Skip to main content

Skeletal Muscle Insulin Resistance in Humans: Cellular Mechanisms

  • Chapter
Insulin Resistance

Part of the book series: Contemporary Endocrinology ((COE,volume 12))

  • 217 Accesses

Abstract

The degree of sensitivity of skeletal muscle to insulin is widely variable in humans. Diseases such as non-insulin-dependent diabetes mellitus (NIDDM or Type 2 diabetes) have a characteristic component of muscle insulin resistance. Many obese, nondiabetic individuals are also insulin resistant. However, healthy people who are not overweight also display a spectrum of insulin sensitivity. For example, when the euglycemic, hyperinsulinemic clamp technique is used to measure insulin-stimulated glucose uptake in such healthy individuals, there is a two-to threefold range in glucose uptake. Therefore, some percentage of even lean, healthy people can be said to be insulin resistant. Presumably, the ability of the pancreas to secrete sufficient insulin prevents this insulin resistance from developing into abnormal glucose tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar RS, Gorden P, Roth J, Kahn CR, DeMeyts P. Fluctuations in the affinity and concentration of insulin receptors on circulating monocytes of obese patients. J Clin Invest 1976; 58: 1123–1135.

    PubMed  CAS  Google Scholar 

  2. Beck-Nielsen H. The pathogenic role of an insulin receptor defect in diabetes mellitus of obese. Diabetes 1978; 17: 1175–1181.

    Google Scholar 

  3. Olefsky JM. Decreased insulin binding to adipocytes and circulating monocytes from obese subjects. J Clin Invest 1976; 57: 1165–1172.

    PubMed  CAS  Google Scholar 

  4. Kolterman O, Gray R, Griffin J, Bernstein P, Insel J, Scarlett J, Olefsky J. Receptor and postreceptor defects contribute to the insulin resistance in non-insulin dependent diabetes mellitus. J Clin Invest 1981; 68: 957–969.

    PubMed  CAS  Google Scholar 

  5. Bak J, Jacobsen U, Jorgensen F, Pedersen O. Insulin receptor function and glycogen synthase activity in skeletal muscle biopsies from patients with insulin-dependent diabetes mellitus: effects of physical training. J Clin Endocrinol Metab 1989; 69: 158–164.

    PubMed  CAS  Google Scholar 

  6. Damsbo P, Hother Nielsen O, Beck-Nielsen H. Reduced glycogen synthase activity in skeletal muscle from obese patients with and without Type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1991; 34: 239–245.

    PubMed  CAS  Google Scholar 

  7. Dohm GL. Insulin receptor kinase in human skeletal muscle from obese patients with and without noninsulin-dependent diabetes mellitus. J Clin Invest 1987; 79: 1330–1337.

    PubMed  Google Scholar 

  8. Taylor SI. Lilly Lecture: molecular mechanisms of insulin resistance. Lessons from patients with mutations in the insulin-receptor gene. Diabetes 1992; 41: 1473–1490.

    PubMed  CAS  Google Scholar 

  9. Krook A, Kumar S, Laing I, Boulton AJ, Wass JA, O’Rahilly S. Molecular scanning of the insulin receptor gene in syndromes of insulin resistance. Diabetes 1994; 43: 357–368.

    PubMed  CAS  Google Scholar 

  10. Wertheimer E, Litvin Y, Ebstein RP, Bennet ER, Barbetti F, Accili D, Taylor SI. Deletion of exon 3 of the insulin receptor gene in a kindred with a familial form of insulin resistance. J Clin Endocrinol Metab 1994; 78: 1153–1158.

    PubMed  CAS  Google Scholar 

  11. Crook A, O’Rahilly S. Mutant insulin receptors in syndromes of insulin resistance. Baillières Clin Endocrinol Metab 1996; 10: 97–122.

    Google Scholar 

  12. Rouard M, Macari F, Bouix O., Lautier C, Brun JF, Lefebvre P, Renard E, Bringer J, Jaffiol C, Grigorescu F. Identification of two novel insulin receptor mutations, Asp59Gly and Leu62Pro, in type A syndrome of extreme insulin resistance. Biochem Biophys Res Comm 1997; 234: 764–768.

    PubMed  CAS  Google Scholar 

  13. Kadowaki H, Takahashi Y, Ando A, Momomura K, Kaburagi Y, Quin JD, MacCuish AC, Koda N, Fukushima Y, Taylor SI, Akanuma Y, Yazaki Y, Kadowaki T. Four mutant alleles of the insulin receptor gene associated with genetic syndromes of extreme insulin resistance. Biochem Biophys Res Comm 1997; 237: 516–520.

    PubMed  CAS  Google Scholar 

  14. t Hart LM, Stolk RP, Heine RI, Crobbee DE, van der Does FE, Massen JA. Association of the insulin-receptor variant Met-985 with hyperglycemia and non-insulin-dependent diabetes mellitus in the Netherlands: a population based study. Am J Hum Genetics 1996; 59: 1119–1125.

    Google Scholar 

  15. Caro JF, Sinha MK, Raju SM, Ittoop O, Pories WJ, Flickinger EG, Meelheim D, Dohm GL. Insulin receptor kinase in human skeletal muscle from obese subjects with and without non-insulin dependent diabetes. J Clin Invest 1987; 79: 1330–1337.

    PubMed  CAS  Google Scholar 

  16. Obermaier-Kusser B, White MF, Pongratz DE, Su Z, Ermel B, Muhlbacher C, Haring HU. A defective intramolecular autoactivation cascade may cause the reduced kinase activity of the skeletal muscle insulin receptor from patients with non-insulin-dependent mellitus. J Biol Chem 1989; 264: 9497–9504.

    PubMed  CAS  Google Scholar 

  17. Nolan JJ, Freidenberg G, Henry R, Reichart D, Olefsky JM. Role of human skeletal muscle insulin receptor kinase in the in vivo insulin resistance of noninsulin-dependent diabetes mellitus and obesity. J Clin Endocrinol Metab 1994; 78: 271–277.

    Google Scholar 

  18. Kellerer M, Coghlan M, Capp E, Muhlhofer A, Kroder G, Mosthaf L, Galante P, Siddel K, Haring HU. Mechanism of insulin receptor kinase inhibition in non-insulin-dependent diabetes mellitus patients. Phosphorylation of serine 1327 or threonine 1348 is unaltered. J Clin Invest 1995; 96: 6–11.

    PubMed  CAS  Google Scholar 

  19. Nolan JJ, Ludvik B, Baloga J, Reichart D, Olefsky JM. Mechanisms of the kinetic defect in insulin action in obesity and NIDDM. Diabetes 1997; 46: 994–1000.

    PubMed  CAS  Google Scholar 

  20. Pedersen O, Hother-Nielson O, Bak J, Hjollund E, Beck-Nielsen H. Effects of sulfonylureas on adipocyte and skeletal muscle insulin action in patients with non-insulin-dependent diabetes mellitus. Am J Med 1991; 90: 225–28S.

    Google Scholar 

  21. Klein HH, Vestergaard H, Kotzke G, Pedersen O. Elevation of serum insulin concentration during euglycemic hyperinsulinemic clamp studies leads to similar activation of insulin receptor kinase in skeletal muscle of subjects with and without NIDDM. Diabetes 1995; 44: 1310–1317.

    PubMed  CAS  Google Scholar 

  22. McGuire MC, Fields RM, Nyomba BL, Raz I, Bogardus C, Tonks NK, Sommercorn J. Abnormal regulation of protein tyrosine phosphatase activities in skeletal muscle of insulin-resistant humans Diabetes 1991; 40: 939–942.

    CAS  Google Scholar 

  23. Worm D, Vinten J, Staehr P, Henriksen JE, Handberg A, Beck-Nielsen H. Altered basal and insulin-stimulated phosphotyrosine phosphatase (PTPase) activity in skeletal muscle from NIDDM patients compared with control subjects. Diabetologia 1996; 39: 1208–1214.

    PubMed  CAS  Google Scholar 

  24. Kroder G, Bossenmaier B, Kellerer M, Capp E, Stoyanov B, Muhlhofer A, Berti L, Horikoshi H, Ullrich A, Haring H. Tumor necrosis factor-alpha- and hyperglycemia-induced resistance. Evidence for different mechanisms and different effects on insulin signaling. J Clin Invest 1996; 97: 1471–1477.

    PubMed  CAS  Google Scholar 

  25. Hoffman C, Lorenz K, Braithwaite S, Colea J, Palazube B, Hotamsligil G, Spiegelman B. Altered gene expression for tumor necrosis factor-a and its receptors during drug and dietary modulation of insulin resistance. Endocronology 1994; 134: 264–270.

    Google Scholar 

  26. DeFea K, Roth R. Modulation of insulin receptor Substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase. J Biol Chem 1997; 272: 31400–1406.

    CAS  Google Scholar 

  27. Chin JE, Liu F, Roth RA. Activation of protein kinase c alpha inhibits insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1. Mol Endocrinol 1994; 8: 51–58.

    PubMed  CAS  Google Scholar 

  28. Craven P, Derubertis F. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose. J Clin Invest 1989; 83: 1667–1675.

    PubMed  CAS  Google Scholar 

  29. White MF, Kahn CR. The insulin signaling system. J Biol Chem 1994; 269: 1–4.

    PubMed  CAS  Google Scholar 

  30. Yenush L, White MF. The IRS-signaling system during insulin and cytokine action. Bioessays 1997; 19: 491–500.

    PubMed  CAS  Google Scholar 

  31. Saltiel AR. Diverse signaling pathways in the cellular actions of insulin. Am J Physiol 1996; 270: E375 - E385.

    PubMed  CAS  Google Scholar 

  32. Tanasijevic MJ, Myers MG Jr., Thomas RS, Crimmins DL, White MF, Sacks DB. Phosphorylation of the insulin receptor substrate IRS-1 by casein kinase II. J Biol Chem 1993; 268: 18157–18166.

    PubMed  CAS  Google Scholar 

  33. Patti M, Sun X, Bruening J, Araki E, Lipes M, White M, Kahn CR. 4PS/IRS-2 is the alternative substrate of the insulin receptor in IRS-1 deficient mice. J Biol Chem 1995; 270: 24670–24673.

    PubMed  CAS  Google Scholar 

  34. Sasaoka T, Rose DW, Jhun BH, Saltiel AR, Draznin B, Olefsky JM. Evidence for a functional role of She proteins in mitogenic signaling induced by insulin-like growth factor-1, and epidermal growth factor. J Biol Chem 1994; 269: 13689–13694.

    PubMed  CAS  Google Scholar 

  35. Kao AW, Waters SB, Okada S, Pessin JE. Insulin stimulated the phosphorylation of the 66- and 52-kilodalton Shc isoforms by distinct pathways. Endocrinology 1997; 138: 2474–2480.

    PubMed  CAS  Google Scholar 

  36. Skolnik EY, Lee CH, Batzer A, Vicentini LM, Zhou M, Daly R, Myers MJ Jr., Backer JM, Ullrich A, White MF. The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS-1 and Shc: implications for insulin control of ras signaling. EMBO J 1993; 12: 1929–1936.

    PubMed  CAS  Google Scholar 

  37. Myers MG Jr., Wang LM, Sun XJ, Zhang Y, Yenush L, Schlessinger J, Pierce JH, White MF. Role of IRS-I-GRB-2 complexes in insulin signaling. Mol Cell Biol 1994; 14: 3577–3587.

    PubMed  CAS  Google Scholar 

  38. Dong LQ, Du H, Porter SG, Kolakowski LF, L AV, Mandarino LJ, Fan J, Yee D, Liu F. Cloning, chromosome localization, expression, and characterization of an Src homology 2 andpleckstrin homology domain-containing insulin receptor binding protein hGrblOy. J Biol Chem 1997; 272: 29104–29112.

    PubMed  CAS  Google Scholar 

  39. Backer JM, Myers MG Jr., Sun XJ, Chin DJ, Shoelson SE, Miralpeix M, White MF. Association of IRS-1 with the insulin receptor and the phosphatidylinositol 3’-kinase Formation of binary and ternary signaling complexes in intact cells. J Biol Chem 1993; 268: 8204–8212.

    PubMed  CAS  Google Scholar 

  40. Cheatham B, Vlahos C, Cheatham L. Phosphatidylinositol 3-kinase is required for insulin stimulation of pp70 s6 kinase, DNA synthesis and glucose transporter translocation. Mol Cell Biol 1994; 14: 4902–4911.

    PubMed  CAS  Google Scholar 

  41. Kanai F, Todaka M, Hayashi H, Kamohara S, Ishii K, Okada T, Hazeki O, Ui M, Ebina Y. Insulin-stimulated GLUT4 translocation is relevant to the phosphorylation of IRS-1 and the activity of PI 3-kinase. Biochem Biophys Res Commun 1993; 195: 762–768.

    PubMed  CAS  Google Scholar 

  42. Cross D, Alessi D, Vandenheede J, McDowell H, Hundal H, Cohen P. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin but not rapamycin. Biochem J 1994; 303: 21–26.

    PubMed  CAS  Google Scholar 

  43. Dorrestjin J, Ouwens D, Van Den Berghe N, Bos J, Maassen J. Expression of a dominant-negative Ras mutant does not affect stimulation of glucose uptake and glycogen synthesis by insulin. Diabetologia 1996; 39: 558–563.

    Google Scholar 

  44. Osawa H, Sutherland C, Robey R, Printz R, Granner D. Analysis of the signaling pathway involved in the regulation of hexokinase II gene transcription by insulin. J Biol Chem 1996; 271: 16690–16694.

    PubMed  CAS  Google Scholar 

  45. Goodyear L, Giorgino F, Sherman L, Carvey J, Smith R, Dohm GL. Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest 1995; 95: 2195–2204.

    PubMed  CAS  Google Scholar 

  46. Imai Y, Fuysco A, Suzuki Y, Lesniak MA, D’Alfonzo R, Sesti G, Bertoli A, Lauro R, Accili D, Taylor SI. Variant sequences of insulin receptor substrate-1 in patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1994; 79: 1655–1658.

    PubMed  CAS  Google Scholar 

  47. Armstrong M, Haldane F, Taylor RW, Humpriss D, Berrish T, StewartMW, Turnbull DM, Alberti KG, Walker M. Human insulin receptor substrate-1: variant sequences in familial non-insulin-dependent diabetes mellitus [published erratum appears in Diabetic Med 1996 May;13(5): 397]. Diabetic Med 1996; 13: 133–138.

    PubMed  CAS  Google Scholar 

  48. Zhang Y, Wat N, Stratton IM, Warren-Perry MG, Orho M, Groop L, Turner RC. UKPDS 19: heterogeneity in NIDDM: separate contributions of IRS-1 and beta 3-adrenergic-receptor mutations to insulin resistance and obesity respectively with no evidence for glycogen synthase gene mutations. UK Prospective Diabetes Study. Diabetologia 1996; 39: 1505–1511.

    PubMed  CAS  Google Scholar 

  49. Armstrong M, Haldane F, Avery PJ, Mitcheson J, Stewart MW, Turnbull DM, Walker M. Relationship between insulin sensitivity and insulin receptor substrate-1 mutations in non-diabetic relatives of NIDDM families. Diabetic Med 1996; 13: 341–345.

    PubMed  CAS  Google Scholar 

  50. Cushman S, Wardzala L. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. J Biol. Chem 1980; 255: 4578–4762.

    Google Scholar 

  51. Suzuki K, Kono T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an internal storage site. Proc Natl Acad Sci USA 1980; 77: 2542–2545.

    PubMed  CAS  Google Scholar 

  52. Goud B. Small GTP-binding proteins as compartmental markers. Semin Cell Biol 1992; 3: 301–307.

    PubMed  CAS  Google Scholar 

  53. Lombardi D, Soldati T, Riederer MA. Rab9 functions in transport between late endosomes and the trans Golgi network. EMBO J 1993; 12: 677–682.

    PubMed  CAS  Google Scholar 

  54. Marsh M, Cutler D. Membrane traffic• taking the Rabs off endocytosis. Curr Biol 1993; 3: 30–33.

    PubMed  CAS  Google Scholar 

  55. Waters MG, Griff IC, Rothman JE. Proteins involved in vesicular transport and membrane fusion. Curr Opin Cell Biol 1991; 3: 615–620.

    PubMed  CAS  Google Scholar 

  56. Sztul ES, Melancon P, Howell KE. Targeting and fusion in vesicular transport. Trends Cell Biol 1992; 2: 381–386.

    PubMed  CAS  Google Scholar 

  57. Zimmerberg J, Vogel SS, Chernomordik LV. Mechanisms of membrane fusion. Ann Rev Biophys Biomol Struct 1993; 22: 433–466.

    CAS  Google Scholar 

  58. Cheatham B, Volchuk A, Kahn CR, Want L, Rhodes CJ, Klip A. Insulin-stimulated translocation of GLUT 4 glucose transporters requires SNARE-complex proteins. Proceedings of the National Academy of Sciences of the United States of America 1996; 93: 15169–15173.

    PubMed  CAS  Google Scholar 

  59. Olson AL, Knight JB, Pessin JE. Syntaxin 4, VAMP2, and/or VAMP3/cellubrevin are functional target membrane and vesicle SNAP receptors for insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol 1997; 17: 2425–2435.

    PubMed  CAS  Google Scholar 

  60. Shisheva A, Doxsey SJ, Buxton JM, Czech MP. Pericentriolar targeting of GDP-dissociation inhibitor isoform 2. European J Cell Biol 1995; 68: 143–158.

    CAS  Google Scholar 

  61. Shisheva A, Czech MP. Association of cytosolic Rab4 with GDl isoforms in insulin-sensitive 3T3–L1 adipocytes. Biochem 1997; 36: 6564–6570.

    CAS  Google Scholar 

  62. Saccomani MP, Bonadonna RC, Bier DM, DeFronzo RA, Cobelli C. A model to measure insulin effects on glucose transport and phosphorylation in muscle: a three-tracer study. Am J Physiol 1996; 270: E170 - E185.

    PubMed  CAS  Google Scholar 

  63. Bonadonna R, Del Prato S. Saccomani M, Bonora E, Gulli G, Ferrannini E, Bier D, Cobelli C, DeFronzo R. Transmembrane glucose transport in skeletal muscle of patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1993; 92: 486–494.

    PubMed  CAS  Google Scholar 

  64. Bonadonna RC, Del Prato S, Bonora E, Saccomani MP, Gulli g, Natali A, Frascerra S, Pecori N, Ferrannini E, Bier D, Cobelli C, DeFronzo RA. Roles of glucose transport and glucose phosphorylation in muscle insulin resistance of NIDDM. Diabetes 1996; 45: 915–925.

    PubMed  Google Scholar 

  65. Raitakari M, Nuutila P, Ruotsalainen U, Laine H, Teras M, Iida H, Makimattila S, Utriainen T, Oikonen V, Sipila H, Haaparanta M, Sohn O, Wegelius U, Knuuti J, Yki-Jarvinen H. Evidence for dissociation of insulin stimulation of blood flow and glucose uptake in human skeletal muscle: studies using [1501H20, [18F]fluoro-2-deoxy-D-g;lucose, and positron emission tomography. Diabetes 1996; 45: 1471–1477.

    PubMed  CAS  Google Scholar 

  66. Kelley DE, Mintun MA, Watkins SC, Simoneau JA, Jadali F, Frederickson A, Beattie J, Theriault R. The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J Clin Invest 1996; 97: 2705–2713.

    PubMed  CAS  Google Scholar 

  67. Pedersen O, Bak JF, Andersen PH, Lund S, Moller DE, Flier JS, Kahn BB. Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM. Diabetes 1990; 39: 865–870.

    PubMed  CAS  Google Scholar 

  68. Garvey WT, Maianu L, Hancock J, Golichowski A, Baron A. Gene expression of GLUT4 in skeletal muscle from insulin-resistant patients with obesity, IGT, GDM, and NIDDM. Diabetes 1992; 41: 465–475.

    PubMed  CAS  Google Scholar 

  69. Buse JB, Yasuda K, Lay TP, Seo TS, Olson AL, Pessin JE, Karam JH, Seino S, Bell GI. Human GLUT4/muscle-fat glucose-transporter gene. Characterization and genetic variation. Diabetes 1992; 41: 1436–1445.

    PubMed  CAS  Google Scholar 

  70. Guma A, Zierath H, Wallberg-Henrickson H, Klip A. Insulin induces translocation of GLUT-4 glucose transporters in human skeletal muscle. Am. J Physiol 1995; 268: E613 - E622.

    PubMed  CAS  Google Scholar 

  71. Zierath JR, He L, Guma A, Odegaard WE, Klip A, Wallberg-Henriksson H. Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia 1996; 39: 1180–1189.

    PubMed  CAS  Google Scholar 

  72. Goodyear LT, Hirshman MF, King PA, Thompson CM, Horton ED, Horton ES. Skeletal muscle plasma membrane glucose transport and glucose transporters after exercise. J Appl Physiol 1990; 68: 193–198.

    PubMed  CAS  Google Scholar 

  73. Watkins SC, Frederickson A, Theriault R, Korytkowski M, Turner DS, Kelley DE. Insulin-stimulated Glut 4 translocation in human skeletal muscle: a quantitative confocal microscopic assessment. Histochemical J 1997; 29: 91–96.

    CAS  Google Scholar 

  74. Printz RL, Koch S, Potter LR, O’Doherty RM, Tiensinga JJ, Moritz S, Granner DK. Hexokinase II mRNA and gene structure, regulation by insulin, and evolution. J Biol Chem 1993; 268: 5209–5219.

    PubMed  CAS  Google Scholar 

  75. Lehto M, Huang X, Davis EM, LeBeau MM, Laurila E, Eriksson KF, Bell GI, Groop L. Human hexokinase II gene: exon-intron organization, mutation screening in NIDDM, and its relationship to muscle hexokinase activity. Diabetologia 1995; 38: 1466–1474.

    PubMed  CAS  Google Scholar 

  76. Burcelin R, Printz R, Kande J, Assan R, Granner D, Girard J. Regulation of glucose transporter and hexokinase II expression in tissues of diabetic rats. Am J Physiol 1993; 265: E392 - E401.

    PubMed  CAS  Google Scholar 

  77. Mandarino LJ, Printz RL, Cusi KA, Kinchington P, O’Doherty R, Osawa H, Sewell C, Consoli A, Granner DK, DeFronzo RA. Regulation of hexokinase II and glycogen synthase mRNA, protein, and activity in human muscle. Am J Physiol 1995; 269: E701 - E708.

    PubMed  CAS  Google Scholar 

  78. Vestergaard H, Bjorbaek C, Hansen T, Larsen FS, Granner DK, Pedersen O. Impaired activity and gene expression of hexokinase II in muscle from non-insulin-dependent diabetes mellitus patients. J Clin Invest 1995; 96: 2639–2645.

    PubMed  CAS  Google Scholar 

  79. Pendergrass M, Koval J, Vogt C, Yki-Jarvinen H, Iozzo P, Pipek R, Ardehali H, Printz R, Granner D, DeFronzo RA, Mandarino LJ. Insulin-induced hexokinase II expression is reduced in obesity and noninsulin-dependent diabetes mellitus. Diabetes 1998; 47: 387–394.

    PubMed  CAS  Google Scholar 

  80. Bessman B, Geiger P. Compartmentation of hexokinase and creatine phosphokinase, cellular regulation, and insulin action. Curr Topics Cell Reg 1980; 16: 55–86.

    CAS  Google Scholar 

  81. Laursen S, Belknap J, Sampson K, Knull H. Hexokinase redistribution in vivo. Biochem Biophys Acta 1990; 1034: 118–121.

    PubMed  CAS  Google Scholar 

  82. Ardehali H, Yano Y, Printz RL, Koch S. Whitesell RR, May JM, Granner DK. Functional organization of mammalian hexokinase II. Retention of catalytic and regulatory functions in both the NH2- and COOH-terminal halves. J Biol Chem 1996; 271: 1849–852.

    PubMed  Google Scholar 

  83. Laursen SE, Belknap JK, Sampson KE, Knull HR. Hexokinase redistribution in vivo. Biochem Biophys Acta 1989; 1084: 118–121.

    Google Scholar 

  84. Chen-Zion M, Bassukevitz Y, Beitner R. Sequence of insulin effects on cytoskeletal and cytosolic phosphofructokinase, mitochondrial hexokinase, glucose 1,6-bisphosphate and fructose 2,6bisphosphate levels, and the antagonistic action of calmodulin inhibitors on diaphragm muscle. Int J Biochem 1992; 24: 1661–1667.

    PubMed  CAS  Google Scholar 

  85. Russell RR III, Mrus JM, Mommessin JL, Taegtmeyer H. Compartmentation of hexokinase in rat heart. J. Clin Invest 1992; 90: 1972–1977.

    PubMed  CAS  Google Scholar 

  86. Vogt C, Yki-Jarvinen H, Iozzo P, Pipek R, Pendergrass M, Koval J, Ardehali H, Printz R, Granner D, DeFronzo RA, Mandarin LJ. Effects of insulin on subcellular localization of hexokinase II in human skeletal muscle in vivo. J Clin Endocrinol Metab 1997; 83: 1–5.

    Google Scholar 

  87. Laakso M, Malkki M, Deeb SS Amino acid substitutions in hexokinase II among patients with NIDDM. Diabetes 1995; 44: 330–334.

    PubMed  CAS  Google Scholar 

  88. Vidal-Puig A, Printz RL, Stratton IM, Granner DK, Moller DE. Analysis of the hexokinase II gene in subjects with insulin resistance and NIDDM and detection of a G1n142 -* His substitution. Diabetes 1995; 44: 340–346.

    PubMed  CAS  Google Scholar 

  89. Taylor RW, Printz RL, Armstrong M, Granner DK, Alberti KG, Turnbull DM, Walker M. Variant sequences of the Hexokinase II gene in familial NIDDM. Diabetologia 1996; 39: 322–328.

    PubMed  CAS  Google Scholar 

  90. Kelley D, Reilly J, Veneman T, Mandarino LJ. Effect of insulin on skeletal muscle glucose storage, oxidation, and glycolysis in humans. Am J Physiol 1990; 258: E923 - E929.

    PubMed  CAS  Google Scholar 

  91. Boden G, Ray TK, Smith RH, Owen OE. Carbohydrate oxidation and storage in obese non-insulindependent diabetic patients. Diabetes 1983; 32: 982–987.

    PubMed  CAS  Google Scholar 

  92. Thiebaud D, Jacot E, DeFronzo RA, Maeder E, Jequier E, Felber JP. The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 1982; 31: 957–963.

    PubMed  CAS  Google Scholar 

  93. Bogardus C, Lillioja S, Stone K, Mott D. Correlation between muscle glycogen synthase activity and in vivo insulin action in man. J Clin Invest 1984; 73: 1185–1190.

    PubMed  CAS  Google Scholar 

  94. Damsbo P, Hother-Nielsen O, Beck-Nielsen H. Reduced glycogen synthase activity in skeletal muscle from obese patients with and without Type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1991; 34: 239–245.

    PubMed  CAS  Google Scholar 

  95. Thorburn AW, Gumbiner B, Bulacan R, Brechtel G, Henry RR. Multiple defects in muscle glycogen synthase activity contribute to reduced glycogen synthesis in non-insulin dependent diabetes mellitus. J Clin Invest 1991; 87: 489–495.

    PubMed  CAS  Google Scholar 

  96. Mandarino LJ, Consoli A, Kelley DE, Reilly JJ, Nurjhan N. Fasting hyperglycemia normalized oxidative and nonoxidative pathways of insulin-stimulated glucose metabolism in non-insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1990; 71: 1544–1551.

    PubMed  CAS  Google Scholar 

  97. Kelley D, Mandarino L. Hyperglycemia normalizes insulin-stimulated skeletal muscle glucose oxidation and storage in non-insulin-dependent diabetes mellitus. J Clin Invest 1990; 86: 1999–2007.

    PubMed  CAS  Google Scholar 

  98. Vestergaard H, Bjorbaek C, Andersen P, Bak J, Pedersen O. Impaired expression of glycogen synthase mRNA in skeletal muscle of NIDDM patients. Diabetes 1991; 40: 1740–1745.

    PubMed  CAS  Google Scholar 

  99. Chen YH, Hansen L, Chen MX, Bjorbaek C, Vestergaard H, Hansen T, Cohen PTW, Pedersen O. Sequence of the human glycogen-associated regulatory subunit of type I protein phosphatase and analysis of its coding region and mRNA level in muscle from patients with NIDDM. Diabetes 1994; 43: 1234–1241.

    PubMed  CAS  Google Scholar 

  100. Brady MJ, Printen JA, Mastick CC, Saltiel AR. Role of protein targeting to glycogen (PTG) in the regulation of protein phosphatase-1 activity. J Biol Chem 1997; 272: 20198–20204.

    PubMed  CAS  Google Scholar 

  101. Chen YH, Hansen L, Chen MX, Bjorbaek C, Vestergaard H, Hansen T, Cohen PT, Pedersen O. Sequence of the human glycogen-associated regulatory subunit of type 1 protein phosphatase and analysis of its coding region and mRNA level in muscle from patients with NIDDM. Diabetes 1994; 43: 1234–1241.

    PubMed  CAS  Google Scholar 

  102. Rothman D, Magnusson I, Cline G, Gerard D, Kahn CR, Shulman R, Shulman G. Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci 1995; 92: 983–987.

    PubMed  CAS  Google Scholar 

  103. Vaag A, Henriksen J, Beck-Nielsen H. Decreased insulin activation of glycogen synthase in skeletal muscle in young non-obese Caucasian first-degree relatives of patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1992; 89: 782–788.

    PubMed  CAS  Google Scholar 

  104. Gulli G, Ferrannini E, Stern M, Haffner S, DeFronzo RA. The metabolic profile of NIDDM is fully established in glucose-tolerant offspring of two Mexican-American NIDDM parents. Diabetes 1992; 41: 1575–1586.

    PubMed  CAS  Google Scholar 

  105. Del Prato S, Leonetti F, Simonson DC, Sheehan P, Matsuda M, DeFronzo RA. Effect of sustained physiologic hyperinsulinemia and hyperglycemia on insulin secretion and insulin sensitivity in man. Diabetologia 1994; 37: 1025–1035.

    PubMed  CAS  Google Scholar 

  106. Henry R, Ciaraldi T, Abrams-Carter L, Mudalie S, Park KS, Nikoulina S. Glycogen synthase activity is reduced in cultured skeletal muscle cells of non-insulin-dependent diabetes mellitus subjects. J Clin Invest 1996; 98: 1231–1236.

    PubMed  CAS  Google Scholar 

  107. Henry R. Ciaraldi T, Mudaliai S, Abran L, Nikonlira S. Acquired defects of glycogen synthase activity in cultured human skeletal muscle cells. Diabetes 1996; 45: 400–407.

    PubMed  CAS  Google Scholar 

  108. Mandarino LJ, Baker B, Rizza R, Genest J, Gerich J. Infusion of insulin impairs human adipocyte glucose metabolism in vitro without decreasing adipocyte insulin receptor binding. Diabetologia 1984; 27: 358–363.

    PubMed  CAS  Google Scholar 

  109. Rizza RA, Mandarino LJ, Genest J, Baker BA, Gerich JE. Production of insulin resistance by hyperinsulinaemia in man. Diabetologia 1985; 28: 70–75.

    PubMed  CAS  Google Scholar 

  110. Crook E, Zhou J, Daniels M, Neidigh H, McClain D. Regulation of glycogen synthase by glucose, glucosamine, and glutamine: fructose-6-phosphate aminotransferase. Diabetes 1995; 44: 314–320.

    PubMed  CAS  Google Scholar 

  111. Groop L, Kankuri M, Schalin-Jantti C, Eckstrand A, Nikula-Ijas P, Wilder E, Kuismanen E, Eriksson J, Fransilla-Kallunki A, Saloranta C, Koskimies S. Association between polymorphism of the glycogen synthase gene and non-insulin-dependent diabetes mellitus. New Eng J Med 1993, 328: 10–14.

    PubMed  CAS  Google Scholar 

  112. Majer M, Mott DM, Mochizuki H, Rowles JC, Pedersen O, Knowler WC, Bogardus C, Prochazka M. Association of the glycogen synthase locus on 19g13 with NIDDM in Pima Indians. Diabetologia 1996; 39: 314–321.

    PubMed  CAS  Google Scholar 

  113. Wieland O. The mammalian pyruvate dehydrogenase complex: structure and regulation. Rev Physiol Biochem Pharmacol 1983; 96: 123–170.

    PubMed  CAS  Google Scholar 

  114. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. The Lancet 1963; 1: 7285–289.

    Google Scholar 

  115. Randle PJ. Fuel selection in animals. Biochem Soc Trans 1986; 14: 799–806.

    PubMed  CAS  Google Scholar 

  116. Consoli A, Nurjhan N, Capani F, Gerich J. Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 1989; 38: 550–557.

    PubMed  CAS  Google Scholar 

  117. Mandarin LJ, Wright KS, Verity LS, Nichols J, Bell JM, Kolterman OG, Beck-Nielsen H. Effects of insulin infusion on human skeletal muscle pyruvate dehydrogenase, phosphofructokinase and glycogen synthase. J Clin Invest 1987; 80: 655–663.

    Google Scholar 

  118. Mandarino LJ, Consoli A, Jain A, Kelley DE. Differential regulation of intracellular glucose metabolism by glucose and insulin in human muscle. Am J Physiol 1993; 265: E898 - E905.

    PubMed  CAS  Google Scholar 

  119. Mandarino LJ, Consoli A, Jain A, Kelley DE. Interaction of carbohydrate and fat fuels in human skeletal muscle; impact of obesity and NIDDM. Am J Physiol 1996; 270: E463 - E470.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mandarino, L.J. (1999). Skeletal Muscle Insulin Resistance in Humans: Cellular Mechanisms . In: Reaven, G.M., Laws, A. (eds) Insulin Resistance. Contemporary Endocrinology, vol 12. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-716-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-716-1_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-086-1

  • Online ISBN: 978-1-59259-716-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics