Skip to main content

Bcl-2 Family Proteins

Relative Importance as Determinants of Chemoresistance in Cancer

  • Chapter
Apoptosis and Cancer Chemotherapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Bcl-2 family proteins serve as critical regulators of pathways involved in apoptosis, acting to either inhibit or promote cell death. Because chemotherapeutic drugs typically exert their cytotoxic actions by inducing apoptosis, the ultimate efficacy of most anticancer drugs can be heavily influenced by the relative levels and state of activation of members of the Bcl-2 family. But how important are Bcl-2 family proteins in the overall complex picture of chemoresponses in cancer? Taking into consideration that such knowledge is far from complete, this chapter attempts to critically examine this question. It presents a discussion of some of the experimental and clinical observations that provide insights into the complexities of chemotherapeutic drug mechanisms and the role of Bcl-2 family proteins as modulators of tumor cell susceptibility to apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol 1994; 124: 1–6.

    Article  PubMed  CAS  Google Scholar 

  2. Zamzami N, et al. Subcellular and submitochondrial mode of action of Bc1–2like proteins. Oncogene 1998; 16: 2265–2282.

    Article  PubMed  CAS  Google Scholar 

  3. Vaux DL, Weissman IL, Kim SK. Prevention of programmed cell death in Caenorhabditis elegans by human bd-2. Science 1992; 258: 1955–1957.

    Article  PubMed  CAS  Google Scholar 

  4. Hengartner MO., Horvitz HR. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammlian proto-oncogene bd-2. Cell 1994; 76: 665–676.

    Article  PubMed  CAS  Google Scholar 

  5. Kaufmann SH. Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, campthothecin, and other cytotoxic anticancer drugs: a cautionary note. Cancer Res 1989; 49: 5870–5878.

    PubMed  CAS  Google Scholar 

  6. Eastman A. Apoptosis: a product of programmed and unprogrammed cell death. Toxicol Appl Pharmacol, 1993; 121: 160–164.

    Article  PubMed  CAS  Google Scholar 

  7. Miyashita T, Reed JC. bcl-2 gene transfer increases relative resistance of 549.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res 1992; 52: 5407–5411.

    PubMed  CAS  Google Scholar 

  8. Miyashita T, Reed JC. Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 1993; 81: 151–157.

    PubMed  CAS  Google Scholar 

  9. Fisher TC, et al. Bcl-2 modulation of apoptosis induced by anticancer drugs: resistance to thymidylate stress is independent of classical resistance pathways. Cancer Res 1993, 53: 3321–3326.

    PubMed  CAS  Google Scholar 

  10. Kitada S, et al. Reversal of chemoresistance of lymphoma cells by antisensemediated reduction of bcl-2 gene expression. Antisense Res Dev 1994; 4: 71–79.

    PubMed  CAS  Google Scholar 

  11. Campos L, et al. Effects of Bcl-2 antisense oligodeoxynucleotides on in vitro proliferation and survival of normal marrow progenitors and leukemic cells. Blood 1994; 84: 595–600.

    PubMed  CAS  Google Scholar 

  12. Bullock G, et al. Intracellular metabolism of Ara-C and resulting DNA fragmentation and apoptosis of human AML HL-60 cells possessing disparate levels of Bcl-2 protein. Leukemia 1996; 10: 1731–1740.

    PubMed  CAS  Google Scholar 

  13. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of human BAX gene. Cell 1995; 80: 293–299.

    Article  PubMed  CAS  Google Scholar 

  14. Bargou RC, et al. Overexpression of the death-promoting gene bax-a which is downregulated in breast cancer restores sensitivity to different apoptotic stimuli and reduces tumor growth in SCID mice. J Clin Invest 1996; 97: 2651–2659.

    Article  PubMed  CAS  Google Scholar 

  15. Perez GI, et al. Apoptosis-associated signaling pathways are required for chemotherapy-mediated female germ cell destruction. Nature Med 1997; 3: 1228–1232.

    Article  PubMed  CAS  Google Scholar 

  16. Reed JC. Bcl-2: Prevention of apoptosis as a mechanism of drug resistance. Hematol/Oncol Clin N Am 1995; 9: 451–474.

    CAS  Google Scholar 

  17. Reed JC. Regulation of apoptosis by Bcl-2 family proteins and its role in cancer and chemoresistance. Curr Opin Oncol 1995; 7: 541–546.

    Article  PubMed  CAS  Google Scholar 

  18. Strasser A, Huang DCS, Vaux DL: Role of the Bcl-2/ced-9 gene family in cancer and general implications of defects in cell death control for tumourigenesis and resistance to chemotherapy. Biochim Biophys Acta 1997; 1333: F151–F178.

    PubMed  CAS  Google Scholar 

  19. Reed J. Chronic lymphocytic leukemia: a disease of disregulated programmed cell death. Clin Immunol Newslet 1998; 17: 125–140.

    Article  Google Scholar 

  20. Silvestrini R, et al. bcl-2 protein: a prognostic indicator strongly related to p53 protein in lymph node-negative breast cancer patients. J Natl Cancer Inst 1994; 86: 499–504.

    Google Scholar 

  21. Manne U, et al. Prognostic significance of Bcl-2 expression and p53 nuclear accumulation in colorectal adenocarcinoma. Int J Cancer 1997; 74: 346–358.

    Article  PubMed  CAS  Google Scholar 

  22. Pezzella F, et al. bcl-2 protein in non-small-cell lung carcinoma. N Engl J Med 1993; 329: 690–694.

    Google Scholar 

  23. Minn Ai, Boise LH, Thompson CB. Expression of Bcl-xL and loss of p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage. Genes Devel 1996; 10: 2621–2631.

    Article  Google Scholar 

  24. Brunet CL, et al. Commitment to cell death measured by loss of clonogenicity is separable from the appearance of apoptotic markers. Cell Death Diff 1998; 5: 107–115.

    Article  CAS  Google Scholar 

  25. Yin D, Schimke R. Bcl-2 expression delays drug-induced apoptosis but does not increase clonogenic survival after drug treatment in HeLa cells. Cancer Res 1996; 55: 4922–4928.

    Google Scholar 

  26. Walker A et al. Germinal center-derived signals act with Bcl-2 to decrease apoptosis and increase clonogenicity of drug-treated human B lymphoma cells. Cancer Res 1997; 57: 1939–1945.

    PubMed  CAS  Google Scholar 

  27. McCarthy NJ, et al. J Cell Biol 1997; 136: 215–227.

    Article  PubMed  CAS  Google Scholar 

  28. Ohta T, et al. Requirement of the caspase-3/CPP32 protease cascade for apoptotic death following cytokine deprivation in hemotopoietic cells. J Biol Chem 1997; 272: 23,111–23,116.

    Google Scholar 

  29. Amarante-Mendes G, et al. Anti-apoptotic oncogenes prevent caspase-dependent and independent commitment for cell death. Cell Death Diff 1998; 5: 298–306.

    Article  CAS  Google Scholar 

  30. Hirsch T, et al. The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene 1997; 15: 1573–1581.

    Article  PubMed  CAS  Google Scholar 

  31. Reed JC. Cytochrome C: Can’t live with it; Can’t live without it. Cell 1997; 91: 559–562.

    Article  PubMed  CAS  Google Scholar 

  32. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281: 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  33. Reed JC. Double identity for proteins of the Bc1–2 family. Nature 1997; 387: 773–776.

    Article  PubMed  CAS  Google Scholar 

  34. Xiang J, Chao DT, Korsmeyer SJ. BAX-induced cell death may not require interleukin lb-converting enzyme-like proteases. Proc Natl Acad Sci USA 1996; 93: 14, 559–14, 563.

    Google Scholar 

  35. Jurgensmeier JM, et al. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 1998; 5: 4997–5002.

    Article  Google Scholar 

  36. Vaux DL, Strasser A. Molecular biology of apoptosis. Proc Natl Acad Sci USA 1996; 93: 2239–2244.

    Article  PubMed  CAS  Google Scholar 

  37. Wallach D, et al. Cell death induction by receptors of the TNF family: towards a molecular understanding. FEBS Lett 1997; 410: 96–106.

    Article  PubMed  CAS  Google Scholar 

  38. Yuan J: Transducing signals of life and death. Cur Opin Cell Biol 1997; 9: 247–251.

    Article  CAS  Google Scholar 

  39. Friesen C, et al. Involvement of the CD95 (APO-1/Fas) receptor/ligand system in drug induced apoptosis in leukemia cells. Nature Med 1996; 2: 574–577.

    Article  PubMed  CAS  Google Scholar 

  40. Muller M, et al. Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest 1997; 99: 403–413.

    Article  PubMed  CAS  Google Scholar 

  41. Houghton JA, Harwood FG, and Tillman DM. Thymineless death in colon carcinoma cells is mediated via fas signaling. Proc Natl Acad Sci USA 1997; 94: 8144–8149.

    Article  PubMed  CAS  Google Scholar 

  42. Kastan M. On the TRAIL from p53 to apoptosis? Nature Genet 1997; 17: 130–131.

    Article  PubMed  CAS  Google Scholar 

  43. Scaffidi C, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998; 17: 1675–1687.

    Article  PubMed  CAS  Google Scholar 

  44. Kuwana T, et al. Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J Biol Chem 1998; 273: 16589–16594.

    Article  PubMed  CAS  Google Scholar 

  45. Li P, et al. Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479–489.

    Article  PubMed  CAS  Google Scholar 

  46. Schendel S, Montal M and Reed JC. Bcl-2 family proteins as ion-channels. Cell Death Differ 1998; 5: 372–380.

    Article  PubMed  CAS  Google Scholar 

  47. Borner C. Diminished cell proliferation associated with the death-protective activity of Bcl-2. J Biol Chem 1996; 271: 12695–12698.

    PubMed  CAS  Google Scholar 

  48. Huang DCS, et al. Anti-apoptosis function of Bc1–2 can be genetically separated from its inhibitory effect on cell cycle entry. EMBO J 1997; 16: 4628–4638.

    Article  PubMed  CAS  Google Scholar 

  49. Reed JC and Tanaka ST. Somatic point mutations in translocated bcl-2 alleles of non-Hodgkin’s lymphomas and lymphocytic leukemias: implications for mechanisms of tumor progression. Leuk Lymphoma 1993; 10: 157–163.

    Article  PubMed  CAS  Google Scholar 

  50. Reed JC. Balancing cell life and death: Box, apoptosis, and breast cancer. J Clin Invest 1996; 97 (11): 2403–2404.

    Article  Google Scholar 

  51. Hermine O, et al. Prognostic significance of Bd-2 protein expression in aggressive non-Hodgkin’s Lymphoma. Blood 1996; 87: 265–272.

    PubMed  CAS  Google Scholar 

  52. Hill ME, et al. Prognostic significance of BCL-2 expression and bc1–2 major breakpoint region rearrangement in diffuse large cell non-Hodgkin’s lymphoma: a british national lymphoma investigation study. Blood 1996; 88: 1046–1051.

    PubMed  CAS  Google Scholar 

  53. Gascoyne RD, et al. Prognostic significance of Bd-2 protein expression and Bc1–2 gene rearrangement in diffuse aggressive non-Hodgkin’s lymphoma. Blood 1997; 90: 244–251.

    PubMed  CAS  Google Scholar 

  54. Harigai M, et al. A cis-acting element in the BCL-2 gene controls expression through translational mechanisms. Oncogene 1996; 12: 1369–1374.

    PubMed  CAS  Google Scholar 

  55. Cheng EH-Y, et al. Conversion of Bc1–2 to a bax-like death effector by caspases. Science 1997; 278: 1966–1968.

    Article  PubMed  CAS  Google Scholar 

  56. Ito T, et al. Bc1–2 phosphorylation required for anti-apoptosis function. J Biol Chem 1997; 272: 11671–11673.

    Article  PubMed  CAS  Google Scholar 

  57. Haldar S, Jena N, Croce CM. Inactivation of Bc1–2 by phosphorylation. Proc Natl Acad Sci USA 1995; 92: 4507–4511.

    Article  PubMed  CAS  Google Scholar 

  58. Gajewski TF, Thompson CB. Apoptosis meets signal transduction: elimination of a BAD influence. Cell 1996; 87: 589–592.

    Article  PubMed  CAS  Google Scholar 

  59. Wolter KG, et al. Movement of bax from the cytosol to mitochondria during apoptosis. J Cell Biol 1997; 139: 1281–1292.

    Article  PubMed  CAS  Google Scholar 

  60. Oltvai ZN, Korsmeyer SJ. Checkpoints of dueling dimers foil death wishes. Cell 1994; 79: 189–192.

    Article  PubMed  CAS  Google Scholar 

  61. Cheng EH-Y, et al. Bax-independent inhibition of apoptosis by Bcl-XL. Nature 1996; 379: 554–556.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reed, J.C. (1999). Bcl-2 Family Proteins. In: Hickman, J.A., Dive, C. (eds) Apoptosis and Cancer Chemotherapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-720-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-720-8_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-165-3

  • Online ISBN: 978-1-59259-720-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics