Skip to main content

Immunoconjugates

  • Chapter
Cancer Therapeutics

Abstract

Successful anticancer drugs must exploit known or unknown, gross or ever so subtle, differences between normal and malignant cells. The development of immunotoxins is one of the first attempts to develop rationally anticancer drugs that are based on known cellular differences associated with cancer cells. Much immunological evidence had accumulated that transformed cells express tumor-specific antigens. However, it was difficult to generate heterosera with well-defined antitumor reactivity. The isolation in 1967 of an agglutinin from wheat germ that identified a tumor-specific determinant on neoplastic cell surfaces (1) marked the first time that a pure molecular species was available for targeting of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burger MM, Goldberg AR. Identification of a tumor specific determinant on neoplastic cell surfaces. Proc Nati Acad Sci USA 1967; 57: 359 - 366.

    Article  CAS  Google Scholar 

  2. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495 - 497.

    Article  PubMed  Google Scholar 

  3. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177 - 182.

    Article  PubMed  CAS  Google Scholar 

  4. Pastan I, Lovelace ET, Gallo MG, Rutherford AV, Magnani JL, Willingham MC. Characterization of monoclonal antibodies B1 and B3 that react with mucinous adenocarcinomas. Cancer Res 1991; 51: 3781 - 3787.

    PubMed  CAS  Google Scholar 

  5. Kwak LW, Campbell MJ, Czerwinski DK, Hart S, Miller RA, Levy R. Induction of immune response in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors. N Engl J Med 1992; 327: 1209 - 1215.

    Article  PubMed  CAS  Google Scholar 

  6. Grossbard ML, Press OW, Appelbaum FR, Bernstein ID, Nadler LM. Monoclonal antibody-based therapies of leukemia and lymphoma. Blood 1992; 80: 863 - 868.

    PubMed  CAS  Google Scholar 

  7. Boyer CM, Lidor Y, Lottich SC, Bast RC Jr. Antigenic cell surface markers in human solid tumors. Antibody, Immunoconjugates, Radiopharmaceuticals 1988; 1: 105 - 116.

    Google Scholar 

  8. Carroll AM, Greene MI. Tumor cell biology: tumor specific and associated antigens. In: Zalutsky MR, ed. Antibodies in Radiodiagnostics and Therapy. Boca Raton, FL: CRC. 1989: 13 - 43.

    Google Scholar 

  9. Hellstöm I, Garrigues HJ, Garrigues U, Hellström KE. Highly tumor-reactive internalizing mouse monoclonal antibodies to Ley-related cell surface antigens. Cancer Res 1990; 50: 2183 - 2190.

    Google Scholar 

  10. Winter G, Milstein C. Man-made antibodies. Nature 1991; 349: 293 - 299.

    Article  PubMed  CAS  Google Scholar 

  11. Moos WH, Green GD, Pavia MR. Recent advances in the generation of molecular diversity. In: Bristol JA, ed. Annual Reports in Medicinal Chemistry, vol. 28. San Diego, CA: Academic. 1993: 315 - 324.

    Google Scholar 

  12. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT. Chimeric human tumor antibody molecules: mouse antigen-binding domains with human constant region domains Proc Nati Acad Sci USA 1984; 81: 6851 - 6855.

    Article  CAS  Google Scholar 

  13. Reichman L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature 1988; 332: 323 - 327.

    Article  Google Scholar 

  14. Roguska MA, Pedersen JT, Keddy CA, Henry AH, Searle SJ, Lambert JM, Goldmacher VS, Blättler WA, Rees AR, Guild BC. Humanization of murine antibodies through variable domain resurfacing. Proc Nall Acad Sci USA 1994; 91: 969 - 973.

    Article  CAS  Google Scholar 

  15. Thornton JM, Edwards MS, Taylor WR, Barlow DJ. Location of “continuous” antigenic determinants in the protruding regions of proteins. EMBO J 1986; 5: 409 - 413.

    PubMed  CAS  Google Scholar 

  16. Novatny J, Handschumacher M, Haber E, Bruccoleri RE, Carlson WB, Smith DW, Rose GD. Antigenic determinants in protein coincide with surface regions accessible to large probes (antibody domains). Proc Natl Acad Sci USA 1986; 83: 226 - 230.

    Article  Google Scholar 

  17. Maxon HR, Thomas SR, Hertzberg VS, Kereiakes JG, Chen IW, Sperling MI, Saenger EL. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med 1983; 309: 937 - 941.

    Article  PubMed  CAS  Google Scholar 

  18. Mello AM, Pauwels EKJ, Cleton FJ. Radioimmunotherapy: no news from the newcomer. J Cancer Res Clin Oncol 1994; 120: 121 - 130.

    Article  PubMed  CAS  Google Scholar 

  19. Simpkin DJ, Mackie TR. EGS4 Monte Carlo determination of the beta dose kernel in water. Med Phys 1990; 17: 179 - 186.

    Article  PubMed  CAS  Google Scholar 

  20. Fraker PJ, Speck JC. Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,5-tetrachloro-3a,6a-diphenyl-glycoluril. Biochem Biophys Res Commun 1978; 80: 849 - 857.

    Article  PubMed  CAS  Google Scholar 

  21. Ali SA, Warren SD, Richter KY, Badger CC, Eary JF, Press OW, Krohn KA, Bernstein ID, Nelp WB. Improving the tumor retention of radioiodinated antibody: aryl carbohydrate adducts. Cancer Res 1990; 50: 783s - 788s.

    PubMed  CAS  Google Scholar 

  22. Zalutsky MR, Narula AS. Radiohalogenation of a monoclonal antibody using an N-succinimidyl 2-(tri-n-butylstannyl) benzoate intermediate. Cancer Res 1988; 48: 1446 - 1450.

    PubMed  CAS  Google Scholar 

  23. Ram S, Buchsbaum DJ. Radioiodination of monoclonal antibodies D612 and 17-1A with 3-iodophenylisothiocyanate and their biodistribution in tumor-bearing nude mice. Cancer 1994; 73: 808 - 815.

    Article  PubMed  CAS  Google Scholar 

  24. Moi MK, DeNardo SJ, Meares CF. Stable bifunctional chelates of metals used in radiotherapy. Cancer Res 1990; 50: 789s - 793s.

    PubMed  CAS  Google Scholar 

  25. Kukis DL, Diril H, Grenier DP, DeNardo SJ, DeNardo GL, Salako QA, Meares CF. A comparative study of copper-67 radiolabeling and kinetic stabilities of antibody-macrocycle chelate conjugates. Cancer 1994; 73: 779 - 786.

    Article  PubMed  CAS  Google Scholar 

  26. DeNardo GL, Kroger LA, DeNardo SJ, Miers LA, Salako Q, Kukis DL, Fand I, Shen S, Renn O, Meares CF. Comparative toxicity studies of yttrium-90 MX-DTPA and 2-IT-BAD conjugated monoclonal antibody (BrE-3). Cancer 1994; 73: 1012 - 1022.

    Article  PubMed  CAS  Google Scholar 

  27. Rao DV, Howell RW. Time-dose-fractionation in radioimmunotherapy: implications for selecting radionuclides. JNucl Med 1993; 34: 1801 - 1810.

    CAS  Google Scholar 

  28. Smith A, Alberto R, Blaeuenstein P, Novak-Hofer I, Maecke HR, Schubiger PA. Preclinical evaluation of 67Cu-labeled intact and fragmented anti-colon carcinoma monoclonal antibody MAb35. Cancer Res 1993; 53: 5727 - 5733.

    PubMed  CAS  Google Scholar 

  29. Junghans RP, Dobbs D, Brechbiel MW, Mirzadeh S, Raubitschek AA, Gansow OA, Waldmann TA. Pharmacokinetics and bioactivity of 1,4,7,10-tetra-azacylododecane N,N,N,Ntetraacetic acid (DOTA)-bismuth-conjugated anti-Tac antibody for a-emitter (?2Bi) therapy. Cancer Res 1993; 53: 5683 - 5689.

    PubMed  CAS  Google Scholar 

  30. Larsen RH, Bruland OS, Hoff P, Alstad J, Rofstad EK. Analysis of the therapeutic gain in the treatment of human osteosarcoma microcolonies in vitro with 21’At-labelled monoclonal antibody. Br J Cancer 1994; 69: 1000 - 1005.

    Article  PubMed  CAS  Google Scholar 

  31. Goldenberg DM. New developments in monoclonal antibodies for cancer detection and therapy. CA Cancer J Clin 1994; 44: 43 - 64.

    Article  PubMed  CAS  Google Scholar 

  32. Kaminski MS, Zasadny KR, Francis IR, Milik AW, Ross CW, Moon SD, Crawford SM, Burgess JM, Petry NA, Butchko GM, Glenn SD, Wahl RL. Radioimmunotherapy of B-cell lymphoma with [131I]anti-B1 (anti-CD20) antibody. N Engl J Med 1993; 329: 459 - 465.

    Article  PubMed  CAS  Google Scholar 

  33. Czuczman MS, Straus DJ, Divgi CR, Graham M, Garin-Chesa P, Finn R, Myers J, Old LJ, Larson SM, Scheinberg DA. Phase I dose-escalation trial of iodine-131-labeled monoclonal antibody OKB7 in patients with non-Hodgkin’s lymphoma. J Clin Oncol 1993; 11: 2021 - 2029.

    PubMed  CAS  Google Scholar 

  34. Press OW, Eary JF, Appelbaum FR, Martin PJ, Badger CC, Nelp WB, Glenn S, Butchko G, Fisher D, Porter B, Matthews DC, Fisher LD, Bernstein ID. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med 1993; 329: 1219 - 1224.

    Article  PubMed  CAS  Google Scholar 

  35. Caron PC, Schwartz MA, Man Sung Co, Queen C, Finn RD, Graham MC, Divgi CR, Larson SM, Scheinberg DA. Murine and humanized constructs of monoclonal antibody M195 (antiCD33) for therapy of acute myelogenous leukemia. Cancer 1994; 73: 1049 - 1056.

    Article  PubMed  CAS  Google Scholar 

  36. Vriesendorp HM, Herpst JM, Germack MA, Klein JL, Leichner PK, Loudenslager DM, Order SE. Phase I-II studies of yttrium-labeled antiferritin treatment for end-stage Hodgkin’s disease including radiation therapy: oncology group 87-01. J Clin Oncol 1991; 9: 918 - 928.

    PubMed  CAS  Google Scholar 

  37. Vaughan ATM, Anderson P, Dykes PW, Chapman CE, Bradwell AR. Limitations to the killing of tumors using radiolabelled antibodies. Br J Radio! 1987; 60: 567 - 572.

    Article  CAS  Google Scholar 

  38. Murray J, Macey DJ, Kasi LP, Rieger P, Cunningham J, Bhadkamkar V, Zhang H-Z, Schlom J, Rosenblum MG, Podoloff DA. Phase II radioimmunotherapy trial with 131I-CC49 in colorectal cancer. Cancer 1994; 73: 1057 - 1066.

    Article  PubMed  CAS  Google Scholar 

  39. Welt S, Divgi CR, Kemeny N, Finn RD, Scott AM, Graham M, St Germain J, Richards EC, Larson SM, Oettgen HF, Old LJ. Phase I/II study of iodine 131-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol 1994; 12:1561-1571.

    Google Scholar 

  40. Meredith RF, Bueschen AJ, Khazaeli MB, Plott WE, Grizzle WE, Wheeler RH, Schlom J, Russell CD, Liu T, LoBuglio AF. Treatment of metastatic prostate carcinoma with radiolabeled antibody CC49. J Nucl Med 1994; 35: 1017 - 1022.

    PubMed  CAS  Google Scholar 

  41. Riva P, Arista A, Tison V, Sturiale C, Franceschi G, Spinelli A, Riva N, Casi M, Moscatelli G, Frattarelli M. Intralesional radioimmunotherapy of malignant gliomas. Cancer 1994; 73: 1076 - 1082.

    Article  PubMed  CAS  Google Scholar 

  42. Hird V, Maraveyas A, Snook D, Dhokia B, Soutter WP, Meares C, Stewart JSW, Mason P, Lambert HE, Epenetos AA. Adjacent therapy of ovarian cancer with radioactive monoclonal antibody. Br J Cancer 1993; 68: 403 - 406.

    Article  PubMed  CAS  Google Scholar 

  43. DeNardo SJ, Mirick GR, Kroger LA, O’Grady LF, Erickson KL, Yuan A, Lamborn KR, Hellström I, Hellström KE, DeNardo GL. The biological window for chimeric L6 radioimmunotherapy. Cancer 1994; 73: 1023 - 1032.

    Article  PubMed  CAS  Google Scholar 

  44. Applebaum FR, Matthews DC, Eary JF, Badger CC, Kellogg M, Press OW, Martin PJ, Fisher DR, Nelp WB, Thomas ED, Bernstein ID. The use of radiolabeled anti-CD33 antibody to aug-ment marrow irradiation prior to marrow transplantation for acute myelogenous leukemia. Transplantation 1992; 54: 829 - 833.

    Article  Google Scholar 

  45. O’Donoghue J. The impact of tumor cell proliferation in radioimmunotherapy. Cancer 1994; 73: 974 - 980.

    Article  PubMed  Google Scholar 

  46. Vaughan ATM, Bradwell AR, Dykes PW, Anderson P. Illusions of tumor killing using radio-labeled antibodies. Lancet 11986:1492,1493.

    Google Scholar 

  47. Endo Y. Mechanism of action of ricin and related toxins on the inactivation of eukaryotic ribosomes. In: Frankel AE, ed. Immunotoxins. Boston: Kluwer Academic Publishers. 1988: 75 - 89.

    Chapter  Google Scholar 

  48. Collier RJ. Structure-activity relationships in diphtheria toxin and pseudomonas exotoxin A. In: Frankel AE, ed. Immunotoxins. Boston: Kluwer Academic Publishers. 1988: 25 - 35.

    Chapter  Google Scholar 

  49. Olsnes S, Sandvig K. How protein toxins enter and kill cells. In: Frankel AE, ed. Immunotoxins. Boston: Kluwer Academic Publishers. 1988: 39 - 73.

    Chapter  Google Scholar 

  50. Newton DL, Wales R, Richardson PT, Walbridge S, Saxena SK, Ackerman EJ, Roberts LM, Lord MJ, Youle RJ. Cell surface and intracellular functions for ricin galactose binding. J Biol Chem 1992; 267:11, 917-11, 922.

    Google Scholar 

  51. Ogata M, Chaudhary VK, Pastan I, FitzGerald DJ. Processing of pseudomonas exotoxin by a cellular protease results in the generation of a 37,000-Da toxin fragment that is translocated to the cytosol. J Biol Chem 1990; 265:20, 678-20, 685.

    Google Scholar 

  52. Chaudhary VK, Jinno Y, FitzGerald D, Pastan I. Pseudomonas exotoxin contains a specific sequence at the carboxyl terminus that is required for cytotoxicity. Proc Natl Acad Sci USA 1990; 87: 308 - 312.

    Article  PubMed  CAS  Google Scholar 

  53. Barbieri L, Battelli MG, Stirpe F. Ribosome-inactivating proteins from plants. Biochim Biophys Acta 1993; 1154: 237 - 282.

    Article  PubMed  CAS  Google Scholar 

  54. Lambert JM, McIntyre G, Gauthier MN, Zullo D, Rao V, Steeves RM, Goldmacher VS, Blättler WA. The galactose-binding sites of the cytotoxic lectin ricin can be chemically blocked in high yield with reactive ligands prepared by chemical modification of glycopeptides containing triantennary N-linked oligosaccharides. Biochemistry 1991; 30: 3234 - 3247.

    Article  PubMed  CAS  Google Scholar 

  55. Lambert JM, Goldmacher VS, Collinson AR, Nadler LM, Blättler WA. An immunotoxin prepared with blocked ricin: a natural plant toxin adapted for therapeutic use. Cancer Res 1991; 51: 6326 - 6342.

    Google Scholar 

  56. Goldmacher VS, Lambert JM, Blättler WA. The specific cytotoxicity of immunoconjugate containing blocked ricin is dependent on the residual binding capacity of blocked ricin: evidence that the membrane binding and A-chain translocation activities of ricin cannot be separated. Biochem Biophys Res Commun 1992; 183: 758 - 766.

    Article  PubMed  CAS  Google Scholar 

  57. Pastan I, FitzGerald D. Recombinant toxins for cancer treatment. Science 1991; 254: 1173 - 1177.

    Article  PubMed  CAS  Google Scholar 

  58. Frankel AE, ed. Genetically Engineered Toxins. New York: Marcel Dekker, 1992.

    Google Scholar 

  59. Siegall CB. Targeted toxins as anticancer agents. Cancer (suppl) 1994; 74: 1006 - 1012.

    Article  CAS  Google Scholar 

  60. Murphy JR, Lakkis FG, VanderSpek JC, Anderson P. Protein engineering of diphtheria toxin. Development of receptor-specific cytotoxic agents for the treatment of human disease. In: Frankel AE, ed. Genetically Engineered Toxins. New York: Marcel Dekker. 1992: 365 - 393.

    Google Scholar 

  61. Greenfield L, Johnson VG, Youle RJ. Mutations in diphtheria toxin separate binding from entry and amplify immunotoxin selectivity. Science 1987; 238: 536 - 539.

    Article  PubMed  CAS  Google Scholar 

  62. Paul LH, Bookman MA, Ozols RF, Young RC, Smith II JW, Longo DL, Gould B, Frankel A, McClay ET, Howell S, Reed E, Willingham MA, FitzGerald DJ, Pastan I. Clinical evaluation of intraperitoneal pseudomonas exotoxin immunoconjugate OVB3-PE in patients with ovarian cancer. J Clin Oncol 1991; 12: 2095 - 2103.

    Google Scholar 

  63. Johnson VG, Woo C, Wilson D, Zovickian J, Greenfield L, Oldfield EH, Youle R. Improved tumor-specific immunotoxins in the treatment of CNS and ceptomeningeal neoplasia. J Neurosurg 1989; 70: 240 - 248.

    Article  PubMed  CAS  Google Scholar 

  64. Lashe DW, Ibercil O, Akbasak A, Youle RJ, Oldfield EH. Efficacy of direct intratumoral therapy with targeted protein toxins for solid human gliomas in nude mice. J Neurosurg 1994; 80: 520 - 526.

    Article  Google Scholar 

  65. Roy DC, Robertson MJ, Belanger R, Gyger M, Perreault C, Bonny Y, Soiffer R, Epstein C, Ritz J. Engraftment following Anti-My9-bR depleted autologous marrow transplantation for patients with acute myeloid leukemia. Blood (suppl) 1992; 80: 376a.

    Google Scholar 

  66. Roy DC, Griffin JD, Belvin M, Blättler WA, Lambert JM, Ritz J. Anti-My-9-blocked ricin: an immunotoxin for selective targeting of acute myeloid leukemia cells. Blood 1991; 77: 2404 - 2412.

    PubMed  CAS  Google Scholar 

  67. Robertson MJ, Roy DC, Soiffer R, Belanger R, Gyger M, Perreault C, Anderson K, Freedman A, Nadler LM, Ritz J. More rapid engraftment after infusion of autologous bone marrow treated with Anti-My-9 and complement. Blood (suppl) 1993; 82: 640a.

    Google Scholar 

  68. Lynch TJ, Jr. Immunotoxin therapy of small-cell lung cancer. N901-blocked ricin for relapsed small-cell lung cancer. Chest 1993; 103: 436s - 439s.

    Article  PubMed  Google Scholar 

  69. Grossbard ML, Freedman AS, Ritz J, Coral F, Goldmacher VS, Eliseo L, Spector NK, Lambert JM, Blättler WA, Taylor JA, Nadler LM. Serotherapy of B-cell neoplasms with Anti-B4-blocked ricin: a phase I trial of daily bolus infusion. Blood 1992; 79: 576 - 585.

    PubMed  CAS  Google Scholar 

  70. Grossbard ML, Lambert JM, Goldmacher VS, Spector NL, Kinsella J, Eliseo L, Coral F, Taylor JA, Blättler WA, Epstein CL, Nadler LM. Anti-B4-blocked ricin: a phase I trial of 7-day continuous infusion in patients with B cell neoplasms. J Clin Oncol 1993; 11: 726 - 737.

    PubMed  CAS  Google Scholar 

  71. Grossbard ML, Gribben JG, Freedman AS, Lambert JM, Kinsella J, Rabinowe SN, Eliseo L, Taylor JA, Blättler WA, Epstein CL, Nadler LM. Adjuvant immunotoxin therapy with AntiB4-blocked ricin after autologous bone marrow transplantation for patients with B-cell non-Hodgkin’s lymphoma. Blood 1993; 81: 2263 - 2271.

    PubMed  CAS  Google Scholar 

  72. O’Connor R, Liu C, Ferris CA, Guild BC, Teicher BA, Corvi C, Liu Y, Arceci RJ, Goldmacher VS, Lambert JM, Blättler WA. Anti-B4-blocked recin synergizes with doxorubicin and etoposide on multidrug-resistant and drug-sensitive tumors. Blood 1995; 86: 4286 - 4294.

    PubMed  Google Scholar 

  73. Shah SA, Halloran PM, Ferris CA, Levine BA, Bourret LA, Goldmacher VS, Blättler WA. Anti-B4-blocked ricin immunotoxin shows therapeutic efficacy in four different SCID mouse models. Cancer Res 1993; 53: 1360 - 1367.

    PubMed  CAS  Google Scholar 

  74. Liu C, Lambert JM, Teicher BA, Blättler WA, O’Connor R. Cure of multidrug-resistant human B-cell lymphoma xenografts by combinations of Anti-B4-blocked ricin and chemotherapeutic drugs. Blood 1996; 87: 3892 - 3898.

    PubMed  CAS  Google Scholar 

  75. Sela M, Hurwitz E. Conjugates of antibodies with cytotoxic drugs. In: Vogel CW, ed. Immunoconjugates. New York: Oxford University Press. 1987: 189 - 216.

    Google Scholar 

  76. Ghose T, Blair AH, Vaughan K, Kulkarni P. Antibody-directed drug targeting in cancer therapy. In: Goldberg EP, ed. Targeted Drugs. New York: John Wiley. 1993: 1 - 22.

    Google Scholar 

  77. Rodwell, JD. Antibody-Mediated Delivery Systems. New York: Marcel Dekker, 1988.

    Google Scholar 

  78. Pietersz GA. The linkage of cytotoxic drugs to monoclonal antibodies for the treatment of cancer. BioConjugate Chem 1990; 1: 89 - 95.

    Article  CAS  Google Scholar 

  79. Garnett MC, Baldwin RW. An improved synthesis of a methotrexate-albumin-791T/36 monoclonal antibody conjugate cytotoxic to human osteogenic sarcoma cell lines. Cancer Res 1986; 46: 2407 - 2412.

    PubMed  CAS  Google Scholar 

  80. Endo N, Takeda Y, Umemoto N, Kishida K, Watanabe K, Saito M, Kato Y, Hara T. Nature of linkage and mode of action of methotrexate conjugated with antitumor antibodies: implications for future preparation of conjugates. Cancer Res 1988; 48: 3330 - 3355.

    PubMed  CAS  Google Scholar 

  81. Shen EC, Ryser J-PH. Cis-aconityl spacer between daunomycin and macromolecular carriers: a model of pH sensitive linkage releasing drug from a lysosomotropic conjugate. Biochem Biophys Res Commun 1981; 102: 1048 - 1054.

    Article  PubMed  CAS  Google Scholar 

  82. Yang HM, Reisfeld RA. Doxorubicin conjugated with a monoclonal antibody directed to a human melanoma-associated proteoglycan suppresses the growth of established tumor xeno-grafts in nude mice. Proc Natl Acad Sci USA 1988; 85: 1189 - 1193.

    Article  CAS  Google Scholar 

  83. Dillman RO, Johnson DE, Shawler DL, Koziol JA. Superiority of an acid-labile daunorubicinmonoclonal antibody immunoconjugate compared to free drug. Cancer Res 1988; 48: 6097 - 6102.

    PubMed  CAS  Google Scholar 

  84. Laguzza BC, Nichols CL, Briggs SL, Cullinan GJ, Johnson DJ, Starling JJ, Baker AL, Bumol TF, Corvalan JRF. New antitumor monoclonal antibody-vinca conjugate LY203725 and related compounds: design, preparation, and representative in vivo activity. J Med Chem 1989; 32: 548 - 555.

    Article  PubMed  CAS  Google Scholar 

  85. Apelgren LD, Zimmerman DL, Briggs SL, Bumol TF. Antitumor activity of the monoclonal antibody-Vinca alkaloid immunoconjugate LY203725 (KS1/4-4 desacetylvinblastine-3-carboxhydrazide) in a nude mouse model of ovarian cancer. Cancer Res 1990; 50: 3540 - 3544.

    PubMed  CAS  Google Scholar 

  86. Greenfield RS, Kaneko T, Daues A, Edson MA, Fitzgerald KA, Olech LJ, Grattan JA, Spitalny GL, Braslawsky GR. Evaluation in vitro of adriamycin immunoconjugates synthesized using an acid-sensitive hydrazone linker. Cancer Res 1990; 50: 6600 - 6607.

    Google Scholar 

  87. Trouet A, Masquelier M, Baurain R, de Campenère DD. A covalent linkage between daunorubicin and proteins that is stable in serum and reversible by lysosomal hydrolases, as required for a lysosomotropic drug-carrier: in vitro and in vivo studies. Proc Natl Acad Sci USA 1982; 79: 626 - 629.

    Article  PubMed  CAS  Google Scholar 

  88. Trail PA, Winner D, Lasch SJ, Henderson AJ, Hofstead S, Casazza AM, Firestone RA, Hellström I, Hellström KE. Cure of xenografted human carcinoma by BR96-doxorubicin immunoconjugates. Science 1993; 261: 212 - 215.

    Article  PubMed  CAS  Google Scholar 

  89. Elias DJ, Hirshowitz L, Kline LE, Kroener JF, Dillman RO, Walker LE, Robb JA, Timms RM. Phase I clinical comparative study of monoclonal antibody KS1/4 and KS1/4-methotrexate immunoconjugate in patients with non-small cell lung cancer. Cancer Res 1990; 50: 4154 - 4159.

    PubMed  CAS  Google Scholar 

  90. Elias DJ, Kline LE, Robbins BA, Johnson HCL, Pekny K, Benz M, Robb JA, Walker LE, Kosty M, Dillman RO. Monoclonal antibody KS1/4-methotrexate immunoconjugate in non-small cell lung carcinoma. Am J Respir Crit Care Med 1994; 150: 1114 - 1122.

    PubMed  CAS  Google Scholar 

  91. Petersen BF, DeHerdt SV, Schneck DW, Bumol TF. The human immune response to KS1/4desacetylvinblastine (LY256787) and KS1/4-desacetylvinblastine hydrazide (LY203728) in single and multiple dose clinical studies. Cancer Res 1991; 51: 2286 - 2290.

    PubMed  CAS  Google Scholar 

  92. Schneck D, Butler F, Dugan W, Littrel D, Dorrbecker S, Petersen B, Browsher R, DeLong A, Zimmerman J. Phase I studies with a murine monoclonal antibody-Vinca conjugate (KS1/ 4-DAVLB) in patients with adenocarcinoma. Antibody Immunoconjugate Radiopharmaceuticals 1989; 2: 93 - 100.

    Google Scholar 

  93. Trail PA, Slichenmyer WJ, Birkhofer MJ, Warner G, Knipe J, Willner D, Firestone RA, Sikkema D, Onetto N, Canetta R, Saleh MN, Murray JL, Gilewski TA, Bookman MA, Hellström I, Hellström KE. BR96-doxorubicin immunoconjugate for treatment of patients with carcinoma. Proc Amer Assoc Cancer Res 1996; 37: 626.

    Google Scholar 

  94. Chari RVJ, Martell BA, Gross JL, Cook SB, Shah SA, Blättler WA, McKenzie SJ, Goldmacher VS. Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res 1992; 52: 127 - 131.

    PubMed  CAS  Google Scholar 

  95. Baeckstrom D, Hansson GC, Nilsson O, Johansson C, Gendler SJ, Lindholm L. Purification and characterization of a membrane-bound and secreted mucin-type glycoprotein carrying the carcinoma-associated sialyl-Lea epitope on distinct core proteins. J Bio! Chem 1991; 266: 21,537-21,547.

    Google Scholar 

  96. Bourret LA, Derr SM, Tadayoni M, Mattocks KM, Shah SA, Liu C, Blättler WA, Goldmacher VS. Enhancement of the selectivity and antitumor efficacy of a CC-1065 analogue through immunoconjugate formation. Cancer Res 1995; 55: 4079 - 4084.

    PubMed  Google Scholar 

  97. Hillman LM, Hamann PR, Wallace R, Menendez AT, Durr FE, Upeslacis J. Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res 1993; 53: 3336 - 3342.

    Google Scholar 

  98. Mueller BM, Wrasidlo WA, Reisfeld RA. Antibody conjugates with morpholino-doxorubicin and acid-cleavable linkers. BioConjugate Chem 1990; 1: 325 - 330.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blättler, W.A., Chari, R.V.J., Lambert, J.M. (1997). Immunoconjugates. In: Teicher, B.A. (eds) Cancer Therapeutics. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-717-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-717-8_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-046-5

  • Online ISBN: 978-1-59259-717-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics