Skip to main content

The Role of the Liver in Insulin Action and Resistance

  • Chapter

Part of the book series: Contemporary Endocrinology ((COE,volume 12))

Abstract

The phenotypic expression of non-insulin-dependent diabetes (NIDDM or Type 2 diabetes) and its associated syndrome (Syndrome X, insulin resistance syndrome [IRS]) has given rise to a great deal of debate on what is inherited and what is acquired in the pathogenesis of this disease state (1). In particular, the tissues or metabolic processes involved have all been implicated as primary sites in its evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cerasi E, Luft R. “What is inherited-what is added” hypothesis for the pathogenesis of diabetes mellitus. Diabetes 1967; 16: 615.

    PubMed  CAS  Google Scholar 

  2. Banting FG, Best CH. The internal secretion of the pancreas. J Lab Clin Med 1922;7:251.

    CAS  Google Scholar 

  3. Himsworth HP. Diabetes mellitus: its differentiation into insulin-sensitive and insulin-insensitive types. Lancet 1936; 1: 127.

    Google Scholar 

  4. DeFronzo R, Bonadonna R, Ferrannini E. Pathogenesis of NIDDM: A balanced overview. Diabetes Care 1992; 15: 318.

    PubMed  CAS  Google Scholar 

  5. Efendic S, Grill V, Luft R, Wajngot A. Low insulin response: A marker of prediabetes. Adv Exp Med Biol 1988; 246: 167–174.

    PubMed  CAS  Google Scholar 

  6. Mitrakou A, Kelley D, Mokan M, Veneman T, Pangbum T, Reilly J, Gerich J. Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med 1992; 326: 22–29.

    PubMed  CAS  Google Scholar 

  7. Reaven GM, Shen SW, Silvers A, Farquhar JW. Is there a delay in the plasma insulin response of patients with chemical diabetes mellitus? Diabetes 1971; 20: 416.

    PubMed  CAS  Google Scholar 

  8. Lang DA, Matthews DR, Peto J, Turner RC. Cyclic oscillations of basal plasma glucose and insulin concentrations in human beings. N Engl J Med 1979; 301: 1023–1027.

    PubMed  CAS  Google Scholar 

  9. O’Rahilly S, Turner RC, Matthews DR. Impaired pulsatile secretion of insulin in relatives of patients with non-insulin-dependent diabetes. New Engl J Med 1988; 318: 1225–1230.

    PubMed  Google Scholar 

  10. O’Meara NM, Sturis J, Van Cauter E, Polonsky KS. Lack of control by glucose of ultradian insulin secretory oscillations in impaired glucose tolerance and in non-insulin-dependent diabetes mellitus. J Clin Invest 1993; 92: 262–271.

    PubMed  Google Scholar 

  11. Kudva YC, Butler PC. Insulin secretion in Type 2 diabetes mellitus. In: Draznin B and Rizza R, eds. Clinical Research in Diabetes and Obesity II. Diabetes and Obesity. Humana, Totowa, NJ, 1997, pp. 119–136.

    Google Scholar 

  12. Simpson RG, Benedetti A, Grodsky GM, Karam JH, Forsham PH. Early phase of insulin release. Diabetes 1968; 17: 684–692.

    PubMed  CAS  Google Scholar 

  13. Luzi L, DeFronzo R. Effect of loss of first-phase insulin secretion on hepatic glucose production and tissue glucose disposal in humans. Am J Physiol 1989; 257: E241 - E246.

    PubMed  CAS  Google Scholar 

  14. Temple R, Carrington C, Luzio S, Owens D, Schneider A, Sobey W, Hales C. Insulin deficiency in noninsulin-dependent diabetes. The Lancet 293–295, February 11, 1989.

    Google Scholar 

  15. Reaven GM. Role of insulin resistance in the pathophysiology of non-insulin dependent diabetes mellitus. Diabetes/Metabolism Reviews 1997; 9 (Suppl 1): 55–125.

    Google Scholar 

  16. Bogardus C, Lillioja S, Howard BV, Reaven G, Mott D. Relationships between insulin secretion, insulin action, and fasting plasma glucose concentration in nondiabetic and noninsulin dependent diabetic subjects. J Clin Invest 1984; 74: 1238–46.

    PubMed  CAS  Google Scholar 

  17. Polonsky KS, Studs J, Bell GI. Non-insulin dependent diabetes mellitus-a genetically programmed failure of the beta cell to compensate for insulin resistance. New Eng J Med 1996; 334: 777–783.

    PubMed  CAS  Google Scholar 

  18. Warram JH, Martin BH, Krolewski AS, Soeldner JS, Kahn CR. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic patients. Ann Intern Med 1990; 113: 909–915.

    PubMed  CAS  Google Scholar 

  19. Sicree RA, Zimmet PZ, King HOM, Coventry JS. Plasma insulin response among Nauruans: prediction of deterioration in glucose tolerance over 6 years. Diabetes 1987; 36: 179–186.

    PubMed  CAS  Google Scholar 

  20. Haffner SM, Stem MP, Hazuda HP, Pugh JA, Patterson JK. Hyperinsulinemia in a population at high risk for non-insulin-dependent diabetes mellitus. N Eng J Med 1986; 315: 220–224.

    CAS  Google Scholar 

  21. Lillioja S, Mott DM, Howard BV, Bennett PH, Yki-Järvinen H, Freymond D, Nyomba BL, Zurlo F, Swinburn B, Bogardus C. Impaired glucose tolerance as a disorder of insulin action. Longitudinal and cross-sectional studies in Pima Indians. N Engl J Med 1988; 318: 1217–1225.

    PubMed  CAS  Google Scholar 

  22. Eriksson J, Franssila-Kallunki A, Ekstrand A, Saloranta C, Widen E, Schalin C, Groop L. Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus. N Engl J Med 1989; 321: 337–343.

    PubMed  CAS  Google Scholar 

  23. Kida Y, Esposito-Del Puente A, Bogardus C, Mott DM. Insulin resistance is associated with reduced fasting and insulin-stimulated glycogen synthase phosphatase activity in human skeletal muscle. J Clin Invest 1990; 85: 476–481.

    PubMed  CAS  Google Scholar 

  24. Katz A, Bogardus C. Insulin-mediated increase in glucose 1,6-biphosphate is attenuated in skeletal muscle of insulin-resistant man. Metabolism 1990; 39: 1300–1304.

    PubMed  CAS  Google Scholar 

  25. Kida Y, Nyomba BI, Bogardus C, Mott DM. Defective insulin response of cyclic adenosine monophosphate-dependent protein kinase in insulin resistant humans. J Clin Invest 1991; 87: 673–679.

    PubMed  CAS  Google Scholar 

  26. Vaag A, Henriksen JE, Beck-Nielsen H. Decreased insulin activation of glycogen synthase in skeletal muscles in young non-obese caucasian first-degree relatives of patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1992; 89: 782–788.

    PubMed  CAS  Google Scholar 

  27. Schalin-Jäntti C, Härkönen M, Groop LC. Impaired activation of glycogen synthase in people at increased risk for developing NIDDM. Diabetes 1992; 41: 598–604.

    PubMed  Google Scholar 

  28. Kida Y, Raz I, Maeda R, Nyomba BL, Stone K, Bogardus C, Sommercorn J, Mott DM. Defective insulin response of phosphorylase phosphatase in insulin-resistant humans. J Clin Invest 1992; 89: 610–617.

    PubMed  CAS  Google Scholar 

  29. Häring Hu, Mehnert H. Pathogenesis of Type 2 (non-insulin-dependent) diabetes mellitus: candidates for a signal transmitter defect causing insulin resistance of the skeletal muscle. Diabetologia 1993; 36: 176–182.

    PubMed  Google Scholar 

  30. Beck-Nielsen H, Hother-Nielsen O, Vaag A, Alford F. Pathogenesis of Type 2 (non-insulin-dependent) diabetes mellitus: the role of skeletal muscle glucose uptake and hepatic glucose production in the development of hyperglycaemia. A critical comment. Diabetologia 1994; 37: 217–221.

    PubMed  CAS  Google Scholar 

  31. Consoli A. Role of liver in pathophysiology of NIDDM. Diabetes Care 1992; 15: 430–441.

    PubMed  CAS  Google Scholar 

  32. Perriello G, Pampanelli S, Del Sindaco P, Lalli C, Ciofetta M, Volpi E, Santeusanio F, Brunetti P, Bolli, G. Evidence of increased systemic glucose production and gluconeogenesis in an early stage of NIDDM. Diabetes 1997; 46: 1010–1016.

    PubMed  CAS  Google Scholar 

  33. Chen Y-DI, Swislocki ALM, Jeng C-Y, Juang J-H, Reaven GM. Effect of time on measurement of hepatic glucose production. J Clin Endocrinol Metab 1988; 67: 1084–1088.

    PubMed  CAS  Google Scholar 

  34. DeFronzo RA. The triumvirate: 13-Cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 1988; 37: 667–687.

    PubMed  CAS  Google Scholar 

  35. FerranniniE, Simonson D, Katz L, Reichard G, Bevilacqua S, Barrett E, Olsson M, DeFronzo RA. The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism 1988; 47: 79–85.

    Google Scholar 

  36. Osei K. Increased basal glucose production and utilization in nondiabetic first-degree relatives of patients with NIDDM. Diabetes 1990; 39: 597–601.

    PubMed  CAS  Google Scholar 

  37. Gerich JE. Is muscle the major site of insulin resistance in Type 2 (non-insulin-dependent) diabetes melltius? Diabetologia 1991; 34: 607–610.

    PubMed  CAS  Google Scholar 

  38. Burcelin R, Eddouks M, Maury J, Kande J, Assan R, Girard J. Excessive glucose production, rather than insulin resistance, accounts for hyperglycaemia in recent-onset streptozotocin-diabetic rats. Diabetologia 1995; 38: 283–290.

    PubMed  CAS  Google Scholar 

  39. Bonadonna RC. In vivo metabolic defects in non-insulin-dependent diabetes mellitus. Horm Res 1993; 39 (Suppl 3): 102–106.

    PubMed  Google Scholar 

  40. Vaag A, Henriksen J, Madsbad S, Holm N, Beck-Nielsen H. Insulin secretion, insulin action, and hepatic glucose production in identical twins discordant for non-insulin-dependent diabetes mellitus. J Clin Invest 1995; 95: 690–698.

    PubMed  CAS  Google Scholar 

  41. Turk D, Alzaid A, Dinneen S, Nair KS, Rizza R. The effects of non-insulin-dependent diabetes mellitus on the kinetics of onset of insulin action in hepatic and extrahepatic tissues. J Clin Invest 1995; 95: 755–762.

    PubMed  CAS  Google Scholar 

  42. Picarel-Blanchot F, Berthelier C, Bailbé D, Portha B. Impaired insulin secretion and excessive hepatic glucose production are both early events in the diabetic GK rat. Am J Physiol 1996; 271 (Endocrinol Metab 34): E755 - E762.

    PubMed  CAS  Google Scholar 

  43. McCarthy MI, Froguel P, Hitman GA. The genetics of non-insulin-dependent diabetes mellitus: tools and aims. Diabetologia 1994; 37: 959–968.

    PubMed  CAS  Google Scholar 

  44. Hales CN, Barker DJP. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992; 35: 595–601.

    PubMed  CAS  Google Scholar 

  45. Rossetti L, Giaccari A, DeFronzo RA. Glucose toxicity. Diabetes Care 1990; 13: 610–630.

    PubMed  CAS  Google Scholar 

  46. Zierath JR, Galuska D, Nolte LA, Thörne A, Kristensen J, Wallberg-Henriksson H. Effects of glycaemia on glucose transport in isolated skeletal muscle from patients with NIDDM: in vitro reversal of muscular insulin resistance. Diabetologia 1994; 37: 270–277.

    PubMed  CAS  Google Scholar 

  47. Ramlal T, Rastogi S, Vranic M, Klip A. Decrease in glucose transporter number in skeletal muscle of mildly diabetic (streptozotocin-treated) rats. Endocrinology 1989; 125: 890–897.

    PubMed  CAS  Google Scholar 

  48. Leahy JL, Bonner-Weir S, Weir GC Minimal chronic hyperglycemia is a critical determinant of impaired insulin secretion after an incomplete pancreatectomy. J Clin Invest 1988, 81: 1407–1414.

    PubMed  CAS  Google Scholar 

  49. Leahy J. Natural history of 3-cell dysfunction in NIDDM. Diabetes Care 1990; 13: 992–1010.

    PubMed  CAS  Google Scholar 

  50. Ward WK, Bolgiano DC, McKnight B, Halter JB, Porte D Jr. Diminished 0-cell secretory capacity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1984; 74: 1318–1328.

    PubMed  CAS  Google Scholar 

  51. Froguel P, Vaxillaire M, Sun F. Close linkage of glucokinase locus on chromosome 7p to early-onset noninsulin dependent diabetes mellitus. Nature 1992; 36: 162–164.

    Google Scholar 

  52. Velho G, Petersen K, Perseghin G, Hwang J-H, Rothman D, Pueyo M, Cline G, Froguel P, Shulman G. Impaired hepatic glycogen synthesis in glucokinase-deficient (MODY-2) subjects. J Clin Invest 1996; 98: 1755–1761.

    PubMed  CAS  Google Scholar 

  53. McGarry JD. What if Minkowski had been ageusic? An alternative angle on diabetes. Science 1992; 258: 766–770.

    PubMed  CAS  Google Scholar 

  54. Reaven GM. The fourth musketeer: from Alexandre Dumas to Claude Bernard. Diabetologia 1995; 38: 3–13.

    PubMed  CAS  Google Scholar 

  55. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963;i:785–789.

    Google Scholar 

  56. Reaven GM. Role of insulin resistance in the pathophysiology of non-insulin dependent diabetes mellitus. Diabetes/Metab Rev 1993; 9 (Suppl 1): 55–125.

    Google Scholar 

  57. Ferrannini E, Barrett EJ, Bevilacqua S, DeFronzo RA. Effect of fatty acids on glucose production and utilization in man. J Clin Invest 1983; 72: 1737–1747.

    PubMed  CAS  Google Scholar 

  58. Boden G, Jadali F, White J, Liang Y, Mozzoli M, Chen X, Coleman E, Smith C. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest 1991; 88: 960–966.

    PubMed  CAS  Google Scholar 

  59. Boden G, Chen X. Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. J Clin Invest 1995; 96: 1261–1268.

    PubMed  CAS  Google Scholar 

  60. Malaisse WJ, Malaisse-Lagae F. Stimulation of insulin secretion by non-carbohydrate metabolites. J Lab Clin Med 1968; 72: 438–448.

    PubMed  CAS  Google Scholar 

  61. Stein DT, Esser V, Stevenson BE, Lane KE, Whiteside JH, Daniels MB, Chen S, McGarry JD. Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J Clin Invest 1996; 97: 2728–2735.

    PubMed  CAS  Google Scholar 

  62. Zhou Y-P, Grill VE. Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J Clin Invest 1994; 93: 870–876.

    PubMed  CAS  Google Scholar 

  63. Milburn JL Jr, Hirose H, Lee YH, Nagasawa Y, Ogawa A, Ohneda M, Beltrandel H, Newgard CB, Johnson JH, Unger RH. Pancreatic (3-cells in obesity: evidence for induction of functional, morphological and metabolic abnormalities by increased long chain fatty acids. J Biol Chem 1995; 270: 1295–1299.

    PubMed  CAS  Google Scholar 

  64. Prentki M, Corkey B. Are the 3-cell signaling molecules malonyl-CoA and cytosolic long-chain acylCoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes 1996; 45: 273–283.

    PubMed  CAS  Google Scholar 

  65. Field JB. Extraction of insulin by liver. Ann Rev Med 1973; 24: 309–314.

    PubMed  CAS  Google Scholar 

  66. Ferrannini E, Cobelli C. The kinetics of insulin in man. II. Role of the liver. Diabetes Metab Rev 1987; 3: 365–397.

    PubMed  CAS  Google Scholar 

  67. Pye S, Watarai T, Davies J, Radziuk J. Comparison of the continuously calculated fractional hepatic extraction of insulin with its fractional extraction using a new double tracer technique. Metabolism 1993; 42: 145–153.

    PubMed  CAS  Google Scholar 

  68. Ruderman NB. Muscle amino acid metabolism and gluconeogenesis. Ann Rev Med 1975; 26: 245–258.

    PubMed  CAS  Google Scholar 

  69. McIntyre N, Holdsworth CD, Turner DS. Intestinal factors in the control of insulin secretion. J Clin Endocrinol Metab 1965; 25: 1317–1324.

    PubMed  CAS  Google Scholar 

  70. Perley MJ, Kipnis DM. Plasma insulin response to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest 1967; 46: 1954–1562.

    PubMed  CAS  Google Scholar 

  71. Erlick H, Stimmler L, Hlad CJ Jr. Plasma insulin responses to oral and intravenous glucose administration. J Clin Endocrinol Metab 1964; 24: 1076–1082.

    Google Scholar 

  72. Buchanan KD, McKiddie MT. The insulin response to glucose: A comparison between oral and intravenous tolerance tests. J Endocrinol 1967; 39: 13–20.

    PubMed  CAS  Google Scholar 

  73. Dupré J, Curtis JD, Unger RH. Effects of secretin pancreozymin or gastrin on the response of the endocrine pancreas to administration of glucose or arginine in man. J Clin Invest 1969; 48: 745–757.

    PubMed  Google Scholar 

  74. Unger RH, Eisentraut AM. Enteroinsular axis. Arch Int Med 1969; 123: 261–266.

    CAS  Google Scholar 

  75. Brown JC, Dryburgh JR, Ross SA, Dupré J. Identification and actions of gastric inhibitory polypeptide. Rec Prog Horm Res 1975; 31: 487–532.

    PubMed  CAS  Google Scholar 

  76. Scow RO, Cornfield J. Quantitative relations between the oral and intravenous glucose tolerance curves. Am J Physiol 1954; 179: 435–438.

    PubMed  CAS  Google Scholar 

  77. James RG, Osborn JO. The analysis of glucose measurements by computer simulation. J Physiol 1965; 181: 59–67.

    Google Scholar 

  78. Felig P, Wahren J, Hendler R. Influence of oral glucose ingestion on splanchnic glucose and gluconeogenic substrate metabolism in man. Diabetes 1975; 24: 468–475.

    PubMed  CAS  Google Scholar 

  79. Felig P, Wahren J, Hendler R. Influence of maturity-onset diabetes on splanchnic glucose balance after oral glucose ingestion. Diabetes 1978; 27: 121–126.

    PubMed  CAS  Google Scholar 

  80. Radziuk J, McDonald TJ, Rubenstein D, Dupré J. Initial splanchnic extraction of ingested glucose in normal man. Metabolism 1978; 27: 657–669.

    PubMed  CAS  Google Scholar 

  81. Radziuk J. Tracer methods and the metabolic disposal of a carbohydrate load in man. Diabetes/Metab Rev 1987; 3: 231–267.

    CAS  Google Scholar 

  82. Ferrannini E, Wahren J, Felig P, DeFronzo RA. The role of fractional glucose extraction in the regulation of splanchnic glucose metabolism in normal and diabetic man. Metabolism 1980; 29: 28–35.

    PubMed  CAS  Google Scholar 

  83. Nilsson LH, Hultman E. Liver glycogen in man-the effect of total starvation on a carbohydrate-poor diet followed by carbohydrate refeeding. Scand J Clin Lab Invest 1973; 32: 325–330.

    PubMed  CAS  Google Scholar 

  84. Nilsson LH, Hultman E. Liver and muscle glycogen in man after glucose and fructose infusion. Scand J Clin Lab Invest 1974; 33: 5–10.

    PubMed  CAS  Google Scholar 

  85. Taylor R, Magnussen I, Rothman DL, Cline GW, Caumo A, Cobelli C, Shulman GI. Direct assessment of liver glycogen storage by 13C-nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects. J Clin Invest 1996; 97: 126–132.

    PubMed  CAS  Google Scholar 

  86. Radziuk J. Hepatic glycogen formation by direct uptake of glucose following oral glucose loading in man. Can J Physiol Parmacol 1979; 57: 1196–1199.

    CAS  Google Scholar 

  87. Radziuk J. Hepatic glycogen in humans. I. Direct formation after oral and intravenous glucose or after a 24-h fast. Am J Physiol 1989; 257: E145 - E157.

    PubMed  CAS  Google Scholar 

  88. Radziuk J. Glucose and glycogen metabolism following glucose ingestion: a turnover approach. In: Cobelli C, Bergman R, eds. Carbohydrate Metabolism. Quantitative Physiology and Modelling. J. Wiley and Sons, London, 1981, pp. 239–266.

    Google Scholar 

  89. Radziuk J. Source of carbon in hepatic glycogen synthesis during absorption of an oral glucose load in humans. Fed Proc 1982; 41: 88–90.

    PubMed  CAS  Google Scholar 

  90. Radziuk J. Hepatic glycogen in humans. II. Gluconeogenetic formation after oral and intravenous glucose. Am J Physiol 1989; 257: E158 - E169.

    PubMed  CAS  Google Scholar 

  91. Hetenyi G Jr. Correction factor for the estimation of plasma glucose synthesis from the transfer of C14 atoms from labelled substrate in vivo: a preliminary report. Can J Physiol Pharmacol 1979; 57: 767–770.

    PubMed  CAS  Google Scholar 

  92. Shikama H, Ui M. Glucose load diverts hepatic glucogenic product from glucose to glycogen in vivo. Am J Physiol 1978; 235: E354 - E360.

    PubMed  CAS  Google Scholar 

  93. Baer A, Radziuk J. Sources of hepatic glycogen formation in conscious rats during intraduodenal glucose loading. Clin Res 1980; 28: 385A.

    Google Scholar 

  94. Barrett E, Bevilacqua S, DeFronzo R, Ferrannini E. Glycogen turnover during refeeding in the postabsorptive dog: Implications for the estimation of glycogen formation using tracer methods. Metabolism 1994; 43: 285–292.

    PubMed  CAS  Google Scholar 

  95. David M, Petit W, Laughlin M, Shulman R, King J, Barrett E. Simultaneous synthesis and degradation of rat liver glycogen. J Clin Invest 1990; 86: 612–617.

    PubMed  CAS  Google Scholar 

  96. Shulman GI, Rothman DL, Chung Y, Rossetti L, Petit WA, Barrett EJ, Shulman RG. 13C NMR studies of glycogen turnover in the perfused rat liver. J Biol Chem 1988; 263: 5027–5029.

    PubMed  CAS  Google Scholar 

  97. Moore MC, Cherrington AD, Cline G, Pagliassoti MJ, Jones EM, Neal DW, Badet C, Shulman GI. Sources of carbon for hepatic glycogen synthesis in the conscious dog. J Clin Invest 1991; 88: 578–87.

    PubMed  CAS  Google Scholar 

  98. Agius J, Tosh D, Peak M. The contribution of pyruvate cycling to loss of [6–3H] glucose during conversion of glucose to glycogen in hepatocytes: effects of insulin, glucose and acinar origin of hepatocytes. Biochem J 1993; 238: 255–262.

    Google Scholar 

  99. Sugden MC, Watts DI, Palmer TN, Myles DD. Direction of carbon flux in starvation and after refeeding: in vitro and in vivo effects of 3-mercaptopicolinate. Biochem Intern 1983; 7: 329–37.

    CAS  Google Scholar 

  100. Newgard CB, Moore SV, Foster DW, McGarry JD. Efficient hepatic glycogen synthesis in refeeding rats requires continued carbon flow through the gluconeogenic pathway. J Biol Chem 1984; 259: 6958–63.

    PubMed  CAS  Google Scholar 

  101. Zhang Z, Radziuk J. Effects of lactate on pathways of glycogen formation in the perfused rat liver. Biochem J 1991; 280: 419.

    Google Scholar 

  102. Zhang Z, Radziuk J. The coordinated regulation of hepatic glycogen formation in the perfused rat liver by glucose and lactate. Am J Physiol 1994; 266: E583 - E591.

    PubMed  CAS  Google Scholar 

  103. Bjorkman O, Eriksson LS, Nyberg B, Wahren J. Gut exchange of glucose and lactate in basal state and after oral glucose in postoperative patients. Diabetes 1990; 39: 747–751.

    PubMed  CAS  Google Scholar 

  104. Radziuk J, Pye S, Zhang Z. Substrates and the regulation of hepatic glycogen metabolism. In: Östenson CG, Efendic S, Vranic M, ed. Advances in Experimental Medicine and Biology. Plenum, New York, 1993, pp. 235–252.

    Google Scholar 

  105. Jungermann K, Katz N, Teutsch H, Sasse D. Possible metabolic zonation of liver parenchyma into glucogenic and glycolytic hepatocytes. In: Thurman RG, Williamson JR, Drott HR, Chance B, eds. Alcohol and Aldehyde Metabolizing Systems. Academic Press, New York, 1977.

    Google Scholar 

  106. Jungermann K, Katz N. Functional hepatocellular heterogeneity. Hepatology 1982; 2: 385–395.

    PubMed  CAS  Google Scholar 

  107. Johnson JA, Fusaro RM. The role of skin in carbohydrate metabolism. Advances in Metabolic Disorders1972; 6: 1–55.

    Google Scholar 

  108. Jansson PA, Smith U, Lönnroth P. Evidence for lactate production by human adipose tissue in vivo. Diabetologia 1990; 33: 253–256.

    PubMed  CAS  Google Scholar 

  109. Jackson RA, Peters N, Advani U, Perry G, Rogers J, Brough WH, Pilkington TR. Forearm glucose uptake during the oral glucose tolerance test in normal subjects. Diabetes 1973; 22: 442–458.

    PubMed  CAS  Google Scholar 

  110. Radziuk J, Inculet R. The effects of ingested and intravenous glucose on forearm uptake of glucose and glucogenic substrate in normal man. Diabetes 1983; 32: 977–981.

    PubMed  CAS  Google Scholar 

  111. DeFronzo RA, Jequier ELE, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 1981; 30: 1000–1007.

    PubMed  CAS  Google Scholar 

  112. Ashmore J, Weber G. Hormonal control of carbohydrate metabolism in liver. In: Dickens F, Randle Pi, Whelan WJ, eds. Liver in Carbohydrate Metabolism and Its Disorders, Vol I. Academic Press, London, 1968, pp. 335–374.

    Google Scholar 

  113. Felig P, Wahren J. Influence of endogenous insulin secretion on splanchnic glucose and amino acid metabolism in man J Clin Invest 1971; 10: 1702–1711.

    Google Scholar 

  114. Rizza RA, Mandarino LJ, Gerich JE. Dose-response characteristics for effects of insulin on production and utilization of glucose in man Am J Physiol 1981; 240: E630 - E639.

    CAS  Google Scholar 

  115. Yki-Järvinen H, Young AA, Lamkin C, Foley JE. Kinetics of glucose disposal in the whole body and across the forearm in man. J Clin Invest 1987; 79: 1713–1719.

    PubMed  Google Scholar 

  116. Jahoor F, Peters EJ, Wolfe RR. The relationship between gluconeogenic substrate supply and glucose production in humans. Am J Physiol 1990; 258: E288 - E296.

    PubMed  CAS  Google Scholar 

  117. Jenssen T, Nurjhan N, Consoli A, Gerich JE. Failure of substrate-induced gluconeogenesis to increase overall glucose appearance in normal humans. J Clin Invest 1990; 85: 489–497.

    Google Scholar 

  118. Clore JN, Glickman PS, Nestler JE, Blackard WG. In vivo evidence for hepatic autoregulation during FFA-stimulated gluconeogenesis in normal humans. Am J Physiol 1991; 261: E425 - E429.

    PubMed  CAS  Google Scholar 

  119. Sindelar DK, Balcom JH, Chu CA, Neal DW, Cherrington AD. A comparison of the effects of selective increases in peripheral or portal insulin on hepatic glucose production in the conscious dog. Diabetes 1996; 45: 1594–1604.

    PubMed  CAS  Google Scholar 

  120. Lewis GF, Zinman B, Groenewoud Y, Vranic M, Giacca A. Hepatic glucose production is regulated both by direct hepatic and extrahepatic effects of insulin in humans. Diabetes 1996; 45: 454–462.

    PubMed  CAS  Google Scholar 

  121. Rebrin K, Steil GM, Getty L, Bergman RN. Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin. Diabetes 1995; 44: 1038–1045.

    PubMed  CAS  Google Scholar 

  122. Bonadonna RC, Groop LC, Zych K, Shank M, DeFronzo RA. Dose-dependent effect of insulin on plasma free fatty acid turnover and oxidation in humans. Am J Physiol 1990; 259: E736 - E750.

    PubMed  CAS  Google Scholar 

  123. Groop LC, Bonadonna RC, Simonson DC, Petrides AS, Shank M, DeFronzo RA. Effect of insulin on oxidative and nonoxidative pathways of free fatty acid metabolism in human obesity. Am J Physiol 1992; 263: E79 - E84.

    PubMed  CAS  Google Scholar 

  124. Ferrannini E, Barrett EJ, Bevilacqua S, DeFronzo RA. Effect of fatty acids on glucose production and utilization in man. J Clin Invest 1983; 72: 1737–1747.

    PubMed  CAS  Google Scholar 

  125. Boden G, Jadali F. Effects of lipid on basal carbohydrate metabolism in normal men. Diabetes. 1991; 40: 686–692.

    PubMed  CAS  Google Scholar 

  126. Saloranta C, Koivisto V, Widen E, Falholt K, DeFronzo RA, Harkonen M, Groop L. Contribution of muscle and liver to glucose-fatty acid cycle in humans. Am J Physiol 1993; 264: E599 - E605.

    PubMed  CAS  Google Scholar 

  127. Lee KU, Lee HK, Koh CS, Min HK. Artificial induction of intravascular lipolysis by lipid-heparin infusion leads to insulin resistance in man. Diabetologia 1988; 31: 285–290.

    PubMed  CAS  Google Scholar 

  128. Bevilacqua S, Bonadonna RC, Boni C, Ciociaro D, Maccari F, Giorico MA, Ferrannini E. Acute elevation of free fatty acid levels leads to hepatic insulin resistance in obese subjects. Metabolism 1987; 36: 502–506.

    PubMed  CAS  Google Scholar 

  129. Boden G, Jadali F, White J, Liang Y, Mozzoli M, Chen X, Coleman E, Smith C. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest 1991; 88: 960–966.

    PubMed  CAS  Google Scholar 

  130. Groop LC, Bonadonna RC, Shank M, Petrides AS, DeFronzo RA. Role of free fatty acids and insulin in determining free fatty acid and lipid oxidation in man. J Clin Invest 1991; 87: 83–89.

    PubMed  CAS  Google Scholar 

  131. Johnston P, Hollenbeck C, Sheu W, Chen YD, Reaven GM. Acute changes in plasma non-esterified fatty acid concentration do not change hepatic glucose production in people with Type 2 diabetes. Diabetic Medicine 1990; 7: 871–875.

    PubMed  CAS  Google Scholar 

  132. Fery F, Plat M, Baleriaux M, Balasse EO. Inhibition of lipolysis stimulates whole body glucose production and disposal in normal postabsorptive subjects. J Clin Endo Metab 1997; 82: 825–830.

    CAS  Google Scholar 

  133. Seyffert WA, Madison LL. Physiological effects of metabolic fuels on carbohydrate metabolism. I. Acute effects of elevation of plasma free fatty acids on hepatic glucose output, peripheral glucose utilization, serum insulin and plasma glucagon levels. Diabetes 1967; 16: 765–776.

    PubMed  CAS  Google Scholar 

  134. Wolfe RR, Shaw JHF. Inhibitory effect of plasma free fatty acids on glucose production in the conscious dog. Am J Physiol 1984; 246: E181 - E186.

    PubMed  CAS  Google Scholar 

  135. Zhang Z, Radziuk J. Insulin effects on hepatic glucose production: extent and pathways. Diabetologia 1997;40(Supp 1): 979, A249.

    Google Scholar 

  136. Madison LL, Combes B, Adams R, Strickland B. The physiological significance of the secretion of endogenous insulin into the portal circulation. III. Evidence for a direct immediate effect of insulin on the balance of glucsoe across the liver. J Clin Invest 1960; 39: 507–522.

    PubMed  CAS  Google Scholar 

  137. Madison LL. Role of insulin in the hepatic handling of glucose. Archives of Internal Medicine 1969; 123: 284–292.

    PubMed  CAS  Google Scholar 

  138. Steele R. Influences of glucose loading and of injected insulin on hepatic glucose output. Annals of the New York Academy of Sciences 1959; 82: 420–430.

    PubMed  CAS  Google Scholar 

  139. Firth R, Bell P, Rizza R. Insulin action in non-insulin-dependent diabetes mellitus: the relationship between hepatic and extrahepatic insulin resistance and obesity. Metab: Clin Exp 1987; 36: 1091–1095.

    CAS  Google Scholar 

  140. Kolterman OG, Gray RS, Griffin J, Burstein P, Insel J, Scarlett JA, Olefsky JM. Receptor and postreceptor defects contribute to the insulin resistance in non-insulin-dependent diabetes mellitus. J Clin Invest 1981; 68: 957–969.

    PubMed  CAS  Google Scholar 

  141. Sacca L, Cicala M, Trimarco B, Ungaro B, Vigorito C. Differential effects of insulin on splanchnic and peripheral glucose disposal after an intravenous glucose load in man. J Clin Invest 1982; 70: 117–126.

    PubMed  CAS  Google Scholar 

  142. DeFronzo R, Ferrannini E, Hendler R, Felig P, Wahren J. Regulation of splanchnic and peripheral glucose uptake by insulin and hyperglycemia in man. Diabetes 1983; 32: 35–45.

    PubMed  CAS  Google Scholar 

  143. Pilkis SJ, Claus TH. Hepatic gluconeogenesis/glycolysis: regulation and structure/function relationships of substrate cycle enzymes. Annual Review of Nutrition 1990; 11: 465–515.

    Google Scholar 

  144. Barrett E, Liu Z. Hepatic glucose metabolism and insulin resistance in NIDDM and obesity. Baillière’ s Clinical Endocrinology and Metabolism 1993; 7: 875–901.

    PubMed  CAS  Google Scholar 

  145. Felig P, Wahren J. Influence of endogenous insulin secretion on splanchnic glucose and amino acid metabolism in man. J Clin Invest 1971; 50: 1702–1711.

    PubMed  CAS  Google Scholar 

  146. Hetenyi G Jr, Kopstick FX, Retlstorf Li. The effect of insulin on the distribution of glucose between the blood plasma and the liver in alloxan-diabetic and adrenalectomized rats. Can J Biochem Physiol 1963; 41: 2431–2439.

    PubMed  CAS  Google Scholar 

  147. Newsholme EA, Crabtree B. Substrate cycles in metabolic regulation and heat generation. Biochem Soc Symp 1976; 41: 61–110.

    PubMed  CAS  Google Scholar 

  148. Hellerstein MK, Neese RA, Linfoot P, Christiansen M, Turner S, Letscher A. Hepatic gluconeogenic fluxes and glycogen turnover during fasting in humans. A stable isotope study. J Clin Invest 1997; 100: 1305–1319.

    PubMed  CAS  Google Scholar 

  149. Newgard CB, Foster DW, McGarry D. Evidence for suppression of hepatic glucose-6-phosphatase with carbohydrate feeding. Diabetes 1984; 33: 192–195.

    PubMed  CAS  Google Scholar 

  150. Gardner L, Liu Z, Barrett E. The role of glucose-6-phosphatase in the action of insulin on hepatic glucose production in the rat. Diabetes 1993; 42: 1614–1620.

    PubMed  CAS  Google Scholar 

  151. Barzilai N, Rossetti L. Role of glucokinase and glucose-6-phosphatase in the acute and chronic regulation of hepatic glucose fluxes by insulin. J Biol Chem 1993; 268 (33): 25019–25025.

    PubMed  CAS  Google Scholar 

  152. Blackard WG, Clore JN. Insulin effects on substrate metabolism. In: Draznin B, Rizza R, ed. Clinical Research in Diabetes and Obesity, Part I: Methods, Assessment, and Metabolic Regulation. Humana, Totowa, NJ, 1997, 205–220.

    Google Scholar 

  153. Pagliassotti M, Holste L, Moore M, Neal D, Cherrington A. Comparison of the time courses of insulin and the portal signal on hepatic glucose and glycogen metabolism in the conscious dog. J Clin Invest 1996; 97: 81–91.

    PubMed  CAS  Google Scholar 

  154. Agius D, Peak M. Intracellular binding of glucokinase in hepatocytes and translocation by glucose, fructose and insulin. Biochem J 1993; 296: 785–796.

    PubMed  CAS  Google Scholar 

  155. Vionnet N, Stoffel M, Takeda J, Yasuda K, Bell GI, Zouali H, Lesage S, Velho G, Iris F, Passa Ph, Froguel Ph, Cohen D. Nonsense mutation in the glucokinase gene causes early-onset non-insulindependent diabetes mellitus. Nature 1992; 356: 721–722.

    PubMed  CAS  Google Scholar 

  156. Tappy L, Dussoix P, lynedjian P, Henry S, Schneiter P, Zahnd G, Jequier E, Philippe J. Abnormal regulation of hepatic glucose output in maturity-onset diabetes of the young caused by a specific mutation of the glucokinase gene. Diabetes 1997; 45: 204–208.

    Google Scholar 

  157. Velho G, Petersen KF, Perseghin G, Hwang J-H, Rothman DL, Pueyo ME, Cline GW, Froguel P, Shulman GI. Impaired hepatic glycogen synthesized glucokinase-deficient (MODY-2) subjects. J Clin Invest 1996; 98: 1755–1761.

    PubMed  CAS  Google Scholar 

  158. Clément K, Pueyo ME, Vaxillaire M, Rakotoambinina B, Thuillier F, Passa Ph, Froguel Ph, Robert J-J, Velho G. Assessment of insulin sensitivity in glucokinase-deficient subjects. Diabetologia 1996; 39: 82–90.

    PubMed  Google Scholar 

  159. Barzilai N, Hawkins M, Angelov I, Hu M, Rossetti L. Glucosamine-induced inhibition of liver glucokinase impairs the ability of hyperglycemia to suppress endogenous glucose production. Diabetes 1996; 45: 1329–1335.

    PubMed  CAS  Google Scholar 

  160. Ferre T, Pyol A, Riu E, Bosch F, Valera A. Correction of diabetic alterations by glucokinase. Proc Natl Acad Sci 1996; 93: 7225–7230.

    PubMed  CAS  Google Scholar 

  161. Vaulont S, Kahn A. Transcriptional control of metabolic regulation genes by carbohydrates. FASEB J 1994; 8: 28–35.

    PubMed  CAS  Google Scholar 

  162. Efendic S, Karlander S, Vranic M. Mild Type 2 diabetes markedly increases glucose cycling in the postabsorptive state and during glucose infusion irrespective of obesity. J Clin Invest 1988; 81: 1953–1961.

    PubMed  CAS  Google Scholar 

  163. Rooney DP, Neely RDG, Beatty O, Bell NP, Sheridan B, Atkinson AB, Trimble ER, Bell PM. Contribution of glucose/glucose 6-phosphate cycle activity to insulin resistance in Type 2 (non-insulindependent) diabetes mellitus. Diabetologia 1993; 36: 106–112.

    PubMed  CAS  Google Scholar 

  164. Soskin S. The liver and carbohydrate metabolism. Endocrinology 1940; 26: 297–308.

    CAS  Google Scholar 

  165. DeWulf H, Hers HG. The stimulation of glycogen synthesis and of glycogen synthetase in the liver by the administration of glucose. Eur J Biochem 1967; 2: 50–56.

    CAS  Google Scholar 

  166. Stalmans W, DeWulf H, Hue L, Hers HG. The sequential inactivation of glycogen phosphorylase and activation of glycogen synthetase after the administration of glucose to mice and rats. The mechanism of the hepatic threshold to glucose. Eur J Biochem 1974; 41: 117–134.

    Google Scholar 

  167. Hers HG. The control of glycogen metabolism in the liver. Ann Rev Biochem 1976; 45: 167–189.

    PubMed  CAS  Google Scholar 

  168. van de Werve G, Jeanrenaud B. Liver glycogen metabolism: an overview. Diabetes/Metab Rev 1987; 3: 47–78.

    Google Scholar 

  169. Nutall FQ, Gilboe DP, Gannon MC, Niewohner CB, Tan AWH. Regulation of glycogen synthesis in the liver. Am J Med 1988; 85 (Suppl 5A): 77–85.

    Google Scholar 

  170. Nuttall FQ, Gannon MC, Larner J. Oral glucose effect on glycogen synthetase and phosphorylase in heart, muscle and liver. Physiol Chem Phys 1972; 4: 497–515.

    PubMed  CAS  Google Scholar 

  171. Niewoehner CB, Gilboe DP, Nuttall FQ. Metabolic effects of oral glucose in the liver of fasted rats. Am J Physiol 1984; 246: E89 - E94.

    PubMed  CAS  Google Scholar 

  172. Ciudad CJ, Massague J, Guinovart JJ. The inactivation of glycogen phosphorylase in rats is not a prerequisite for the activation of liver glycogen synthase. FEBS Lett 1979; 99: 321–324.

    PubMed  CAS  Google Scholar 

  173. Gilboe DP, Nuttall FQ. Stimulation of liver glycogen particle synthase D phosphatase activity by caffeine, AMP and glucose-6-phosphate. Arch Biochem Biophys 1982; 19: 179–185.

    Google Scholar 

  174. Carabaza A, Ciudad CJ, Baque S, Guinovart JJ. Glucose has to be phosphorylated to activate glycogen synthase, but not to inactivate glycogen phosphorylase in hepatocytes. FEBS Lett 1992; 296: 211–214.

    PubMed  CAS  Google Scholar 

  175. Fernandez-Novell JM, Roca A, Bellido D, Vilar S, Guinovart JJ. Translocation and aggregation of hepatic glycogen synthase during the fasted to refed transition in rats. EurJ Biochem 1996; 238: 570–575.

    CAS  Google Scholar 

  176. Parkes JL, Grieninger G. Insulin, not glucose, controls hepatocellular glycogen deposition. J Biol Chem 1985; 260: 8090–8097.

    PubMed  CAS  Google Scholar 

  177. Ortmeyer H, Bodkin N, Hansen B. Insulin regulates liver glycogen synthase and glycogen phosphorylase activity reciprocally in rhesus monkeys. Am J Physiol 1997; 272: E133 - E138.

    PubMed  CAS  Google Scholar 

  178. Kruszynska YT, Home PD, Albert KGMM. In vivo regulation of liver and skeletal muscle glycogen synthase activity by glucose and insulin. Diabetes 1986; 35: 662–667.

    PubMed  CAS  Google Scholar 

  179. Terrettaz J, Assimacopoulos-Jeannet F, Jeanrenaud B. Inhibition of hepatic glucose production by insulin in vivo in rats: contribution of glycolysis. Am J Physiol 1986; 250: E346 - E351.

    PubMed  CAS  Google Scholar 

  180. Liu Z, Gardner L, Barrett E. Insulin and glucose suppress hepatic glycogenolysis by distinct enzymatic mechanisms. Metabolism 1993; 42 (12): 1546–1551.

    PubMed  CAS  Google Scholar 

  181. Radziuk J, Pye S, Zhang Z, Wiernsperger N. Effects of metformin on lactate uptake and gluconeogenesis in the perfused rat liver. Diabetes 1997 46: 1406–1413.

    PubMed  CAS  Google Scholar 

  182. Seoane J, Gomez-Foix AM, O’Doherty RM, Gomez-Ara C, Newgard CB, Guinovart JJ. Glucose 6-phosphate produced by glucokinase, but not hexokinase I, promotes the activation of glycogen synthesis. J Biol Chem 1996; 271: 23756–23760.

    PubMed  CAS  Google Scholar 

  183. Bartels H, Vogt B, Jungermann K. Glycogen synthesis from pyruvate in the periportal and from glucose in the perivenous zone in perfused livers from fasted rats. FEBS Lett 1987; 221: 277–283.

    PubMed  CAS  Google Scholar 

  184. Magnusson I, Rothmann DL, Katz LD, Shulman RG, Shulman GI. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest 1992; 90: 1323–1327.

    PubMed  CAS  Google Scholar 

  185. Clore JN, Post EP, Bailey J, Nestler JE, Blackard WG. Evidence for increased liver glycogen in patients with noninsulin-dependent diabetes mellitus after a 3-day fast. J Clin Endocrinol Metab 1992; 74: 660–666.

    PubMed  CAS  Google Scholar 

  186. Müller C, Assimacopoulos-Jeannet F, Mosimam F, Schneiter Ph, Riou JP, Pachiaudi C, Felber JP, Jequier E, Jeanrenaud B, Tappy L. Endogenous glucose production, gluconeogenesis and liver glycogen concentration in obese nondiabetic patients. Diabetologia 1997; 40: 463–468.

    PubMed  Google Scholar 

  187. Wise S, Nielsen M, Rizza R. Effects of hepatic glycogen content on hepatic insulin action in humans: Alteration in the relative contributions of glycogenolysis and gluconeogenesis to endogenous glucose production. J Clin Endoc Metab 1997; 82: 1828–1833.

    CAS  Google Scholar 

  188. Kruszynska YT, McCormack JG, McIntyre N. Effect of glycogen stores and nonesterified fatty acid availability on insulin-stimulated glucose metabolism and tissue pyruvate dehydrogenase activity in the rat. Diabetologia 1991; 34: 205–211.

    PubMed  CAS  Google Scholar 

  189. Puhakainen I, Yki-Järvinen H. Inhibition of lipolysis decreases lipid oxidation and gluconeogenesis from lactate but not fasting hyperglycemia or total hepatic glucose production in NIDDM. Diabetes 1993; 42: 1694–1699.

    PubMed  CAS  Google Scholar 

  190. Rosella G, Zajac J, Kaczmarczyk S, Andrikopoulos S, Proietto J. Impaired suppression of gluconeogenesis induced by overexpression of a noninsulin-responsive phosphoenolpyruvate carboxykinase gene. Molec Endocrinol 1993; 7: 1456–1462.

    CAS  Google Scholar 

  191. Rosella G, Zajac JD, Baker L, Kaczmarczyk SJ, Andrikopoulos S, Adams TE, Proietto J. Impaired glucose tolerance and increased weight gain in transgenic rats overexpressing a noninsulin-responsive phosphoenolpyruvate carboxykinase gene. Mol Endocrenol 1995; 9 (10): 1396–1404.

    CAS  Google Scholar 

  192. Andrikopoulos S, Proietto J. The biochemical basis of increased hepatic glucose production in a mouse model of type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1995; 38: 1389–1396.

    PubMed  CAS  Google Scholar 

  193. Sanchez-Gutiérrez J, Sanchez-Arias J, Lechuga C, Valle J, Samper B, Feliu J. Decreased responsiveness of basal gluconeogenesis to insulin action in hepatocytes isolated from genetically obese (fa/fa) Zucker rats. Endocrinology 1994; 134: 1868–1873.

    PubMed  Google Scholar 

  194. Giaccari A, Rossetti L. Predominant role of gluconeogenesis in the hepatic glycogen repletion of diabetic rats. J Clin Invest 1992; 89: 36–45.

    PubMed  CAS  Google Scholar 

  195. DeMeutter RC, Shreeve WW. Conversion of DL-lactate [2-C141 or [3-C141 or pyruvate [2–14C] to blood glucose in humans: effects of diabetes, insulin, tolbutamide, and glucose load. J Clin Invest 1963; 42: 525–533.

    CAS  Google Scholar 

  196. Zawadski J, Wolfe R, Mott D, Lillioja S, Howard B, Bogardus C. Increased rate of Cori cycle in obese subjects with NIDDM and effects of weight reduction. Diabetes 1988; 37: 154–159.

    Google Scholar 

  197. Comstock J, Ellerhorst J, Garber A. Effect of sulfonylurea therapy on glucose-alanine precursor-product interrelationship in NIDDM. Diabetes 1987; 36 (Suppl 1): 4A.

    Google Scholar 

  198. Consoli A, Nurijhan N, Capani F, Gerich J. Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 1989; 38: 550–57.

    PubMed  CAS  Google Scholar 

  199. Katz H, Homan M, Jensen M, Caumo A, Cobelli C, Rizza R. Assessment of insulin action in NIDDM in the presence of dynamic changes in insulin and glucose concentration. Diabetes 1994; 43: 289–296.

    PubMed  CAS  Google Scholar 

  200. Halimi S, Assimacopoulos-Jeannet F, Terrettaz J, Jeanrenaud B. Differential effect of steady-state hyperinsulinaemia and hyperglycaemia on hepatic glycogenolysis and glycolysis in rats. Diabetologia 1987; 30: 268–272.

    PubMed  CAS  Google Scholar 

  201. Phillips J, Clark D, Henly D, Berry M. The contribution of glucose cycling to the maintenance of steady-state levels of lactate by hepatocytes during glycolysis and gluconeogenesis. Eur J Biochem 1995; 227: 352–358.

    PubMed  CAS  Google Scholar 

  202. Hue L, Rider M. Role of fructose 2, 6-biphosphate in the control of glycolysis in mammalian tissues. Biochem J 1987; 245: 313–324.

    PubMed  CAS  Google Scholar 

  203. Peret J, Chanez M. Influence of diet, cortisol and insulin on the activity of pyruvate carboxylase and phosphoenolpyruvate carboxykinase in the rat liver. J Nutr 1976; 106: 103–110.

    PubMed  CAS  Google Scholar 

  204. O’Brien RM, Granner DK. PEPCK gene as model of inhibitory effects of insulin on gene transcription. Diabetes Care 1990; 13: 327–329.

    PubMed  Google Scholar 

  205. Exton JH, Harper SC, Tucker AL, Ho RJ. Effects of insulin on gluconeogenesis and cyclic AMP levels in perfused livers from diabetic rats. Biochimica et Biophysica Acta 1973; 329: 23–40.

    PubMed  CAS  Google Scholar 

  206. Clore JN, Stillman JS, Helm ST, Blackard WG. Evidence for dissociation of gluconeogenesis stimulated by non-esterified fatty acids and changes in fructose 2, 6-biphosphate in cultured rat hepatocytes. Biochem J 1992; 288: 145–148.

    CAS  Google Scholar 

  207. Hue L, Maisin L, Rider M. Palmitate inhibits liver glycolysis. Involvement of fructose 2, 6-bisphosphate in the glucose/fatty acid cycle. Biochem J 1988; 251: 541–545.

    PubMed  CAS  Google Scholar 

  208. Blackard W, Clore J, Powers L. A stimulatory effect of FFA on glycolysis unmasked in cells with impaired oxidative capacity. Am J Physiol 1990; 259: E451 - E456.

    PubMed  CAS  Google Scholar 

  209. Maheux P, Chen Y-D, Polonsky K, Reaven G. Evidence that insulin can directly inhibit hepatic glucose production. Diabetologia 1997; 40: 1300–1306.

    PubMed  CAS  Google Scholar 

  210. Chen K-W, Boyko E, Bergstrom R, Leonetti D, Newell-Morris L, Wahl P, Fujimoto W. Earlier appearance of impaired insulin secretion than of visceral adiposity in the pathogenesis of NIDDM. Diabetes Care 1995; 18: 747–753.

    PubMed  CAS  Google Scholar 

  211. Porte D, Kahn S. The key role of islet dysfunction in Type 2 diabetes mellitus. Clin Invest Med 1995; 18: 247–254.

    PubMed  Google Scholar 

  212. Féry F. Role of hepatic glucose production and glucose uptake in the pathogenesis of fasting hyperglycemia in Type 2 diabetes: normalization of glucose kinetics by short-term fasting. J Clin Endocrinol Metab 1994; 78: 536–542.

    PubMed  Google Scholar 

  213. Clément K, Pueyo ME, Vaxillaire M, Rakotoambinina B, Thuillier F, Passa Ph, Froguel Ph, Robert J-J, Velko G. Assessment of insulin sensitivity in glucokinase-deficient patients. Diabetologia 1996; 39: 82–90.

    PubMed  Google Scholar 

  214. Dinnen S, Gerich J, Rizza R. Carbohydrate metabolism in non-insulin-dependent diabetes. N Eng J Med 1972; 327: 717–713.

    Google Scholar 

  215. Hother-Nielsen O, Beck-Nielsen H. Insulin resistance, but normal basal rate of glucose production in patients with newly diagnosed mild diabetes mellitus. Acta Endocrinol (Copenhagen) 1995; 124: 637–645.

    Google Scholar 

  216. Jeng C-Y, Sheu NH-H, Fuh MM-T, Chen Y-DI, Reaven GM. Relationship between hepatic glucose production and fasting plasma glucose concentration in patients with non-insulin-dependent diabetes mellitus. Diabetes 1994; 43: 1440–1444.

    PubMed  CAS  Google Scholar 

  217. Groop LC, Kankuri M, Schalin-Jäntti C, Estrand A, Nikula-Ijäs P, Widen E, Kuismanen E, Eriksson J, Franssila-Kallunki A, Saloranta C, Koskimies S. Association between polymorphism of the glycogen synthase gene and non-insulin-dependent diabetes mellitus. N Eng J Med 1993; 328: 10–14.

    CAS  Google Scholar 

  218. Firth R, Bell P, Rizza R. Insulin action in non-insulin-dependent diabetes mellitus: The relationship between hepatic and extrahepatic insulin resistance and obesity. Metabolism 1987; 36: 1091–1095.

    PubMed  CAS  Google Scholar 

  219. Boden G, Chen X, Urbain JL. Evidence for a circadian rhythm of insulin sensitivity in patients with NIDDM caused by cyclic changes in hepatic glucose production. Diabetes 1996; 45: 1044–1050.

    PubMed  CAS  Google Scholar 

  220. Oakes N, Cooney G, Camilleri S, Chisholm D, Kraegen E. Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding. Diabetes 1997; 46: 1768–1774.

    PubMed  CAS  Google Scholar 

  221. Baron AD, Brechtel G, Edelman SV. Effects of free fatty acids and ketone bodies on in vivo noninsulin-mediated glucose utilization and production in humans. Metabolism 1989; 38: 1056–1061.

    PubMed  CAS  Google Scholar 

  222. Clore JN, Glickman PS, Helm ST, Nestler JE, Blackard WG. Evidence for dual control mechanism regulating hepatic glucose output in nondiabetic men. Diabetes 1991; 40: 1033–1040.

    PubMed  CAS  Google Scholar 

  223. Yki-Järvinen H, Puhakainen I, Koivisto VA. Effect of free fatty acids on glucose uptake and nonoxidative glycolysis across human forearm tissues in the basal state and during insulin stimulation. J Clin Endocrinol Metab 1991; 72: 1268–1277.

    PubMed  Google Scholar 

  224. Lee K-U, Park J, Kim C, Hong S, Suh K, Park KS, Park SW. Effect of decreasing plasma free fatty acids by Acipimox on hepatic glucose metabolism in normal rats. Metab: Clin Exp 1996; 45: 1408–1414.

    CAS  Google Scholar 

  225. Piatti PM, Monti LD, Baruffaldi L, Magni F, Paroni R, Fermo I, Costa S, Santambrogio G, Nasser R, Marchi M, Galli-Kienle M, Pontiroli A, Pozza G. Effects of an acute increase in plasma triglyceride levels on glucose metabolism in man. Metab: Clin Exp 1995; 44: 883–889.

    CAS  Google Scholar 

  226. Yki-Järvinen H, Puhakainen I, Saloranta C, Taskinen M-R. Demonstration of a novel feedback mechanism between FFA oxidation from intracellular and intravascular sources. Am J Physiol 1991; 260: 680–689.

    Google Scholar 

  227. Blumenthal SA. Stimulation of gluconeogenesis by palmitic acid in rat hepatocytes: Evidence that this effect can be dissociated from the provision of reducing equivalents. Metabolism 1983; 32: 971–976.

    PubMed  CAS  Google Scholar 

  228. Sane T, Knudsen P, Vuorinen-Markkola H, Yki-Järvinen H, Taskinen M-R. Decreasing triglyceride by gemfibrozil therapy does not affect the glucoregulatory or antilipolytic effect of insulin in nondiabetic subjects with mild hypertriglyceridemia. Metabolism 1995; 44: 589–596.

    PubMed  CAS  Google Scholar 

  229. Abbasi F, Kamath V, Rizvi AA, Carantoni M, Chen Y-DI, Reaven GM. Results of a placebo-controlled study on the metabolic effects of the addition of metformin to sulforylurea-treated patients: evidence for a central role of adipose tissue. Diabetes Care 1997; 201: 1863–1869.

    Google Scholar 

  230. Saloranta C, Franssila-Kallunki A, Ekstrand A, Taskinen M-R, Groop L. Modulation of hepatic glucose production by non-esterified fatty acids in type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1991; 34: 409–415.

    PubMed  CAS  Google Scholar 

  231. Saloranta C, Taskinen M-R, Widén E, Härkönen M, Melander A, Groop L. Metabolic consequences of sustained suppression of free fatty acids by Acipimox in patients with NIDDM. Diabetes 1993; 42: 1559–1566.

    PubMed  CAS  Google Scholar 

  232. Perriello G, Misericordia P, Volpi E, Santucci A, Santucci C, Ferrannini E, Ventura MM, Santeusanio F, Brunetti P, Bolli GB. Acute antihyperglycemic mechanisms of metformin in NIDDM: evidence for suppression of lipid oxidation and hepatic glucose production. Diabetes 1994; 43: 920–928.

    PubMed  CAS  Google Scholar 

  233. Unger R. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes 1995; 44: 863–870.

    PubMed  CAS  Google Scholar 

  234. Martin ML, Jensen MD. Effects of body fat distribution on regional lipolysis in obesity. J Clin Invest 1991; 88: 609–613.

    PubMed  CAS  Google Scholar 

  235. Bjorntorp P. Metabolic implications of body fat distribution. Diabetes Care 1991; 14: 1132–1143.

    PubMed  CAS  Google Scholar 

  236. Blackard WG, Clore JN, Glickman PS, Nestler JE, Kellum JM. Insulin sensitivity of splanchnic and peripheral adipose tissue in vivo in morbidly obese man. Metabolism 1993; 42: 1195–1200.

    PubMed  CAS  Google Scholar 

  237. Rebutte-Scrive M, Anderson B, Olbe L, Bjorntorp P. Metabolism of adipose tissue in intraabdominal depots in severely obese men and women. Metabolism 1990; 39: 1021–1025.

    Google Scholar 

  238. Smith U, Hammersten J, Bjorntorp P, Kral JG. Regional differences and effect of weight reduction on human fat cell metabolism. Eur J Clin Invest 1979; 9: 327–332.

    PubMed  CAS  Google Scholar 

  239. Colberg SR, Simoneau J-A, Thaete FL, Kelley DE. Skeletal muscle utilization of FFA in women with visceral obesity. J Clin Invest 1995; 95: 1846–1853.

    PubMed  CAS  Google Scholar 

  240. Henry RR, Scheaffer L, Olefsky JM. Glycemic effects of intensive caloric restriction and isocaloric refeeding in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1985; 61: 917–925.

    PubMed  CAS  Google Scholar 

  241. Adkins BA, Myers SR, Hendrick GK, Stevenson RW, Williams PE, Cherrington AD. Importance of the route of intravenous glucose delivery to hepatic glucose balance in the conscious dog. J Clin Invest 1987; 79: 557–565.

    PubMed  CAS  Google Scholar 

  242. Gardemann A, Strulik H, Jungermann K. A portal-arterial glucose concentration gradient as a signal for an insulin-dependent net glucose uptake in perfused rat liver. FEBS Lett 1986; 202: 255–259.

    PubMed  CAS  Google Scholar 

  243. Morishima T, Bradshaw C, Radziuk J. Measurement using tracers of steady-state turnover and metabolic clearance of insulin in dogs. Am J Physiol 1985; 248: E203 - E208.

    PubMed  CAS  Google Scholar 

  244. Kaden M, Harding P, Field JB. Effect of intraduodenal glucose administration on hepatic extraction of insulin in the anesthetized dog. J Clin Invest 1973; 52: 2016–2028.

    PubMed  CAS  Google Scholar 

  245. Svedberg J, Strömblad G, Wirth A, Smith U, Björntorp P. Fatty acids in the portal vein of the rat regulate hepatic insulin clearance. J Clin Invest 1991; 88: 2054–2058.

    PubMed  CAS  Google Scholar 

  246. Marchesini G, Zoli M, Dondi C, Angiolini A, Forlani G, Melli A, Bianchi FB, Pisi E. Blood glucose and glucoregulatory hormones in liver cirrhosis: a study of 24 h profiles and of the role of portal-systemic shunting. Gastroenterologie Clinique et Biologique 1982; 6: 272–278.

    PubMed  CAS  Google Scholar 

  247. Petrides AS, DeFronzo RA. Glucose and insulin metabolism in cirrhosis. J Hepatol (Amsterdam) 1989; 8: 107–114.

    CAS  Google Scholar 

  248. Kruszynska YT, Home PD, McIntyre N. Relationship between insulin sensitivity, insulin secretion and glucose tolerance in cirrhosis. Hepatology 1991; 14: 103–111.

    PubMed  CAS  Google Scholar 

  249. Proietto J, Dudley FJ, Aitken P, Alford FP. Hyperinsulinemia and insulin resistance of cirrhosis: the importance of insulin hypersecretion. Clin Endocrinol 1984; 21: 657–663.

    CAS  Google Scholar 

  250. Kasperska-Czyzykowa T, Heding LG, Czyzyk A. Serum levels of true insulin: C-peptide and proinsulin in peripheral blood of patients with cirrhosis. Diabetologia 1983; 25: 506–509.

    PubMed  CAS  Google Scholar 

  251. Ballmann M, Hartmann H, Deacon CF, Schmidt WE, Conlon JM, Creutzfeldt W. Hypersecretion of proinsulin does not explain the hyperinsulinaemia of patients with liver cirrhosis. Clin Endocrinol 1986; 25: 351–361.

    CAS  Google Scholar 

  252. Cavallo-Perin P, Cassader M, Bozzo C. Mechanism of insulin resistance in human liver cirrhosis: evidence of a combined receptor and postreceptor defect. J Clin Invest 1985; 75: 1659–1665.

    PubMed  CAS  Google Scholar 

  253. Faber OK, Christensen K, Kehlet H, Madsbad S, Binder C. Decreased insulin removal contributes to hyperinsulinemia in obesity. J Clin Endocrinol Metab 1981; 53: 618–621.

    PubMed  CAS  Google Scholar 

  254. Peins AN, Mueller RA, Smith GA, Struve MF, Kissebah AH. Splanchnic insulin metabolism in obesity: influence of body fat distribution. J Clin Invest 1986; 78: 1648–1657.

    Google Scholar 

  255. Wasilewska M, Pye S, Braaten J, Radziuk J. Hepatic insulin removal following oral glucose loading in nonobese subjects with glucose intolerance and mild Type 2 diabetes. Endocrinol and Metab 1996; 3: 265–274.

    Google Scholar 

  256. Morishima T, Pye S, Polonsky K, Radziuk J. The measurement and validation of nonsteady-state rates of C-peptide appearance in the dog. Diabetologia 1986; 29: 440–446.

    PubMed  CAS  Google Scholar 

  257. Morishima T, Bradshaw C, Radziuk J. Measurement using tracers of steady-state turnover and metabolic clearance of insulin in dogs. Am J Physiol 1985; 248: E203 - E208.

    PubMed  CAS  Google Scholar 

  258. Kolaczynski JW, Boden G. Effects of oleate and fatty acids from omental adipocytes on insulin uptake in rat liver cells. Endrocinology 1993; 133: 2871–2874.

    CAS  Google Scholar 

  259. Boden G, Chen X, Ruiz J, White JV, Rossetti L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest 1994; 93: 2438–2446.

    PubMed  CAS  Google Scholar 

  260. Boden G, Chen X. Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. J Clin Invest 1995; 96: 1261–1268.

    PubMed  CAS  Google Scholar 

  261. Blackard WG, Clore JN, Glickman PS, Nestler JE, Kellum JM. Insulin sensitivity of splanchnic and peripheral adipose tissue in vivo in morbidly obese man. Metabolism 1993; 42: 1195–1200.

    PubMed  CAS  Google Scholar 

  262. Henry RR. Impaired muscle fat metabolism: a cause or effect of visceral obesity? J Clin Invest 1995; 95: 1427–1428.

    PubMed  CAS  Google Scholar 

  263. Radziuk J, Barron P, Najm H, Davies J. The effect of systemic drainage of the pancreas on insulin sensitivity. J Clin Invest 1993; 92 (4): 1713–1721.

    PubMed  CAS  Google Scholar 

  264. Squifflet J-P. Pancreas Transplantation: Experimental and Clinical Studies. Karger, Basel, Switzerland, 1990.

    Google Scholar 

  265. Rosenlof LK, Earnhardt RC, Pruett TL, Stevenson WC, Douglas MT, Cornett GC, Hanks JB. Pancreas transplantation: an initial experience with systemic and portal drainage of pancreatic allografts. Am Surg 1992; 215: 586–595.

    CAS  Google Scholar 

  266. Shokouh-Amiri MH, Gaber AO, Gaber LW, Jensen SL, Hughes TA, Elmer D, Britt LG. Pancreas transplantation with portal venous drainage and enteric exocrine diversion: a new technique. Transplant Proc 1992; 24: 776–777.

    PubMed  CAS  Google Scholar 

  267. Katz H, Holman M, Velosa J, Robertson P, Rizza R. Effects of pancreas transplantation on postprandial glucose metabolism. N Engl J Med 1991; 325: 1278–1283.

    PubMed  CAS  Google Scholar 

  268. Van Der Burg, MPM, Gooszen HG, Guicherit OR, Jansen JBMJ, Frolich M, Van Haastert FA, Lamers CBHW. Contribution of partial pancreatectomy, systemic hormone delivery, and duct obliteration to glucose regulation in canine pancreas: importance in pancreas transplantation. Diabetes 1989; 38: 1082–1089.

    PubMed  Google Scholar 

  269. Sells RA, Calne RY, Hadjiyanakis V, Marshall VC. Glucose and insulin metabolism after pancreas transplantation. BMJ 1972; 3: 678–681.

    PubMed  CAS  Google Scholar 

  270. Osei K, Cottrell DA, Henry ML, Tesi RJ, Ferguson RM, O’Dorisio TM. Insulin insensitivity and glucose effectiveness in type I diabetic allograft recipients. Transplant Proc 1992; 24: 828–830.

    PubMed  CAS  Google Scholar 

  271. Earnhardt RC, Kindler DD, Weaver AM, Cornett G, Elahi D, Veldhuis JD, Hanks JB. Hyperinsulinaemia after pancreatic transplantation prediction by a novel computer model and in vivo verification. Ann Surg 1993; 218: 428–443.

    PubMed  CAS  Google Scholar 

  272. Diem P, Abid M, Redmon JB, Sutherland DER, Robertson P. Systemic venous drainage of pancreas allografts as independent cause of hyperinsulinaemia in Type 1 diabetic recipients. Diabetes 1990; 39: 534–540.

    PubMed  CAS  Google Scholar 

  273. Pozza G, Bosi E, Secchi A, Piatti PM, Touraine JL, Gelet A, Pontiroli AE, Dybernard JM, Traeger J. Metabolic control of Type 1 (insulin-dependent) diabetes after pancreas transplantation. BMJ 1985; 291: 510–513.

    PubMed  CAS  Google Scholar 

  274. Östman J, Bolinder J, Gunnarsson R, Brattström C, Tyden G, Wahren J, Groth C-G. Metabolic effects of pancreas transplantation: effects of pancreas transplantation on metabolic and hormonal profiles in IDDM patients. Diabetes 1989; 38 (Suppl 1): 88–93.

    PubMed  Google Scholar 

  275. Luzi L, Secchi A, Facchini F, Battezzati A, Staudacher C, Spotti D, Castoldi R, Ferrari G, Di Carlo V, Pozza G. Reduction of insulin resistance by combined kidney-pancreas transplantation in Type 1 (insulin-dependent) diabetic patients. Diabetologia 1990; 33: 549–556.

    PubMed  CAS  Google Scholar 

  276. Krusch DA, Brown KB, Cornett G, Freedlender AE, Kaiser DL, Hanks JB. Insulin-dependent and insulin-independent effects after surgical alterations of the pancreas. Surgery (St. Louis) 1989; 106: 60–68.

    CAS  Google Scholar 

  277. Christiansen E, Andersen HB, Rasmussen K, Christensen NJ, Olgaard K, Kirkegaard P, Tronier B, VOlund A, Damsbo P, Burcharth F, Madsbad S. Pancreatic (3-cell function and glucose metabolism in human segmental pancreas and kidney transplantation. Am J Physiol 1993; 264: E441 - E449.

    PubMed  CAS  Google Scholar 

  278. Pozza G, Traeger J, Dubernard JM, Secchi A, Pontiroli AE, Bosi E, Malik MC, Ruitton A, Blanc N. Endocrine responses of Type 1 (insulin-dependent) diabetic patients following successful pancreas transplantation. Diabetologia 1983; 24: 244–248.

    PubMed  CAS  Google Scholar 

  279. Barron P, Zhi R, Davies J, Welsh L, Radziuk J. Sensitivity and responsiveness of glucose removal to insulin decrease following systemic pancreatic venous drainage. Transplantation Proceedings 1995; 27: 3038–3039.

    PubMed  CAS  Google Scholar 

  280. Elahi D, McAloon-Dyke M, Clark BA, Kahn BB, Weinreb JE, Minaker KL, Wong GA, Morse LA, Brown RS, Shapiro ME, Gingerich RL, Rosenlof LK, Pruett TL, Andersen DK, Hanks JB. Sequential evaluation of islet cell responses to glucose in the transplanted pancreas in humans. Am J Surg 1993; 165: 15–22.

    PubMed  CAS  Google Scholar 

  281. Kendall D, Sutherland D, Najarian J, Goetz F, Robertson R. Effects of hemipancreatectomy on insulin secretion and glucose tolerance in healthy humans. N Engl J Med 1990; 322: 898–903.

    PubMed  CAS  Google Scholar 

  282. Goodner CJ, Walibe BC, Koerker DJ, Ensinck JW, Brown AC, Chickedel EW, Palmer J, Kalnasy L. Insulin, glucagon and glucose exhibit synchronous, sustained oscillations in fasting monkeys. Science 1977; 195: 177–179.

    PubMed  CAS  Google Scholar 

  283. Pagano C, Rizzato M, Lombardi AM, Fabris R, Favaro A, Federspil G, Vettor R. Effect of lactate on hepatic insulin clearance in perfused rat liver. Am J Physiol (Regulatory Integrative Comp Physiol 39) 1996; 270: R682 - R687.

    CAS  Google Scholar 

  284. Ferrannini E, Natali A, Brandi LS, Bonadonna R, Vigili de Kreutzemberg S, DelPrato S, Santoro D. Metabolic and thermogenic effects of lactate infusion in humans. Am J Physiol 1993; 265: E504 - E512.

    PubMed  CAS  Google Scholar 

  285. Xie H, Lautt WW. Insulin resistance of skeletal muscle produced by hepatic parasympathetic interruption. Am J Physiol 1996; 270: E858 - E863.

    PubMed  CAS  Google Scholar 

  286. Xie H, Lautt WW. Insulin resistance caused by hepatic cholinergic interruption and reversed by acetylcholine administration. Am J Physiol 1996; 271: E587 - E592.

    PubMed  CAS  Google Scholar 

  287. Corssmit EPM, Van Lanschot JJB, Romijn JA, Endert E, Sauerwein HP. Truncal vagotomy does not affect postabsorptive glucose metabolism in humans. J Appl Physiol 1995; 79: 97–101.

    PubMed  CAS  Google Scholar 

  288. Fabris SE, Thorburn A, Litchfield A, Proietto J. Effect of parasympathetic denervation of liver and pancreas on glucose kinetics in man. Metabolism 1996; 45: 987–991.

    PubMed  CAS  Google Scholar 

  289. Moore MC, Shulman GI, Giaccari A, Pagliassotti MJ, Cline G, Neal D, Rossetti L, Cherrington AD. Effect of hepatic nerves on disposition of an intraduodenal glucose load. Am J Physiol 1993; 265: E487 - E496.

    PubMed  CAS  Google Scholar 

  290. Radziuk J, Barron P. Does pancreatic portal venous drainage matter? Diabetes Annual 1995; 9: 141–157.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Radziuk, J., Pye, S. (1999). The Role of the Liver in Insulin Action and Resistance. In: Reaven, G.M., Laws, A. (eds) Insulin Resistance. Contemporary Endocrinology, vol 12. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-716-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-716-1_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-086-1

  • Online ISBN: 978-1-59259-716-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics