Skip to main content

Investigation of Intact Subunit Polypeptide Composition of the 20S Proteasome Complex from Rat Liver Using Mass Spectrometry

  • Chapter
Mass Spectrometry in Biology & Medicine

Abstract

Proteasomes are multicatalytic proteolytic complexes found in almost all living cells that are responsible for protein degradation in both the cytosol and nucleus. They are involved in many important biological processes, including the removal of abnormal, misfolded or improperly assembled proteins, stress response, cell differentiation, metabolic adaption, and cellular immune response [1, 2]. The 20S proteasome is the catalytic core of the larger, ATP-dependent 26S complex that is responsible for degradation of ubiquitin-conjugated proteins. With a molecular weight of approximately 750 kDa, the 20S proteasome complex has a cylindrical structure consisting of four stacked rings, each of which is organized from seven α and β subunits, assembled in the order αββα(1–4). This overall structure is conserved from archebacteria to eukaryotes, which has been shown clearly in the crystal structures ofthe 20S proteasomes from Thermoplasma acidophilum and Saccharomyces cerevisiae [5,6]. The proteasome complex from archeabacterium Thermoplasma acidophilum contains only two different but related subunits, α and β, while it is known that the eukaryotic proteasome complex is composed of at least 14 subunits with molecular masses of 21 to 34 kDa, and different charges (pI 3–10). These subunits can be divided into α- and β-type based on their polypeptide sequence homology with the T. acidophilum α- or β-subunit. The primary structure of these subunits shows high inter-subunit homology within species, and high evolutionary conservation in various eukaroytes, suggesting that they constitute a multi-gene family and may have originated from a common ancestral gene [4].

The dendrogram of proteasome subunits into α- and /β-type subunits. Tα and Tβ represent Thermoplasma acidophilum α and β subunits. β-type subunits can be divided into two subgroups as “active” and “inactive”, which refer to the presence or absence of Thr-1 as the N-terminal nucleophile, which is believed to be essential for the peptidase activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Monaco and D. Nandi, Annu. Rev. Genetics 1995, 29, 729–754.

    Article  CAS  Google Scholar 

  2. O. Coux, K. Tanaka and A. L. Goldberg, Annu. Rev. Biochem. 1996, 65, 801–47.

    Article  Google Scholar 

  3. W. L. H. Gerards, W. W. de John, W. Boelens and H. Bloemendal, Cell. Mol. Life Sci. 1998, 54, 253–262.

    Article  CAS  Google Scholar 

  4. K. Tanaka, Biochem. Biophys. Res. Commun. 1998, 247, 537–541.

    Article  CAS  Google Scholar 

  5. J. Lowe, D. Stock, B. Jap, P. Zwickl, W. Baumeister and R. Huber, Science 1995, 268, 533–539.

    Article  CAS  Google Scholar 

  6. M. Groll, L. Doitzel, J. Lowe, D. Stock, M. Bochtler, H. Bartunik and R. Huber, Nature 1997, 386, 463–471.

    Article  CAS  Google Scholar 

  7. M. Kasahara, M. Hayashi, K. Tanaka, et al. Proc. Natl. Acad. Sci. USA 1996, 92, 5072–5076.

    Google Scholar 

  8. D. Nandi, H. Jiang and J. J. Monaco, J. Immunol. 1996, 156, 2361–2364.

    CAS  Google Scholar 

  9. H. Hisamatsu, N. Shimbara, Y. Saito, P. Kristensen, K. B. Hendil, T. Fujiwara, E. Takahashi, N. Tanahashi, T. Tamura, A. Ichihara and K. Tanaka, J. Exp. Med. 1996, 183, 1807–1816.

    Article  CAS  Google Scholar 

  10. K. Tanaka and M. Kasahara, Immuno. Rev.,in press.

    Google Scholar 

  11. K. Tanaka, Mol. Biol. Reports 1995, 21, 21–26.

    Article  CAS  Google Scholar 

  12. P. Kristensen, H. Johnsen, W. Uerkvitz, K. Tanaka and K. B. Hendil, Biochem. Biophys. Res. Commun. 1994, 205, 1785–1789.

    Article  CAS  Google Scholar 

  13. A. J. Rivett, Biochem. J. 1993, 291, 1–10.

    Google Scholar 

  14. C. Haass and P. M. Kloetzel, Exp. Cell Res. 1989, 180, 243–252.

    Article  CAS  Google Scholar 

  15. A. J. Rivett and S. T. Sweeney, Biochem. J. 1991, 278, 171–177.

    CAS  Google Scholar 

  16. L. Huang, W. To, C. C. Wang and A. L. Burlingame, J. Biol. Chem.,submitted.

    Google Scholar 

  17. G. Schmidtke, R. Kraft, S. Kostka, P. Henklein, C. Frommel, J. Lowe, R. Huber, P. M. Kloetzel and M. Schmid, EMBO J. 1996, 15, 6887–6898.

    CAS  Google Scholar 

  18. M. L. Vestal, P. Juhasz and S. A. Martin, Rapid Commun. Mass Spectrom. 1995, 9, 1044–1050.

    Article  CAS  Google Scholar 

  19. K. Clauser, S. C. Hall, D. M. Smith, J. W. Webb, L. E. Andrews, H. M. Tran, L. B. Epstein and A. L. Burlingame, Proc. Natl. Acad. Sci. USA 1995, 92, 5072–5076.

    Article  CAS  Google Scholar 

  20. A. Shevchenko, M. Wilm, O. Vorm and M. Mann, M. Anal. Chem. 1996, 68, 850–858.

    Article  CAS  Google Scholar 

  21. A. Schevchenko, O. N. Jensen, et al. Proc. Natl. Acad. Sci. USA 1996, 93, 14440–14445.

    Article  Google Scholar 

  22. M. Wilm, A. Shevchenko, et al. Nature 1996, 379, 466–469.

    Article  CAS  Google Scholar 

  23. Y. Qiu, L. Z. Benet and A. L. Burlingame, J. Biol. Chem. 1998, 273, 17940–17953.

    Article  CAS  Google Scholar 

  24. K. Clauser, P. Baker and A. L. Burlingame, Anal. Chem.,in press.

    Google Scholar 

  25. O. N. Jensen, A. Podtelejnikov and M. Mann, Rapid Commun. Mass Spectrom. 1996, 10, 1371–1378.

    Article  CAS  Google Scholar 

  26. K. R. Clauser, P. Baker and A. L. Burlingame, Proc. 44th ASMS Conference on Mass Spectrometry and Allied Topics, Portland, OR, 1996, p. 365.

    Google Scholar 

  27. L. Huang, W. To, C. C. Wang and A. L. Burlingame, Proc. 45th ASMS Conference on Mass Spectrometry and Allied Topics, Palm Springs, CA, 1997, p. 283.

    Google Scholar 

  28. A. Shevchenko, I. Chernushevich, W. Ens, K. G. Standing, B. Thomson, M. Wilm and M. Mann, Rapid Commun. Mass Spectrom. 1997,11,10151024.

    Google Scholar 

  29. L. Huang, R. Whittal, Y. Yao, C. C. Wang, A. L. Burlingame, in preparation.

    Google Scholar 

  30. G. G. Mason, K. B. Hendil and A. J. Rivett, Eur. J. Biochem. 1996, 238, 453–462.

    Article  CAS  Google Scholar 

  31. A. Wehren, H. E. Meyer, A. Sobek, P-M. Kloetzel and B. Dahlmann, Biol. Chem. 1996, 377, 497–503.

    CAS  Google Scholar 

  32. R. Stohwasser, S. Standera, I. Peters and M. Groettup, Eur. J. Immunol. 1997, 27, 1182–1187.

    Article  CAS  Google Scholar 

  33. K. Akiyama, S. Kagawa, T. Tamura, N. Shimbara, M. Takashina, P. Kristensen, K. B. Hendil, K. Tanaka and A. Ichihara, FEBS Lett. 1994, 343, 85–88.

    Article  CAS  Google Scholar 

  34. M. Groettrup, T. Ruppert, L. Kuehn, M. Seeger, S. Standera, U. Koszinowski and P. M. Kloetzel, J. Biol. Chem. 1995, 270, 23808–23815.

    Article  CAS  Google Scholar 

  35. A. J. Rivett, Curr. Opin. Immunol. 1998, 10, 110–114.

    Article  Google Scholar 

  36. R. Ni, Y. Tornita, F. Tokunaga, T. J. Liang, C. Noda, A. Ichihara and K. Tanaka, Biochim. Biophys. Acta 1995, 1264, 45–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huang, L., Wang, C.C., Burlingame, A.L. (2000). Investigation of Intact Subunit Polypeptide Composition of the 20S Proteasome Complex from Rat Liver Using Mass Spectrometry. In: Burlingame, A.L., Carr, S.A., Baldwin, M.A. (eds) Mass Spectrometry in Biology & Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-719-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-719-2_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9829-5

  • Online ISBN: 978-1-59259-719-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics