Skip to main content

Preclinical and Clinical Evaluation of the Glycinamide Ribonucleotide Formyltransferase Inhibitors Lometrexol and LY309887

  • Chapter
Antifolate Drugs in Cancer Therapy

Abstract

The importance of the purine de novo pathway in providing DNA precursors for cancer cell growth led to the hypothesis that novel antifolate inhibitors of glycinamide ribonucleotide formyltransferase (GARFT), the first folate-dependent enzyme in this pathway, might have utility in the treatment of cancer. In 1987, clinical investigations were initiated with lometrexol (6R-dideazatetrahydrofolic acid, 6R-DDATHF), a novel “tight-binding” inhibitor of GARFT with potent antitumor activity in a number of murine and human xenograft solid tumors. Unexpected observations of delayed cumulative toxicity in phase I clinical trials prompted extensive preclinical investigations of the dynamics of folate status on the efficacy and toxicity of GARFT inhibitors and other antifolates (1). In addition, structure-activity studies have led to the identification of a second generation GARFT inhibitor, LY309887 (2´, 5´-thienyl-dideazatetrahydrofolic acid), which is more potent than lometrexol and has greater antitumor efficacy in vivo (2). Biochemical and pharmacological differences between LY309887 and lometrexol with respect to potency to inhibit GARFT, differential transport and storage in liver, and polyglutamation suggest that LY309887 may have greater antitumor efficacy and more manageable toxicity in the clinic than lometrexol. A murine model of the delayed cumulative toxicity seen with lometrexol has been refined and characterized to provide greater understanding of the pharmacokinetics and pharmacodynamics of these events. In concert with recently published nutritional data on the folate status of humans and more sophisticated methods of assessing and modulating antifolate toxicities through vitamin supplementation, antifolate therapy may be poised to enter a new phase of clinical success. In this report, we describe LY309887, a GARFT inhibitor with unique biochemical and pharmacological properties that has antitumor activity against a broad panel of human xenograft tumors, and greater potency than lometrexol both as an inhibitor of GARFT and as an inhibitor of tumor growth in vivo. An overview of the phase I clinical results with lometrexol and the design of the phase I clinical trial with LY309887 will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ray MS, Muggia FM, Leichman GC, Nelson RL, Dyke RW, Moran RG. Phase I study of 6 (R)-5,10dideazatetrahydrofolate: a folate antimetabolite inhibitory to de novo purine synthesis. J Natl Cancer Inst 1993; 85:1154–1159.

    Article  PubMed  CAS  Google Scholar 

  2. Habeck LL, Leitner TA, Shackelford KA, Gossett LS, Schultz RM, Andis SL, Shih C, Grindey GB, Mendelsohn LG. A novel class of monoglutamated antifolates exhibits tight-binding inhibition of human glycinamide ribonucleotide formyltransferase and potent activity against solid tumors. Cancer Res 1994; 54:1021–1026.

    PubMed  CAS  Google Scholar 

  3. McGuire JJ, Bertino JR. Enzymatic synthesis and function of folylpolyglutamates. Mol Cell Biochem 1981; 39:19—48.

    Article  Google Scholar 

  4. Morrison JF. Kinetics of reversible inhibition of enzyme catalyzed reactions by tight-binding inhibitors. Biochem Biophys Acta 1969; 185:269—286.

    Article  PubMed  CAS  Google Scholar 

  5. Habeck LL, Moran RG, Shih C, Gossett LS, Leitner TA, Schultz RM, Andis S, Mendelsohn LG. Substrate specificity of mammalian folylpolyglutamate synthetase for 5,10-Dideazatetrahydrofolate and related analogues. Mol Pharmacol 1995; 48:326—333.

    PubMed  CAS  Google Scholar 

  6. McGuire JJ, Hsieh P, Coward JK, Bertino JR. Enzymatic synthesis of folylpolyglutamates. JBiol Chem 1980; 255:5776–5788.

    CAS  Google Scholar 

  7. Habeck LL, Chay SH, Pohland RC, Worzalla JF, Shih C, Mendelsohn LG. Whole-body disposition and polyglutamate distribution of the GAR formyltransferase inhibitors LY309887 and lometrexol in mice: effect of low folate diet. Cancer Chemotherapy Pharmacol 1998; 41:201—209.

    Article  CAS  Google Scholar 

  8. Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Cancer Res 1994; 73:2432–2434.

    CAS  Google Scholar 

  9. Wang X, Shen F, Freisheim JH, Gentry LE, Ratnam M. Differential stereospecificities and affinities of folate receptor isoforms for folate compounds and antifolates. Biochem Pharmacol 1992; 44:188–1901.

    Article  Google Scholar 

  10. Pohland RC, Alati T, Lantz RJ, Grindey GB. Whole body autoradiographic disposition and plasma pharmacokinetics of 5, 10 dideazatetrahydrofolic acid in mice fed folic acid deficient or regular diets. J Pharm Sci 1994; 83:1396.

    Article  PubMed  CAS  Google Scholar 

  11. Taber LD, O’Brien P, Bowsher RR, Sportsman JR. Competitive particle concentration fluorescence immunoassay for measuring 5,10-dideazatetrahydrofolic acid (lometrexol) in serum. Clin Chem 1991; 37:254–260.

    PubMed  CAS  Google Scholar 

  12. Tonkinson JL, Marder P, Andis SL, Schultz RM, Gossett LS, Shih C, Mendelsohn LG. Cell cycle effects of antifolate antimetabolites: implications for cytotoxicity and cytostasis. Cancer Chemotherapy Pharmacol 1997; 39:521–530.

    Article  CAS  Google Scholar 

  13. Chen VJ, Bewley JR, Andis SL, Schultz RM, Iversen PW, Shih C, Mendelsohn LG, Seitz DE, Tonkinson JL. Preclinical cellular pharmacology of LY231514: a comparison with methotrexate, LY309887 and raltitrexed for their effects on intracellular folate and nucleoside triphosphate pools in CCRF-CEM cells. Br J Cancer 1988; 77,S53:27–34.

    Google Scholar 

  14. Schmitz JC, Grindey GB, Schultz RM, Priest DG. Impact of dietary folic acid on reduced folates in mouse plasma and tissues. Relationship to dideazatetrahydrofolate sensitivity. Biochem Pharmacol 1994; 48:319–325.

    Article  PubMed  CAS  Google Scholar 

  15. Gates SB, Mendelsohn LG, Shackelford KA, Habeck LL, Kursar JD, Rutherford PG, et al. Characterization of folate receptor from normal and neoplastic tissue: influence of dietary folate on folate receptor expression. Clin Cancer Res 1996; 2:1135–1141.

    PubMed  CAS  Google Scholar 

  16. Gates SB, Worzalla JF, Shih C, Grindey GB, Mendelsohn LG. Dietary folate and folypolyglutamate synthetase activity in normal and neoplastic murine tissues and human tumor xenografts. Biochem Pharmacol 1996; 52:1477–1479.

    Article  PubMed  CAS  Google Scholar 

  17. Mendelsohn LG, Gates SB, Habeck LL, Shackelford KA, Worzalla J, Shih C, Grindey GB. The role of dietary folate in modulation of folate receptor expression, folylpolyglutamate synthetase expression and the efficacy and toxicity of lometrexol. Advances Enzyme Regul 1996; 36:365–381.

    Article  CAS  Google Scholar 

  18. Magnus E. Folate activity in serum and red cells of patients with cancer. Cancer Res 1967; 27:490—497.

    PubMed  CAS  Google Scholar 

  19. Hoogstraten B, Baker H, Gilbert HS. Serum folate and serum vitamin B12 in patients with malignant hematologic diseases. Cancer Res 1965; 25:1933—1938.

    PubMed  CAS  Google Scholar 

  20. Einhorn J, Reizenstein P. Metabolic studies on folic acid in malignancy. Cancer Res 1966; 26:310–313.

    Google Scholar 

  21. Rao PBR, Lagerlof BJ, Einhorn J, Reizenstein PG. Folic acid activity in leukemia and cancer. Cancer Res 1965; 25:221–224.

    PubMed  CAS  Google Scholar 

  22. Saleh AM, Pheasant AE, Blair JA, Allan RN, Walters J. Folate metabolism in man: the effect of malignant disease. Br J Cancer 1982; 46:346–353.

    Article  PubMed  CAS  Google Scholar 

  23. Allen RH, Stabler SP, Savage DG, et al. Metabolic abnormalities in cobalamin (vitamin B-l2) and folate deficiency. FASEB J 1994; 71:344–353.

    Google Scholar 

  24. Farber S, Diamond LK, Mercer RD, Sylvester RF, Wolff JA. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroylglutamic acid (aminopterin). N Engl J Med 1948; 238:787–793.

    Article  PubMed  CAS  Google Scholar 

  25. Venditti JM, Kline I, Tyrer DD, Goldin A. 1,3 bis (22-chloroethyl)-1-nitrosourea (NSC-400009962) and methotrexate (NSC-740) as combination therapty for advanced mouse leukemia L1210. Cancer Chem Reports 1965; 48:5—9.

    Google Scholar 

  26. Cornell GN, Cahow CE, Frey C, McScherry C, Beal JM. Clinical experience with 5-fluorouracil (NSC19893) in the treatment of malignant disease. Cancer Chem Biol Response Modif 1960; 9:23—30.

    CAS  Google Scholar 

  27. Calvert AH, Alison DL, Harland SJ, Robinson BA, Jackman AL, Jones TR, et al. A phase I evaluation of the quinazoline antifolate thymidylate synthase inhibitor, N10-propargyl-5,8-dideazafolic acid, CB3717. J Clin Onc 1986; 4:1245–1252.

    CAS  Google Scholar 

  28. Bassendine MF, Curtin NJ, Loose H, Harris AL, James OFW. Induction of remission in hepatocellular carcinoma with a new thymidylate synthase inhibitor, CB3717. J Hepatology 1987; 4:349–356.

    Article  CAS  Google Scholar 

  29. Bajetta E, Carnaghi C, Somma L, Stampino CG. A new oral fluoropyrimidine in patients with advanced neoplastic disease. Tumori 1996; 82:450—452.

    PubMed  CAS  Google Scholar 

  30. Kimura K, Suga S, Shimaji T, Kitamura M, Kubo K, Suyuski Y, Isobe K. Clinical basis of chemotherapy for gastric cancer with uracil and 1–2’-tetra hydrofuryl)-5-fluoro uracil. Gastroeuterologia Japonica 1980; 15:324–329.

    CAS  Google Scholar 

  31. Shih C, Chen VJ, Gossett LS, Gatess SB, MacKellar WC, Habeck LL, Shackelford KA, Mendelsohn LG, Soose DJ, Patel VF, Andis SL, Bewley JR, Rayl EA, Moroson BA, Beardsley GP, Kohler W, Ratnam M, Schultz R. LY231514, a pyrrolo 2,3-d pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res 1997; 57:1116–1123.

    PubMed  CAS  Google Scholar 

  32. Rinaldi D, Burris H, Dorr F, Eckardt J, Fields S, Langley C, et al. A phase I evaluation of LY231514 administered every 21 days, utilizing the modified continual reassessment method for dose escalation (Meeting abstract). Proc Am Soc Clin Oncol 1995; 14(31 Meet):474–A1539.

    Google Scholar 

  33. Cripps MD, Burnell M, Jolivet J, Lofters W, Fisher B, Panasci, L, et al. Phase II study of a multi-targed antifolate (LY231514) (MTA) as first-line therapy in patients with locally advanced or metastatic colorectal cancer (MCC). Proc Am Soc Clin Oncol 1997; 16(33 Meet.):267a.

    Google Scholar 

  34. Taylor EC, Harrington PJ, Fletcher SR, Beardsley GP, Moran RG. Synthesis of the antileukaemic agents 5,10-dideazaaminopterin and 5,10-dideaza-5,6,7,8-tetrahydroaminopterin. J Med Chem 1985; 28:914–921.

    Article  PubMed  CAS  Google Scholar 

  35. Beardsley GP, Moroson GA, Taylor EC, Moran RG. A new folate antimetabolite, 5,10 dideaza-5,6,7,8tetrahydrofolate is a potent inhibitor of de novo purine synthesis. J Biol Chem 1989; 264:328–333.

    PubMed  CAS  Google Scholar 

  36. Jansen G, Westerhof GR, Kathmann I, Rijksen G, Schornagel JH. Growth inhibitory effects of 5,10 dideazatetrahydrofolic acid on murine variant L1210 and human CCRF-CEM leukemia cells with different membrane transport characteristics for (anti) folate compounds. Cancer Chemother Pharmacol 1991;28:115–117.

    Article  PubMed  CAS  Google Scholar 

  37. Shih C, Grindey GB, Houghton PJ, Houghton JA. In vivo antitumor activity of 5,10 Dideazatetrahydrofolic acid (DDATHF) and its diastereomeric isomers. Proc Amer Assoc Cancer Res 1988; 29:293.

    Google Scholar 

  38. Alati T, Worzalla J, Shih J, Bewley JR, Lewis SL, Moran R, Grindey G. Augmentation of the therapeutic activity of lometrexol [(6-R) 5,10-dideazatetrahydrofolic acid by oral folic acid. Cancer Res 1996; 56:2331–2335.

    PubMed  CAS  Google Scholar 

  39. Nelson R, Butler F, Dugan W, et al. Phase I clinical trial of LY264618 (Dideazatetrahydrofolic acid: DDATHF). Proc ASCO 1990; 9:76.

    Google Scholar 

  40. Muggia F, Martin T, Ray M, Leichman CG, Grunberg S, Gill I, Moran R, Dyke R, Grindey G. Phase I study of 5, 10 dideazatetrahydrofolate (LY264618, DDATHF-B). Proc ASCO 1990; 9:285.

    Google Scholar 

  41. Young CW, Currie VE, Muindi JF, Saltz LB, Pisters KMW, Esposito AJ, Dyke RW. Phase I study of lometrexol (LY264618 or LTX) improved clinical tolerance with oral folic acid. Proc NCI EORTC 1992.

    Google Scholar 

  42. Cole JT, Gralla RJ, Kardinal CG, NP Rivera. Lometrexol (DDATHF): phase I weekly trial of a weekly schedule of this new antifolate. Proc Am Assoc Cancer Res 1992; 33:2468.

    Google Scholar 

  43. Laohavinij S, Wedge SR, Lind MJ, Bailey N, Humphreys, Proctor M, Chapman F, Simmons D, Oakley A, Robson L, Gumbrell, Taylor GA, Thomas HD, Boddy A, Newell DR, Calvert AH. A phase I study of the antipurine antifolate lometrexol (DDATHF). Invest New Drugs 1996; 14:325–335.

    Article  PubMed  CAS  Google Scholar 

  44. Roberts JD, Poplin EA, Mitchell RB, Tombes MB, Kyle B, Moran R. Phase I study of weekly IV lometrexol with continuous folic acid supplementation. Proc ASCO 1996; 15:488.

    Google Scholar 

  45. Muggia FM, Synold TW, Newman EM, Jeffers S, Lichman LP, Doroshow JH, et al. Failure of pretreatment with intravenous folic acid to alter the comulative hematologic toxicology of lometrexol. J Natl Cancer Inst 1996; 88:495–496.

    Article  Google Scholar 

  46. Sessa C, de Jong M, D’Incalci M, Hatty S, Pagani O, Cavalli F. Phase I study of the antipurine antifolate lometrexol (DDATHF) with folinic acid rescue. Clin Cancer Res 1996; 2:1123.

    PubMed  CAS  Google Scholar 

  47. Grindey GB, Alati T, Shih C. Reversal of the toxicity but not the antitumor activity of lometrexol by folic acid. Proc Am Assoc Cancer Res 1991; 32:1921.

    Google Scholar 

  48. Grindey GB, Alati T, Lantz R, Pohland R, Shih C. Role of dietary folic acid in blocking the toxicity but not the antitumor activity of lometrexol (DDATHF). Proc NCI EORTC 1992.

    Google Scholar 

  49. Young CW, Currie V, Balter L, Trochanowski B, Eton O, Dyke R. Phase I and clinical pharmacologic study of LY264618, 5,10-dideazatetrahydrofolate. Proc Am Assoc Cancer Res 1990; 31:177.

    Google Scholar 

  50. Wedge SR, Laohavinij S, Taylor GA, Boddy A, Calvert AH, Newell DR. Clinical pharmacokinetics of the antipurine antifolate (6R) -5,10dideazatetrahydrofolic acid (lometrexol) administered with an oral folic acid supplement. Clin Cancer Res 1995; 1:1479–1486.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mendelsohn, L.G., Worzalla, J.F., Walling, J.M. (1999). Preclinical and Clinical Evaluation of the Glycinamide Ribonucleotide Formyltransferase Inhibitors Lometrexol and LY309887. In: Jackman, A.L. (eds) Antifolate Drugs in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-725-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-725-3_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4521-4

  • Online ISBN: 978-1-59259-725-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics