveolae. Science 1992; 225:410–411.

    Article  Google Scholar 

  114. Kamen BA, Wang MT, Streckfuss AJ, Peryea X, Anderson RGW. Delivery of folates to the cytoplasm of MA104 cells is mediated by the surface membrane receptor that recycles. J Biol Chem 1988; 263:13,602–13,609.

    PubMed  CAS  Google Scholar 

  115. Rothberg KG, Ying Y, Kamen BA, Anderson RGW. The glycophospholipid-linked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway. J Cell Biol 1990; 110:637–649.

    Article  PubMed  CAS  Google Scholar 

  116. Smart EJ, Mineo C, Anderson RGW. Clustered folate receptors deliver 5-methyltetrahydrofolate to cytoplasm of MA104 cells. J Cell Biol 1996; 134:1169–1177.

    Article  PubMed  CAS  Google Scholar 

  117. Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RGW. Caveolin, a protein component of caveolae membrane coats. Cell 1992; 68:673–682.

    Article  PubMed  CAS  Google Scholar 

  118. Glenney JR, Soppet D. Sequence and expression of caveolin, a protein component of caveolae plasmamembrane domains phosphorylated on tyrosine in RSV-transformed fibroblasts. Proc Natl Acad Sci USA 1992; 89:10,517–10,521.

    Article  PubMed  CAS  Google Scholar 

  119. Kamen BA, Smith AK, Anderson RGW. The folate receptor works in tandem with a probenecid sensitive carrier in MA104 cells in vitro. J Clin Invest 1991; 87:1442–1449.

    Article  PubMed  CAS  Google Scholar 

  120. Prasad PD, Mahesh VB, Leibach FH, Ganapathy V. Functional coupling between a bafilomycin A1sensitive proton pump and a probenecid-sensitive folate transporter in human placental choriocarcinoma cells. Biochim Biophys Acta 1994; 1222:309–314.

    Article  PubMed  CAS  Google Scholar 

  121. Jansen G, Schornagel JH, Westerhof GR, Rijksen G, Newell DR, Jackman AL. Multiple transport systems for the uptake of folate-based thymidylate synthase inhibitors. Cancer Res 1990; 50:7544–7548.

    PubMed  CAS  Google Scholar 

  122. Westerhof GR, Schornagel JH, Kathmann I., Jackman AL, Rosowsky A, Forsch RA, Hynes JB, Boyle FT, Peters GJ, Pinedo HM, Jansen G. Carrier- and receptor-mediated transport of folate antagonists targeting folate-dependent enzymes: correlates of molecular structure and biological activity. Mol Pharmacol 1995; 48:459–471.

    PubMed  CAS  Google Scholar 

  123. Pinard MF, Jolivet J, Ratnam M, Kathmann I, Molthoff CFM, Westerhof GR, Schornagel JH, Jansen G. Functional aspects of membrane folate receptors in human breast cancer cells with transport-related resistance to methotrexate. Cancer Chemother Pharmacol 1996; 38:281–288.

    Article  PubMed  CAS  Google Scholar 

  124. Dixon KH, Mulligan T, Chung KN, Elwood PC, Cowan KH. Effects of folate receptor expression following stable transfection into wild type and methotrexate transport-deficient ZR-75–1 human breast cancer cells. J Biol Chem 1992; 267:24,140–24,147.

    PubMed  CAS  Google Scholar 

  125. Spinella MJ, Brigle KE, Sierra EE, Goldman ID. Distinguishing between folate receptormediated transport and reduced folate carrier-mediated transport in L1210 leukemia cells. J Biol Chem 1995; 270:7842–7849.

    Article  PubMed  CAS  Google Scholar 

  126. Westerhof GR, Rijnboutt S, Schornagel JH, Pinedo HM, Peters GJ, Jansen G. Functional activity of the reduced folate carrier in KB, MA104 and IGROV-I cells expressing folate binding protein. Cancer Res 1995; 55:3795–3802.

    PubMed  CAS  Google Scholar 

  127. Anderson RGW. Caveolae: where incoming and outgoing messages meet. Proc Natl Acad Sci USA 1993; 90:10,909–10,913.

    Google Scholar 

  128. Sargiocomo M, Sudol M, Tang Z, Lisanti MP. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol 1993; 122:798–809.

    Google Scholar 

  129. Parton RG, Simons K. Digging into caveolae. Science 1995; 269:1398–1999.

    Article  PubMed  CAS  Google Scholar 

  130. Ju H, Zou R, Venema VJ, Venema RC. Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem 1997; 272:18,522–18,525.

    Article  PubMed  CAS  Google Scholar 

  131. Engelman JA, Wykoff CC, Yasuhara S, Song KS, Okamoto T, Lisanti MP. Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J Biol Chem 1997; 272:16,374–16,381.

    Article  PubMed  CAS  Google Scholar 

  132. Kane MA, Portillo RM, Elwood PC, Antony AC, Kolhouse JF. The influence of extracellular folate concentration on methotrexate uptake by human KB cells. J Biol Chem 1986; 261:44–49.

    PubMed  CAS  Google Scholar 

  133. Miotti S, Facheris P, Tomassetti A, Bottero F, Bottini C, Ottone F, Colnaghi MI, Bunni MA, Priest DG, Canevari S. Growth of ovarian-carcinoma cell lines at physiological folate concentration: effect of folate-binding protein expression in vitro and in vivo. Int J Cancer 1995; 63:395–401.

    Article  PubMed  CAS  Google Scholar 

  134. Hsueh CT, Dolnick BJ. Regulation of folate-binding protein gene expression by DNA methylation in methotrexate-resistant KB cells. Biochem Pharmacol 1994; 47:1019–1027.

    Article  PubMed  CAS  Google Scholar 

  135. Hsueh CT, Dolnick BJ. Altered folate-binding protein mRNA stability in KB cells grown in folate-deficient medium. Biochem Pharmacol 1993; 45:2537–2545.

    Article  PubMed  CAS  Google Scholar 

  136. Kamen BA, Capdevilla A. Receptor-mediated folate accumulation is regulated by the folate content. Proc Natl Acad Sci USA 1986; 83:5983–5987.

    Article  PubMed  CAS  Google Scholar 

  137. Smart EJ, Ying YS, Anderson RGW. Hormonal regulation of caveolae internalization. J Cell Biol 1995; 131:929–938.

    Article  PubMed  CAS  Google Scholar 

  138. Westerhof GR, Jansen G, van Emmerik N, Kathmann I, Rijksen G, Jackman AL, Schornagel JH. Membrane transport of antifolate compounds in L1210 cells: the role of carrier- and receptor-mediated transport systems. Cancer Res 1991; 51:5507–5513.

    PubMed  CAS  Google Scholar 

  139. Schultz RM, Andis SL, Schakelford KA, Gates SB, Ratnam M, Mendelsohn LG, Shih C, Grindey GB. Role of membrane-associated folate binding protein in the cytotoxicity of antifolates in KB, IGROV1, and L1210A cells. Oncology Res 1995; 7:97–102.

    CAS  Google Scholar 

  140. Miotti S, Bagnoli M, Ottone F, Tomassetti A, Colnaghi MI, Canevari S. Simultaneous activity of two different mechanism of folate transport in ovarian carcinoma cell lines. J Cell Biochem 1997; 65:479–491.

    Article  PubMed  CAS  Google Scholar 

  141. Sierra EE, Brigle KE, Spinella MJ, Goldman ID. Comparison of transport properties of the reduced folate carrier and folate receptor in murine L1210 leukemia cells. Biochem Pharmacol 1995; 50:1287–1294.

    Article  PubMed  CAS  Google Scholar 

  142. Spinella MJ, Brigle KE, Freemantle SJ, Sierra EE, Goldman ID. Comparison of methotrexate polyglutamylation in L1210 leukemia cells when influx is mediated by the reduced folate carrier or the folate receptor. Biochem Pharmacol 1996; 52:703–712.

    Article  PubMed  CAS  Google Scholar 

  143. Luhrs CA, Raskin CA, Durbin R, Wu S, Sadasivan E, McAllister W, Rothenberg SP. Transfection of a glycosylated phosphatidylinositol-anchored folate-binding protein complementary DNA provides cells with the ability to survive in low folate medium. J Clin Invest 1992; 90:840–847.

    Article  PubMed  CAS  Google Scholar 

  144. Matsue H, Rothberg KG, Takashima A, Kamen BA, Anderson RGW, Lacey SW. Folate receptor allows cells to grow in low concentrations of 5-methyltetrahydrofolate. Proc Natl Acad Sci USA 1992; 89:6006–6009.

    Article  PubMed  CAS  Google Scholar 

  145. Wang X, Jansen G, Fan J, Kohler WJ, Ross JF, Schornagel JH, Ratnam M. Variant GPI structure in relation to membrane-associated functions of murine folate receptor. Biochemistry 1996; 35:16,305–16,312.

    Article  PubMed  CAS  Google Scholar 

  146. Schornagel JH, Mauritz R, Kathmann I, Pinedo HM, Peters GJ, Jansen G. Kinetics of carrier- and receptor-mediated transport of antifolates. Proc Am Assoc Cancer Res 1996; 37:386.

    Google Scholar 

  147. Antony AC, Bruno E, Briddell RA, Brandt JE, Verma R, Hoffman R. Effect of perturbation of specific folate receptors during in vitro erythropoiesis. J Clin Invest 1987; 80:1618–1623.

    Article  PubMed  CAS  Google Scholar 

  148. Antony AC, Briddell RA, Brandt JE, Stravena JE, Verma RS, Miller ME, Kalasinski LA, Hoffman R. Megaloblastic hematopoieses in vitro. Interaction of anti-folate receptor antibodies with hematopoietic progenitor cells leads to a proliferative response independent of megaloblastic changes. J Clin Invest 1991; 87:313–325.

    Article  PubMed  CAS  Google Scholar 

  149. Henderson GB, Strauss BP. Characteristics of a novel transport system for folate compounds in wildtype and methotrexate-resistant L1210 cells. Cancer Res 1990; 50:1709–1714.

    PubMed  CAS  Google Scholar 

  150. Sierra EE, Brigle KE, Spinella MJ, Goldman ID. pH dependence of methotrexate transport by the reduced folate carrier and the folate receptor in L1210 cells. Biochem Pharmacol 1997; 53:223–231.

    Article  PubMed  CAS  Google Scholar 

  151. Sirotnak FM, Goutas LJ, Jacobsen DM, Mines LS, Barrueco JR, Gaumont Y, Kisliuk RL. Carrier-mediated transport of folate compounds in L1210 cells. Biochem Pharmacol 1987; 36:1569–1667.

    Article  Google Scholar 

  152. Ackland SP, Schilsky RL. High dose methotrexate: a critical reappraisal. J Clin Oncol 1987; 5:2017–2031.

    PubMed  CAS  Google Scholar 

  153. Yang CH, Peterson RHF, Sirotnak FM, Chello PI. Folate analog transport by plasma membrane vesicles isolated from L1210 leukemia cells. J Biol Chem 1979; 254:1402–1407.

    PubMed  CAS  Google Scholar 

  154. Schmid FA, Sirotnak FM, Otter GM, DeGraw JI. New antifolates of 10-deazaaminopterin series: markedly increased antitumor activity of the 10-ethyl analogue compared to the parent compound and methotrexate against some human tumor xenografts in nude mice. Cancer Treat Rep 1985; 69:551–553.

    PubMed  CAS  Google Scholar 

  155. Rhee MS, Galivan J, Wright JE, Rosowsky A. Biochemical studies on PT523, a potent nonpolyglutamatable antifolate, in cultured cells. Mol Pharmacol 1994; 45:783–791.

    PubMed  CAS  Google Scholar 

  156. Jones TJ, Calvert AH, Jackman AL, Brown SJ, Jones M, Harrap KH. A potent antitumor quinazoline inhibitor of thymidylate synthase: synthesis, biological properties and therapeutic results in mice. Eur J Cancer 1981; 17:11–19.

    PubMed  CAS  Google Scholar 

  157. Fernandes DJ, Bertino JR, Hynes JB. Biochemical and antitumor effects of 5,8-dideazaisopteroylglutamate, a unique quinazoline inhibitor of thymidylate synthase. Cancer Res 1983; 43:1117–1123.

    PubMed  CAS  Google Scholar 

  158. Jackman AL, Newell DR, Gibson W, Jodrell DI, Taylor GA, Bishop JA, Hughes LR, Calvert AH. The biochemical pharmacology of the thymidyulate synthase inhibitor 2-desamino-2-methyl-N10-propargy1–5,8-dideazafolic acid (ICI 198,583). Biochem Pharmacol 1991; 42:1885–1895.

    Article  PubMed  CAS  Google Scholar 

  159. Jackman AL, Taylor GA, Gibson W, Kimbell R, Brown M, Calvert AH, Judson IR, Hughes LR. ICI D1694, a quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of L1210 tumor cell growth in vitro and in vivo: a new agent for clinical studies. Cancer Res 1991; 51:5579–5586.

    PubMed  CAS  Google Scholar 

  160. Hanlon MH, Ferone R. In vitro uptake, anabolism, and cellular retention of 1843U89 and other benzoquinazoline inhibitors of thymidylate synthase. Cancer Res 1996; 56:3301–3306.

    PubMed  CAS  Google Scholar 

  161. Shih C, Chen VJ, Gossett LS, Gates SB, MacKellar WC, Habeck LL, Schackelford KA, Mendelsohn LG, Soose DJ, Patel VF, Andis SL, Bewley JR, Rayl EA, Moroson BA, Beardsley GP, Kohler W, Ratnam M, Schultz RM. LY213514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res 1997; 57:1116–1123.

    PubMed  CAS  Google Scholar 

  162. Jackman AL, Kimbell R, Aherne GW, Brunton L, Jansen G, Stephens TC, Smith M, Wardleworth M, Ward W, Boyle FT. The cellular pharmacology and in vivo activity of a new anticancer agent, ZD9331; a water soluble, non-polyglutamatable quinazoline-based inhibitor of thymidylate synthase. Clin Cancer Res 1997; 3:911–921.

    PubMed  CAS  Google Scholar 

  163. Bavetsias V, Jackman AL, Marriot JH, Kimbell R, Gibson W, Boyle FT, Bisset GMF. Folate-based inhibitors of thymidylate synthase: synthesis and antitumor activity of y-linked sterically hindered dipeptide analogues of 2-desamino-2-methyl-N10-propargyl-5,8-dideazafolic acid (ICI 198583). J Med Chem 1997; 40:1495–1510.

    Article  PubMed  CAS  Google Scholar 

  164. Jansen G, Schornagel JH, Wardleworth M, Boyle FT, Bavetsias V, Marriot J, Jackman AL. Glutamate side chain modified quinazoline antifolate thymidylate synthase inhibitors: transport characteristics and biological evaluation. Ann Oncol 1996; 7(suppl. 1):90.

    Google Scholar 

  165. Rosowsky A, Lazarus H, Yuan GC, Beltz WR, Magnini L, Abelson HT, Modest EJ, Frei III E. Effects of methotrexate esters and other lipophilic antifolates on methotrexate-resistant human leukemic lymphoblsts. Biochem Pharmacol 1980; 29:648–652.

    Article  PubMed  CAS  Google Scholar 

  166. Bekkenk M, Mauritz R, Pieters R, Rots M, van Zantwijk CH, Veerman AJP, Peters GJP, Jansen G. Sensitivity for novel antifolates in childhood leukemia cells with resistance to methotrexate. In: (Pieters, R, Kaspers, GJL, Veerman AJP, eds.) Drug Resistance in Leukemia and Lymphoma II. Harwood Academic Publishers, Amsterdam, The Netherlands, 1997, pp. 173–181.

    Google Scholar 

  167. Li WW, Cordon-Cardo C, Chen Q, Jhanwar SC, Bertino JR. Establishment, characterization and drug sensitivity of four new human soft tissue sarcoma cell lines. Int J Cancer 1996; 68:514–519.

    Article  PubMed  CAS  Google Scholar 

  168. Zervos PH, Allen RH, Thornton DE, Thiem PA. Functional folate status as a prognostic indicator of toxicity in clinical trials of the multitargeted antifolate LY231514. Eur J Cancer 1997; 33:(suppl)S18.

    Google Scholar 

  169. Smith GK, Amyx H, Boytos CM, Duch D, Ferone R, Wilson HR. Enhanced activity for the thymidylate synthase inhibitor 1843U89 through decreased host toxicity with oral folic acid. Cancer Res 1995; 55:6117–6125.

    PubMed  CAS  Google Scholar 

  170. Alati T, Worzalla JF, Shih C, Bewley JR, Lewis S, Moran RG, Grindey GB. Augmentation of the therapeutic activity of lometrexol [(6-R)5,10-dideazatetrahydrofolate] by oral folic acid. Cancer Res 1996; 56:2331–2335.

    PubMed  CAS  Google Scholar 

  171. Holm J, Hansen SI, Hoier-Madsen M, Sondergaard K, Bzorek M. The high affinity folate receptor of normal and malignant human colonic mucosa. APMIS 1994; 10:828–836.

    Article  Google Scholar 

  172. Schmitz JC, Grindey GB, Schultz RM, Priest DG. Impact of dietary folic acid on reduced folates in mouse plasma and tissues. Relationship to dideazatetrahydrofolate sensitivity. Biochem Pharmacol 1994; 48:319–325.

    Article  PubMed  CAS  Google Scholar 

  173. Matherly LH, Barlowe CK, Phillips VM, Goldman ID. The effects of 4aminoantifolates on 5-formyltetrahydrofolate metabolism in L1210 cells. A biochemical basis of the selectivity of leucovorin rescue. J Biol Chem 1987; 262:710–717.

    PubMed  CAS  Google Scholar 

  174. Jolivet J, Jansen G, Peters GJ, Pinard MF, Schornagel JH. Leucovorin rescue of human cancer and bone marrow cells following edatrexate or methotrexate. Biochem Pharmacol 1994; 47:659–665.

    Article  PubMed  CAS  Google Scholar 

  175. Sirotnak FM, Otter GM, Schmid FA. Markedly improved efficacy of edatrexate compared to methotrexate in a high-dose regimen with leucovorin rescue against metastatic murine solid tumors. Cancer Res 1993; 53:587–591.

    PubMed  CAS  Google Scholar 

  176. Van der Veer LJ, Westerhof GR, Rijksen G, Schomagel JH, Jansen G. Cytotoxicity of methotrexate and trimetrexate and its reversal by folinic acid in human leukemic CCRF-CEM cells with carrier-mediated and receptor-mediated folate uptake. Leukemia Res 1989; 13:981–987.

    Article  Google Scholar 

  177. Campbell IG, Jones TA, Foulkes WD, Trowsdale J. Folate binding protein is a narker for ovarian cancer. CancerRes 1991; 51:5329–5338.

    PubMed  CAS  Google Scholar 

  178. Coney LR, Tomassetti A, Carayannopoulos L, Frasca V, Kamen BA, Colnaghi MI, Zurawski VR. Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate binding protein. CancerRes 1991; 51:6125–6132.

    PubMed  CAS  Google Scholar 

  179. Toffoli G, Cernigoi C, Russo A, Gallo A, Bagnoli M, Boicchi M. Overexpression of folate binding protein in ovarian cancers. Int J Cancer 1997; 74:193–198.

    Article  PubMed  CAS  Google Scholar 

  180. Miotti S, Canevari S, Menard S, Mezzanzanica D, Porro G, Pupa SM, Regazzoni M, Tagliabue E, Colnaghi MI. Characterization of human ovarian-associated antigens defined by novel monoclonal antibodies with tumor-restricted specificity. Int J Cancer 1987; 39:297–303.

    Article  PubMed  CAS  Google Scholar 

  181. Molthoff CFM, Buist MR, Kenemans P, Pinedo HM, Boven E. Experimental and clinical analysis of the characteristics of a chimeric monoclonal antibody, MOv 18, reactive with an ovarian cancer-associated antigen. J Nucl Med 1992; 33:2000–2005.

    PubMed  CAS  Google Scholar 

  182. Grippa F, Buraggi GL, Re ED, Gasparini M, Seregini E, Canevari S, Gadina M, Presti M, Marini A, Seccamani E. Radioimmunoscintigraphy of ovarian cancer with the MOv18 monoclonal antibody. Eur J Cancer 1991; 27:724–729.

    Article  Google Scholar 

  183. Buist MR, Kenemans P, Den Hollander W, Vermorken JB, Molthoff CJM, Burger CW, Helmerhorst TJM, Baak JPA, Roos JC. Kinetics and tissue distribution of the radiolabeled chimeric monoclonal antibody MOv18 IgG and F(ab’)2 fragments in ovarian carcinoma patients. Cancer Res 1993; 53:5413–5418.

    PubMed  CAS  Google Scholar 

  184. Molthoff CFM, Prinssen HM, Kenemans P, van Hof AC, den Hollander W, Verheijen RHM. Escalating protein doses for chimeric monoclonal antibody MOv18 IgG in ovarian carcinoma patients: a phase I study. Cancer 1997; 80:2712–2720.

    Article  PubMed  CAS  Google Scholar 

  185. Crippa F, Bolis G, Seregni E, Gavoni N, Scarfone G, Ferraris C, Buraggi GL, Bombardieri E. Singledose intraperitoneal radioimmunotherapy with the murine monoclonal antibody I-131 MOv18: clinical results with minimal residual disease of ovarian cancer. Eur J Cancer 1995; 31A:686–690.

    Article  Google Scholar 

  186. Molthoff C, Klein-Gebbinck J, Verheijen R, Kenemans P, Jansen G. Membrane folate receptor mediated binding and internalization of (anti)folate-MOv18 immunoconjugates. Tumor Targeting 1996; 2:140–141.

    Google Scholar 

  187. Molthoff C, Gebbinck J, Verheijen R, Kenemans P, Jansen G. Membrane folate receptor-mediated binding and internalization of (anti)folate-MOv18 immunoconjugates. Pteridines 1997; 8:163–164.

    Google Scholar 

  188. Coney LR, Mezzanzanica D, Sanborn D, Casalini P, Colnaghi MI, Zurawski VR. Chimeric murinehuman antibodies directed against folate binding receptor are efficient mediators of ovarian carcinoma cell killing. Cancer Res 1994; 54:2448–2455.

    PubMed  CAS  Google Scholar 

  189. Canevari S, Stoter G, Arienti F, Bolis G, Colnaghi MI, Re EMD, Eggermont AMM, Goey SH, Gratema JW, Lamers CHJ, Nooy MA, Parmiani G, Raspagliesi F, Ravagnani F, Scarfone G, Trimbos JB, Warnaar SO, Bolhuis RLH. Regression of advanced ovarian carcinoma by intraperioneal treatment with autologous T lymphocytes retargeted by a bispecific monoclonal antibody. J Natl Cancer Inst 1995 ; 87:1463–1469.

    Article  PubMed  CAS  Google Scholar 

  190. Bolhuis RLH, Lamers CHJ, Goey SH, Eggermont AMM, Trimbos JBMZ, Stoter G, Lanzavecchia A, Re E, Miotti S, Raspagliesi F, Rivoltini L, Colnaghi MI. Adoptive immunotherapy of ovarian carcinoma with BS-MAb-targeted lymphocytes: a multicenter study. Int J Cancer 1992; 7:78–81.

    CAS  Google Scholar 

  191. Boerman O, Tibben JG, Massuger LFAG, Claessens RAMJ, Corstens FHM. Tumor targeting of the anti-ovarian carcinoma X anti-CD3/TCR bispecific monoclonal antibody OC/TR and its parental MOv18 antibody in experimental ovarian cancer. Anticancer Res 1995; 15:2169–2174.

    PubMed  CAS  Google Scholar 

  192. Leamon CP, Low PS. Delivery of macromolecules into living cells: a methods that exploits folate receptor endocytosis. Proc Natl Acad Sci USA 1991; 88:5572–5576.

    Article  PubMed  CAS  Google Scholar 

  193. Leamon CP, Low PS. Cytotoxicity of momordin-folate conjugates in cultured human cells. J Biol Chem 1992; 267:24,966–24,971.

    PubMed  CAS  Google Scholar 

  194. Leamon CP, Low PS. Selective targeting of malignant cells with cytotoxin-folate conjugates. J Drug Targeting 1994; 2:101–112.

    Article  CAS  Google Scholar 

  195. Lee RJ, Low PS. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 1994; 269:3198–3204.

    PubMed  CAS  Google Scholar 

  196. Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta 1995; 1233:134–144.

    Article  PubMed  Google Scholar 

  197. Wang S, Lee RJ, Cauchon G, Gorenstein DG, Low PS. Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proc Nati Acad Sci USA 1995; 92:3318–3322.

    Article  CAS  Google Scholar 

  198. Mathias CJ, Wang S, Lee RJ, Waters DJ, Low PS, Green MA. Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of Gallium-67-deferoxamine-folate. J Nucl Med 1996; 37:1003–1008.

    PubMed  CAS  Google Scholar 

  199. Wang S, Lee RJ, Mathias CJ, Green MA, Low PS. Synthesis, purification, and tumor cell uptake of 67Ga-deferoxamine-folate, a potential radiopharmaceutical for tumor imaging. Bioconjugate Chem 1996; 7:56–62.

    Article  CAS  Google Scholar 

  200. Kranz DM, Patrick TA, Brigle KE, Spinella MJ, Roy EJ. Conjugates of folate and anti-T-cell-receptor antibodies specifically target folate-receptor-positive tumor cells for lysis. Proc Natl Acad Sci USA 1995; 92:9057–9061.

    Article  PubMed  CAS  Google Scholar 

  201. Cho BK, Roy EJ, Patrick TA, Kranz DM. Single-chain Fv/folate conjugates mediate efficient lysis of folate-receptor positive tumor cells. Bioconjugate Chem 1997; 8:338–346.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jansen, G. (1999). Receptor- and Carrier-Mediated Transport Systems for Folates and Antifolates. In: Jackman, A.L. (eds) Antifolate Drugs in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-725-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-725-3_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4521-4

  • Online ISBN: 978-1-59259-725-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics