Advertisement

Molecular Genetics and Markers of Progression

  • Meena Augustus
  • Judd W. Moul
  • Shiv Srivastava
Part of the Current Clinical Urology book series (CCU)

Abstract

Prostate cancer (CaP) is the most common solid tumor in American males (1). The wide spectrum of biological behavior (2) exhibited by prostatic neoplasms poses the difficulty of predicting the clinical course in the individual patient (3,4). Because of increasing public awareness and screening efforts, the enhanced incidence has translated into a large increase in the use of radical prostatectomy as well as four other treatment modalities for localized disease (5). With this incremental rise in surgical intervention has come the frustrating realization of the inability to predict organ-confined disease and clinical outcome for a given patient (5, 6). Traditional markers, such as grade, clinical stage, and pretreatment prostate-specific antigen (PSA), are of limited prognostic value for individual men. There is clearly a need to recognize and develop molecular and genetic biomarkers to improve prognostication and the management of the patient with clinically localized CaP. As with other common human neoplasia (7), the search for molecular genetic markers to better define the genesis and progression of CaP, is the key focus for cancer research investigations worldwide.

Keywords

Prostate Cancer Radical Prostatectomy Comparative Genomic Hybridization Human Prostate Cancer Allelic Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parker SL, Tong T, Bolden S, Wingo PA. Cancer statistics. CA Cancer J Clin 1996; 46: 5 - 27.PubMedCrossRefGoogle Scholar
  2. 2.
    Visakorpi T, Kallioniemi OP, Koivula T, Isola J. New prognostic factors in prostate carcinoma. Eur Urol 1993; 24: 438 - 449.PubMedGoogle Scholar
  3. 3.
    Mostofi FK. Grading of prostate carcinoma. Cancer Chemotherapy Rep 1975; 59: 111.Google Scholar
  4. 4.
    Lu-Yao GL, McLerran D, Wasson J, Wennberg JE. An assessment of radical prostatectomy. Time trends, geographical variations and outcomes. JAMA 1993; 269: 2633 - 2636.PubMedCrossRefGoogle Scholar
  5. 5.
    Partin AW, Oesterling JE. The clinical usefulness of prostate-specific antigen: update 1994, J Urol 1994; 152: 1358 - 1368.PubMedGoogle Scholar
  6. 6.
    Wasson JH, Cushman CC, Bruskewit RC, Littenberg B, Mulley AG, Wennberg JE. A structured literature review of treatment for localized prostate cancer. Arch Fam Med 1993; 2: 487 - 493.PubMedCrossRefGoogle Scholar
  7. 7.
    Weinberg RA. How cancer arises. Sci Am 1996; 9: 62 - 70.CrossRefGoogle Scholar
  8. 8.
    Bostwick DG. High grade prostatic intraepithelial neoplasia: the most likely precursor of prostate cancer. Cancer 1995; 75: 1823 - 1836.CrossRefGoogle Scholar
  9. 9.
    Bostwick DG, Pacelli A, Lopez-Beltran A. Molecular biology of prostatic intraepithelial neoplasia. The Prostate 1996; 29: 117 - 134. PubMedCrossRefGoogle Scholar
  10. 10.
    Sah-See accompanying article.Google Scholar
  11. 11.
    Pannek J, Partin AW: Prostate specific antigen: what s new in 1997. Oncology 1997; 11: 1273 - 1278.PubMedGoogle Scholar
  12. 12.
    Partin AW, Kattan MW, Subong EN, Walsh PC, Wojno KJ, Oesterling JE, et al. Combination of prostate specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA 1997; 277: 1445 - 1451.PubMedCrossRefGoogle Scholar
  13. 13.
    Gomella LG, Raj GV, Moreno JG. Reverse transcriptase polymerase chain reaction for prostate specific antigen in the management of prostate cancer. J Urol 1997; 158: 326 - 337.PubMedCrossRefGoogle Scholar
  14. 14.
    Gao CL, Dean RC, Pinto A, Mooneyhan R, Connelly RR, McLeod DG, et al. Detection of PSAexpressing prostatic cells in bone marrow of radical prostatectomy patients by sensitive reverse transcriptase-polymerase chain reaction (RT-PCR).1998 International Symposium on Biology of Prostate Growth, National Institutes of Health, 1998, p. 83.Google Scholar
  15. 15.
    Moul JW. Increased risk of prostate cancer in African American men. Mol Urol 1997; 1: 119 - 127.Google Scholar
  16. 16.
    Smith JR, Freije D, Carpten JD, Gronberg H, et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 1996; 276: 1371 - 1374.CrossRefGoogle Scholar
  17. 17.
    Hakimi JM, Rondinelli RH, Schoenberg MP, Barrack ER. Androgen receptor gene structure and function in prostate cancer. World J Urol 1996; 14: 329 - 337.PubMedCrossRefGoogle Scholar
  18. 18.
    Chan JM, Stampter MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, et al. Plasma insulin-like growth factor-1 and prostate cancer risk: a prospective study. Science 1998; 279: 563 - 566.PubMedCrossRefGoogle Scholar
  19. 19.
    Moul JW, Gaddipati J, Srivastava S. Molecular biology of prostate cancer. Oncogenes and tumor suppressor genes. In: Dawson NA, Vogelzang NJ, eds. Current Clinical Oncology: Prostate Cancer. Wiley-Liss, New York, 1994, pp. 19 - 46.Google Scholar
  20. 20.
    Lalani E-N, Laniado ME, Abel PD. Molecular and cellular biology of prostate cancer. Cancer Mets Rev 1997; 16: 29 - 66.CrossRefGoogle Scholar
  21. 21.
    Shi XB, Gumerlock PH, deVere White RW. Molecular biology of prostate cancer. World J Urol 1996; 14: 318 - 328.PubMedCrossRefGoogle Scholar
  22. 22.
    Heidenberg HB, Bauer JJ, McLeod DG, Moul JW, Srivastava S: The role of p53 tumor suppressor gene in prostate cancer: A possible biomarker? Urology 1996; 48: 971 - 979.PubMedCrossRefGoogle Scholar
  23. 23.
    Issacs WB, Bova GS. Prostate cancer. In: Vogelstein B, Kinzler KW, eds. The Genetic Basis of Human Cancer. McGraw-Hill, New York, 1998, pp. 653 - 660.Google Scholar
  24. 24.
    Brothman AR, Williams BJ. Prostate cancer. In: Wolman S, Sell S, eds. Human Cytogenetic Cancer Markers. Humana Press, Totowa, NJ, 1997, pp. 223 - 246.CrossRefGoogle Scholar
  25. 25.
    Cher ML, Bova GS, Moore DH, Small EJ, Carroll PA, Pinn SS, et al. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allotyping. Cancer Res 1996; 56: 3091 - 3102.PubMedGoogle Scholar
  26. 26.
    Oshimura M, Sandberg AA. Isochromosome 17 in prostatic cancer. J Urol 1975;114:249,250.Google Scholar
  27. 27.
    Konig JJ, Teubel W, Kamst E, Ronijn JC, Schroder FH, Hagemeijer A. Cytogenetic analysis of 39 prostate carcinomas and evaluation of short-term tissue culture techniques. Cancer Genet Cytogenet 1998; 101: 116 - 122.PubMedCrossRefGoogle Scholar
  28. 28.
    Sandberg AA. Cytogenetic and molecular genetic aspects of human prostate cancer: Primary and metastatic. In: Karr JP, Yamanaka H, eds. Prostate Cancer and Bone Metastasis. Plenum, New York, 1992, pp. 45 - 75.CrossRefGoogle Scholar
  29. 29.
    Arps S, Rodewald A, Schmalenberger B, Carl P, Bressel M, Kastendiek H. Cytogenetic survey of 32 cancers of the prostate. Cancer Genet Cytogenet 1993; 66: 93 - 99.PubMedCrossRefGoogle Scholar
  30. 30.
    Lundgren R, Mandahl N, Hein S, Limon J, Herrikson H, Mitelman F. Cytogenetic analysis of 57 primary prostatic adenocarcinomas. Genes Chrom Cancer 1992; 4: 16 - 24.PubMedCrossRefGoogle Scholar
  31. 31.
    Sandberg AA. Chromosomal abnormalities and related events in prostate cancer. Hum Pathol 1992; 23: 368 - 380.PubMedCrossRefGoogle Scholar
  32. 32.
    Visakorpi T, Hyytinen E, Kallioniemi A, Isola J, Kallioniemi OP. Sensitive detection of chromosome copy number aberrations in prostate cancer by fluorescence in situhybridization. Am J Pathol 1994; 145: 624 - 630.PubMedGoogle Scholar
  33. 33.
    Visakorpi T, Killioniemi AH, Syvänen AC, Hyytinen ER, Karhu R, Tammela T, et al. Genetic Changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res 1995; 55: 342 - 347.PubMedGoogle Scholar
  34. 34.
    Forozan F, Karhu R, Kononen J, Kallioniemi A, Kallioniemi OP. Genome screening by comparative genomic hybridization. TIG 1997; 13: 405 - 409.PubMedCrossRefGoogle Scholar
  35. 35.
    Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinänen R, Palmberg C, et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nature Gen 1995; 9: 401 - 406.CrossRefGoogle Scholar
  36. 36.
    Bova GS, Carter BS, Bussemakers MJ,Emi M, Fujiwara Y, Kyprianou N, et al. Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res 1993; 53: 3869 - 3873.PubMedGoogle Scholar
  37. 37.
    MacGrogan D, Levy A, Bostwick D, Wagner M, Wels D, Bookstein R. Loss of chromosome arm 8p in loci in prostate cancer: mapping by quantitative allelic imbalance. Genes Chromosomes Cancer 1994; 10: 151 - 159.PubMedCrossRefGoogle Scholar
  38. 38.
    Cher ML, MacGrogan D, Bookstein R, Brown JA, et. al. Comparative genomic hybridization, allelic imbalance, and fluorescence in situ hybridization on chromosome 8 in prostate cancer. Genes Chromosome Cancer 1994; 11 (3): 153 - 162.CrossRefGoogle Scholar
  39. 39.
    Emmert-Buck M, Vocke CD, Pozzatti RO, Duray PH, Jennings SB, Florence CD, et al. Allelic Loss on Chromosome 8p 12-21 in Microdissected Prostatic Intraepithelial Neoplasia. Cancer Res 1995; 55: 2959 - 2962.PubMedGoogle Scholar
  40. 40.
    Jenkins RB, Qian J, Lieber MM, Bostwick DG. Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res 1997; 57 (3): 524 - 531.PubMedGoogle Scholar
  41. 41.
    Bergerheim US, Kunimi K, Collins VP, Ekman P. Deletion mapping of chromosomes 8, 10 and 16 in human prostatic carcinoma. Genes Chromosomes Cancer 1991; 3: 215 - 220.PubMedCrossRefGoogle Scholar
  42. 42.
    Macoska JA, Trybus TM, Benson PD, Sakr WA, Grignon DJ, Wojno KD, et al. Evidence for three tumor suppressor gene loci on chromosome 8p in human prostate cancer. Cancer Res 1995; 55: 5390 - 5395.PubMedGoogle Scholar
  43. 43.
    Trapman J, Sleddens HF, Weiden MM van der, Dinjens WN, Koing JJ, et al. Loss of heterozygosity of chromosome 8 microsatellite loci implicates a candidate tumor suppressor gene between the loci D8S87 and D8S133 in human prostate cancer. Cancer Res 1994; 54: 6061 - 6064.PubMedGoogle Scholar
  44. 44.
    Vocke CD, Pozzatti RO, Bostwick DG, Florence CD, Jennings SB, Strup SE, et al. Analysis of 99 microdissected prostate carcinomas reveals a high frequency of allelic loss on chromosome 8p21-22. Cancer Res 1996; 56: 2411 - 2416.PubMedGoogle Scholar
  45. 45.
    Sakr WA, Macoska JA, Benson P, Gringnon DJ, Wolman SR, Pontes JE, et al. Analysis of 99 micro-dissected prostate carcinomas reveal a high frequency of allelic loss on chromosome 8p12-21. Cancer Res 1994; 54: 3273 - 3277.PubMedGoogle Scholar
  46. 46.
    Bookstein R, Bova GS, MacGrogan, Levy A, Issacs WB. Tumor-suppressor genes in prostate oncogenesis: a positional approach. Br J Urol 1997; 79: 28 - 36.PubMedCrossRefGoogle Scholar
  47. 47.
    Ichikawa T, Nihei N, Suzuki H, Oshimura M, Emi M, Nakamura Y, et al. Suppression of metastasis of rat prostatic cancer by introducing human chromosome 8. Cancer Res 1994; 54: 2299 - 2302.PubMedGoogle Scholar
  48. 48.
    He WW, Sciavolino PJ, Wing J, Augustus M, Hudson P, Meissner SP, et al. A novel human prostate specific androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 1997; 43: 69 - 77.PubMedCrossRefGoogle Scholar
  49. 49.
    Bieberich CJ, Fujita K, He WW, Jay G. Prostate specific androgen dependent expression of a novel homeobox gene. J Biol Chem 1996;271:31,779-31,782.Google Scholar
  50. 50.
    Sciavolino PJ, Abrams EW, Yang L, Austenberg LP, Shen MM, Abate-Shen C. Tissue specific expression of murine Nkx3.1 in the male urogenital sinus. Dev Dyn 1997; 209: 127 - 138.PubMedCrossRefGoogle Scholar
  51. 51.
    Prescott JL, Blok L, Tindall DJ. Isolation and androgen regulation of the human homeobox cDNA, NKX3.1. Prostate 1998; 35: 71 - 80.Google Scholar
  52. 52.
    Voeller HJ, Augustus M, Madike V, Bova GS, Carter KC, Gelmann EP: Coding region of NKX3.1, a prostate specific homeobox gene on 8p21 is not mutated in human prostate cancers. Cancer Res 1997; 57: 4455 - 4459.PubMedGoogle Scholar
  53. 53.
    Gaur-Bhatia R, Sciavolino P, Desai N, Gridley T, Abate-Shen C, Shen MM. The Nkx3.1 homeobox gene is required for normal prostate development. 1998 International Symposium on Biology of Prostate Growth, National Institutes of Health, 1998, p. 110.Google Scholar
  54. 54.
    Xu LL, Srikantan V, Sesterhenn IA, Augustus M, Dean R, Moul JW, et al. Evaluation of expression of an androgen regulated prostate specific homeobox gene, NKX3.1 in human prostate cancer. 1998 International Symposium on Biology of Prostate Growth, National Institutes of Health, 1998; p. 110.Google Scholar
  55. 55.
    Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast and prostate cancer. Science (Washington, DC) 1997; 275: 1943 - 1947.CrossRefGoogle Scholar
  56. 56.
    Steck PA, Pershouse MA, Jasser SA, Yung WAK, Lin H, Ligon AH, et al. Identification of a candidate tumor suppressor gene, MMACI, at chromosome 10g23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15: 356 - 362.PubMedCrossRefGoogle Scholar
  57. 57.
    Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG, et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 1997; 57: 4997 - 5000.PubMedGoogle Scholar
  58. 58.
    Suzuki H, Freije D, Nusskern DR, Okami K, Cairns P, Sidransky D, et al. Interfocal heterogeneity of PTEN/MMACI gene alterations in multiple metastatic prostate cancer tissues. Cancer Res 1998; 58: 204 - 209.PubMedGoogle Scholar
  59. 59.
    Becker RL Jr, Mikel UV, Oliver WR, Sesterhenn IA. Enumeration of interphase chromosomes: comparison of visual in situ hybridization and confocal fluorescence in situ hybridization. Anal Quant Cytol Histol 1996; 18: 405 - 409.PubMedGoogle Scholar
  60. 60.
    Ried T. Interphase cytogenetics and its role in molecular diagnostics of solid tumors. Am J Pathol 1998; 152: 325 - 327.PubMedGoogle Scholar
  61. 61.
    Brothman AR. Cytogenetic studies in prostate cancer: are we making progress? Cancer Genet Cytogenet 1997; 95 (1): 116 - 121.PubMedCrossRefGoogle Scholar
  62. 62.
    Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Issacs JT, et al. KAII, a metastasis suppressor gene for prostate cancer on human chromosome I Ip11.2. Science 1995; 268: 864 - 866.CrossRefGoogle Scholar
  63. 63.
    Dong JT, Suzuki H, Pin SS, Bova GS, Schalker JA, Issacs WB, et al. Down regulation of KAI1 metastasis suppressor gene during the progression of human cancer infrequently involves gene mutations or allelic loss. Cancer Res 1996; 56: 4387 - 4390.PubMedGoogle Scholar
  64. 64.
    Nihei N, Ichikawa T, Kawana Y, Kuramoochi H, Kugo H, Oshimura M, et al. Localization of metastasis suppressor genes (s) for rat prostatic cancer to the long arm of human chromosome 10. Genes Chrom Can 1995; 14: 112 - 119.CrossRefGoogle Scholar
  65. 65.
    Schröck E, Veldman T, Padilla-Nash H, Ning Y, Spurbeck J, Jalal S, et al. Spectral karyotyping refines cytogenetic diagnostics of constitutional chromosomal abnormalities. Hum Genet 1997; 101: 255 - 262.PubMedCrossRefGoogle Scholar
  66. 66.
    Liyanage M, Coleman A, du Manoir S, Veldman T, McCormack S, Dickson RB, et al. Multicolor spectral karyotyping of mouse chromosomes. Nature Genet 1996; 14: 312 - 315.PubMedCrossRefGoogle Scholar
  67. 67.
    Veldman T, Vignon C, Schröck E, Rowley JD, Ried T. Hidden chromosomal abnormalities in hematological malignancies detected by multicolor spectral karyotyping. Nature Genet 1997; 15: 406 - 410.PubMedCrossRefGoogle Scholar
  68. 68.
    Ried T, Liyanage M, du Manoir S, Heselmeyer K, Auer G, Macville M, et al. Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping. J Mol Med 1997; 75: 801 - 814.PubMedCrossRefGoogle Scholar
  69. 69.
    Augustus M, Schröck E, Davis L, Heselmeyer K, Moul J, Srivastava S, et al. Landmarking the prostate genome by spectral karyotyping (SKY) and comparative genomic hybridization (CGH). 1998 International Symposium on Biology of Prostate Growth, National Institutes of Health, 1998, p. 71.Google Scholar
  70. 70.
    Park M. Oncogenes. In: Vogelstein B, Kinzler K, eds. The Genetic Basis of Human Cancer. McGraw Hill, New York, 1998, pp. 205 - 228.Google Scholar
  71. 71.
    Carter BS, Epstein JI, Isaacs WB. rasgene mutations in human prostate cancer. Cancer Res 1990; 50: 6830 - 6832.PubMedGoogle Scholar
  72. 72.
    Gumerlock PH, Poonmallee UR, Meyers FJ, deVere White RW. Activated rasalleles in human carcinoma of the prostate are rare. Cancer Res 1991; 51: 1632 - 1637.PubMedGoogle Scholar
  73. 73.
    Moul JW, Lance RS, Friedrichs PA, Theune SM, Chang EH. Infrequent rasoncogene mutations in human prostate cancer. Prostate 1992; 20: 327 - 338.PubMedCrossRefGoogle Scholar
  74. 74.
    Watanabe M, Shiraishi T, Yatanti R, Nomura AM, Stemmermann GN. International comparison on ras gene mutations in latent prostate carcinoma. Int. J Cancer 1994; 58: 174 - 178.PubMedCrossRefGoogle Scholar
  75. 75.
    Konishi N, Enomoto T, Buzard G, Ohsima M, Ward JM, Rice JM. K-rasactivation and ras p21 expression in latent prostatic carcinomas in Japanese men. Cancer 1992; 69: 2293 - 2299.PubMedCrossRefGoogle Scholar
  76. 76.
    Parda DS, Thraves PJ, Kuettel MR, Lee MS, Armstein P, Kaighn ME, et al. Neoplastic transformation of human prostate epithelial cell line by V-K-rasoncogene. Prostate 1993; 23: 91 - 98.PubMedCrossRefGoogle Scholar
  77. 77.
    Cooke DB, Quarmby VE, Petrusz P, Mickey DD, Der CJ, Isaacs JT, et al. Expression of ras protooncogenes in the Dunning R3227 rat prostatic adenocarcinoma system. Prostate 1988; 13: 273 - 289.PubMedCrossRefGoogle Scholar
  78. 78.
    Bussemakers MJ, Isaacs JT, Debruyne FMJ, Van de Ven WJM, Schalken JA. Oncogene expression in prostate cancer. World J Urol 1991; 9: 58 - 63.CrossRefGoogle Scholar
  79. 79.
    Voeller, HJ, Wilding G, Gelman EP. v-rasesexpression confers hormone independent in vitrogrowth to LNCaP prostate carcinoma cells. Mol Endocrinol 1991; 5: 209 - 211.PubMedCrossRefGoogle Scholar
  80. 80.
    Danes R, Nardini D, Basolo F, Tacca MD, Samid D, Myers CE. Phenylacetae inhibits protein isoprenylation and growth of the androgen-independent LNCaP prostate cancer cells transfected with T24 Ha-ras oncogene. Mol. Pharmacol 1996;49:972,973.Google Scholar
  81. 81.
    Shih C, Padhy LC, Murray M, et al. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 1981; 290: 261.PubMedCrossRefGoogle Scholar
  82. 82.
    Semba K, Kamata N, Toyoshima K, et al. A V-erbrelated proto-oncogene, c-erbB-2is distinct from the c-erbB-1epidermal growth factor receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc Natl Acad Sci USA 1985; 82: 6497.PubMedCrossRefGoogle Scholar
  83. 83.
    King CR, Kruas MH, Aaronson SA. Amplification of a novel c-erbBrelated gene in a human mammary carcinoma. Science 1985; 229: 974.PubMedCrossRefGoogle Scholar
  84. 84.
    Maguire HC, Greene MI. The neu (c-erbB-2)oncogene. Semin Oncol 1989; 16: 148.PubMedGoogle Scholar
  85. 85.
    Yokota J, Toyoshima K, Sugimura T, et al. Amplification of c-erbB-2oncogene in human adenocarcinomas in vivo. Lancet 1986; 1: 765.PubMedCrossRefGoogle Scholar
  86. 86.
    Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the erbB-2 neuoncogene. Science 1987; 235: 177.PubMedCrossRefGoogle Scholar
  87. 87.
    Slamon DJ, Clark GM, Wong SG, et al. Studies of HER-2/neuproto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707.PubMedCrossRefGoogle Scholar
  88. 88.
    Reese DM, Slamon DJ. HER-2/neusignal transduction in human breast and ovarian cancer. Stem Cells 1997; 15: 1 - 8.PubMedCrossRefGoogle Scholar
  89. 89.
    Zhau HE, Wan DS, Zhou J, Miller GJ, Von Eschenbach AC. Expression of c-erbB-2/neuproto-oncogene in human prostatic cancer tissues and cell lines. Mol Carcinog 1992; 5: 320 - 327.PubMedCrossRefGoogle Scholar
  90. 90.
    Ware JL, Maygarden SJ, Koontz WW, Strom SC. Immunohistochemical detection of c-erbB-2protein in human benign and neoplastic prostate. Hum Pathol 1991; 22: 254.PubMedCrossRefGoogle Scholar
  91. 91.
    Mellon K, Thompson S, Charlton RG, et al. p53, c-erb-B2and the epidermal growth factor receptor in the benign and malignant prostate. J Urol 1992; 147: 496 - 499.PubMedGoogle Scholar
  92. 92.
    Visakorpi T, Kallioniemi OP, Koivula T, Harvey J, Isola J. Expression of epidermal growth factor receptor and ERBB2 (HER-2/neu) oncoprotein in prostatic carcinomas. Mod Pathol 1992; 5: 643 - 648.PubMedGoogle Scholar
  93. 93.
    Sadasivan R, Morgan R, Jennings S, Austenfeld M, Van Veldhuizen P, Stephens R, et al. Over-expression of HER-2/neu may be an indicator of poor prognosis in prostate cancer. J Urol 1993; 150: 126 - 131.PubMedGoogle Scholar
  94. 94.
    Kuhn EJ, Kurnot RA, Sesterhenn IA, Chang EH, Moul JW. Expression of the c-erbB-2(HER-2 neu)oncoprotein in human prostatic carcinoma: Prognostic determinants? J Urol 1993; 150: 1427 - 1433.PubMedGoogle Scholar
  95. 95.
    Fox SB, Persad RA, Collins CC, Royds J, Silcocks SB. EGFR, c-erbB-2, p53 and c-mycexpression in stage Al prostate adenocarcinoma: prognostic determinants? J Urol 1993; 149: 331A, (Abstract 475).Google Scholar
  96. 96.
    Ross JS, Sheehan CE, Haynor-Buchan AM, Ambros RA, Kallakury BV, Kauffman RP, et al. HER2/neugene amplification status in prostate cancer by fluorescence in situhybridization. Hum Pathol 1997; 28: 827 - 833.PubMedCrossRefGoogle Scholar
  97. 97.
    Ross JS, Sheehan CE, Haynor-Buchan AM, Ambros RA, Kallakury BV, Kauffman RP, et al. Prognostic significance of HER-2/neu gene amplification status by fluorescence in situhybridization of prostate carcinoma. Cancer 1997; 79: 162 - 170.CrossRefGoogle Scholar
  98. 98.
    Myers RB, Brown D, Oelschlager DK, Waterbor JW, Marshall ME, Srivastava S, et al. Elevated serum levels of p105 (c-erbB-2)in patients with advanced-stage prostatic adenocarcinoma. Int J Cancer 1996; 69: 398 - 402.PubMedCrossRefGoogle Scholar
  99. 99.
    Arai Y, Yoskiki T, Yoshida O. c-erbB-2oncoprotein: a potential biomarker of advanced prostate cancer. Prostate 1997; 30: 195 - 201.PubMedCrossRefGoogle Scholar
  100. 100.
    Molina R, Jo J, Filella X, Bruix J, Castells A, Hague M, et al. Serum levels of c-erbB-2 (HER-2/neu) in patients with malignant and nonmalignant disease. Tumor Biol 1997; 18: 188 - 196.CrossRefGoogle Scholar
  101. 101.
    Zhau HY, Zhou J, Symmans WF, Chen BQ, Chang SM, Sikes RA, et al. Transfected neu oncogene induces human prostate cancer metastasis. Prostate 1996; 28: 73 - 83.PubMedCrossRefGoogle Scholar
  102. 102.
    Marengo SR, Sikes RA, Anezinis P, Chang SM, et al. Metastasis induced by overexpression of p 185 neu-Tafter orthotopic injection into a prostatic epithelial cell line (NbE). Mol Carcinog 1997; 19: 165 - 175.PubMedCrossRefGoogle Scholar
  103. 103.
    Zhau HY, Chang SM, Chen BQ, Wang Y, Zhang H, Kao C, et al. Androgen repressed phenotype in human prostate cancer. Proc Natl Acad Sci USA 1996;93:15,152-15,157.Google Scholar
  104. 104.
    Ware JL. Growth factors and their receptors as determinants in the proliferation and metastasis of human prostate cancer. Cancer Metastasis Rev 1993; 12: 287.PubMedCrossRefGoogle Scholar
  105. 105.
    Myers RB, Kudlow JE, Grizzle WE. Expression of transforming growth factor-alpha, epidermal growth factor and the epidermal growth factor receptor in adenocarcinoma of the prostate and benign prostatic hyperplasia. Mod Pathol 1993; 6: 733.PubMedGoogle Scholar
  106. 106.
    Moul JW, Maygarden SJ, Ware JL, Mohler JL, Maher PD, Schenkman NS, et al. Cathepsin D and epidermal growth factor receptor immunohistochemistry does not predict recurrence of prostate cancer in patients undergoing radical prostatectomy. J Urol 1996; 155: 982 - 985.PubMedCrossRefGoogle Scholar
  107. 107.
    Kim IY, Ahn HJ, Zelner DJ, Shaw JW, Sensibar JA, Kim JH, et al. Genetic change in transforming growth factor beta (TGF-beta) receptor type I gene correlates with insensitivity to TGF-beta 1 in human prostate cancer cells. Cancer Res 1996; 56: 44 - 48.PubMedGoogle Scholar
  108. 108.
    Culig Z, Hobisch A, Cronauer MV, Radmayr C, Hittmair A, Zhang J, Thurnher M, et al. Regulation of prostatic growth and function by peptide growth factors. Prostate 1996; 28: 392 - 405.PubMedCrossRefGoogle Scholar
  109. 109.
    Cohen P, Peehl DM, Stamey TA, Wilson KF, Clemmons DR, Rosenfeld RG. Elevated levels of insulin-like growth factor-binding protein-2 in the serum of prostate cancer patients. J Clin Endocrinol Metab 1993; 76: 1031 - 1035.PubMedCrossRefGoogle Scholar
  110. 110.
    Grandori C, Eisenman RN. Myctarget genes. Trends Biochem Sci 1997; 22: 177 - 181.PubMedCrossRefGoogle Scholar
  111. 111.
    Jenkins RB, Qian J, Lieber MM, Bostwick DG. Detection of c-myconcogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situhybridization Cancer Res 1997; 57: 524 - 531.Google Scholar
  112. 112.
    Eagle LR, Yun X, Brothman AR, Williams BJ, Atkins NB, Prochownik EV. Mutations of the MX/-1gene in prostate cancer. Nat Genet 1995; 9: 249 - 255.PubMedCrossRefGoogle Scholar
  113. 113.
    Gray IC, Phillips SMA, Lee SJ, Neoptolemos JP, Weisssenbach J, Sparr NK. Loss of the chromosomal region 10g23-25 in prostate cancer. Cancer Res 1995; 55: 4800 - 4803.PubMedGoogle Scholar
  114. 114.
    Kawamata N, Park D, Wilczynski S, Yokota J, Koeffler HP. Point mutations of the MX/-1gene are rare in prostate cancers. Prostate 1996; 29: 191 - 193.PubMedCrossRefGoogle Scholar
  115. 115.
    Katz AE, Benson ME, Wise GJ, Olsson CA, Bandyk MG, Sawczuk IS, et al. Gene activity during the early phase of androgen stimulated rat prostate re-growth. Cancer Res 1989; 49: 5889 - 5894.PubMedGoogle Scholar
  116. 116.
    Thompson TC, Southgate J, Kitchener G, Land H. Multistage carcinogenesis induced by rasand myconcogenes in a reconstituted organ. Cell 1989; 56: 917 - 930.PubMedCrossRefGoogle Scholar
  117. 117.
    Carter HB, Piantadosi S, Isaacs JT. Clinical evidence for and implications of the multi-step development of prostate cancer. J Urol 1990; 143: 742 - 746.PubMedGoogle Scholar
  118. 118.
    Korsmeyer SJ. Molecular thanatopsis: discourse on the bc1-2 family and cell death. Blood 1996; 88: 386 - 401.PubMedGoogle Scholar
  119. 119.
    McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT, et al. Expression of proto-oncogene bc1-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 1992; 52: 6940 - 1944.PubMedGoogle Scholar
  120. 120.
    Colombel M, Symmans F, Gil S, Toole KM, Chopin D, Benson M, et al. Detection of apoptosissuppressing oncoprotein bc1-2 in hormone refractory human prostate cancer. Am J Pathol 1993; 143: 390 - 400.PubMedGoogle Scholar
  121. 121.
    Moul JW, Bettencourt M-C, Sesterhenn IA, Mostofi FK, McLeod DG, Srivastava S, et al. Protein expression of p53, bc1-2 and KI-67 (MIB-1) as prognostic biomarkers in patients with surgically treated, clinically localized prostate cancer. Surgery 1996; 120: 159 - 167.PubMedCrossRefGoogle Scholar
  122. 122.
    Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R. Overexpression of bc1-2 protects prostate cancer cells from apoptosis in vitroand confers resistance to androgen ablation in vivo. Cancer Res 1995; 55: 4438 - 4445.PubMedGoogle Scholar
  123. 123.
    Liu AY, Corey E, Bladou F, Lange PH, Vessella RL. Prostatic cell lineage markers: emergence of bc12+ cells of human prostate cancer xenograft LuCaP 23 following castration. Int J Cancer 1996; 65: 85 - 89.PubMedCrossRefGoogle Scholar
  124. 124.
    Taiguchi J, Moriyama N, Kasimoto S, Kameyama S, Kawabe K. Histochemical detection of intra-nuclear DNA fragmentation and its relation to the expression of bc1-2 oncoprotein in human prostate cancer. Br J Urol 1996; 74: 719 - 723.Google Scholar
  125. 125.
    Apakama I, Robinson MC, Walter NM, Charlton RG, Royd JA, Fuller CE, et al. bc1-2 overexpression combined with p53 accumulation correlates with hormone refractory prostate cancer. Br J Cancer 1996; 74: 1258 - 1262.PubMedCrossRefGoogle Scholar
  126. 126.
    BauerJJ, Sesterhenn IA, Mostofi FK, McLeod DG, Srivastava S, Moul JW. Elevated levels of apoptosis regulator proteins p53 and bc1-2 are independent prognostic biomarkers in surgically treated clinically localized prostate cancer patients. J Urol 1996; 156: 1511 - 1516.CrossRefGoogle Scholar
  127. 127.
    Krajewska M, Krajewska S, Epstein JL, Shabaik A, Sauvagest J, Song K, et al Immunohistochemical analysis of bd-2, bax, bd-xand mcl-1expression in prostate cancer. Am J Pathol 1996; 148: 1567 - 1576.PubMedGoogle Scholar
  128. 128.
    Shen R, Su ZZ, Olsson LA, Fisher PB. Identification of the human prostate carcinoma oncogene PTI-1. Proc Natl Acad Sci USA 1995; 92: 6778 - 6782.PubMedCrossRefGoogle Scholar
  129. 129.
    Emmert-Buck MR, Bonner RF, Smith PD, Chaqui RF, Zhuang Z, Goldstein SR, et al. Laser capture microdissection. Science 1996; 274: 928 - 1001.CrossRefGoogle Scholar
  130. 130.
    Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotech 1996; 14: 1675 - 1680.CrossRefGoogle Scholar
  131. 131.
    Kuska B. Cancer genome anatomy project. J Natl Cancer Inst 1996; 88: 1801 - 1803.PubMedCrossRefGoogle Scholar
  132. 132.
    Fearon ER. Human cancer syndromes: clues to the origin and nature of cancer. Science 1997; 278: 1043 - 1050.PubMedCrossRefGoogle Scholar
  133. 133.
    Newsham IF, Hadjistilianou T, Cavenee WK. Retinoblastoma. In: Vogelstein B, Kinzler K, eds. The Genetic Basis of Human Cancer. McGraw Hill, New York, 1998, pp. 363 - 392.Google Scholar
  134. 134.
    Bookstein R, Rio P, Madreperla SA, Hong F, et al. Promoter deletion and loss of retinoblastoma gene expression in human prostate carcinoma. Proc Natl Acad Sci USA 1990; 87: 7762 - 7766.PubMedCrossRefGoogle Scholar
  135. 135.
    Bookstein R, Shew JY, Chen PL, Scully P, Lee WH. Suppression of tumorgenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science 1990; 247: 712 - 715.PubMedCrossRefGoogle Scholar
  136. 136.
    Brooks JD, Bova GS, Isaacs WB. Allelic loss of the retinoblastoma gene in primary human prostatic adenocarcinoma. Prostate 1995; 26: 35 - 39.PubMedCrossRefGoogle Scholar
  137. 137.
    Phillips SM, Barton CM, Lee SJ, Morton DG, Wallace DM, Lemoine NR, et al. Loss of the retinoblastoma susceptibility gene (RB1) is a frequent and early event in prostate tumorigenesis. Br J Cancer 1994; 70: 1252 - 1257.PubMedCrossRefGoogle Scholar
  138. 138.
    Kubota Y, Fujinamic K, Uemura H, Dobashi Y, Miyamoto H, Iwasaki Y, et al. Retinoblastoma gene mutations in primary human prostate cancer. Prostate 1995; 27: 314 - 320.PubMedCrossRefGoogle Scholar
  139. 139.
    Harris CC. Structure and function of p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst 1996; 88: 1442 - 1455.PubMedCrossRefGoogle Scholar
  140. 140.
    Levine A. p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323 - 331.PubMedCrossRefGoogle Scholar
  141. 141.
    Hartwell LH, Kastan MD. Cell cycle control and cancer. Science 1994; 266: 1821 - 1828.PubMedCrossRefGoogle Scholar
  142. 142.
    Hermeking H, Lengauer C, Polyak K, He T-C, Zhang L, Thiagalingam S, et al. 14-3-3a is a p53 regulated inhibitor of G2M progression. Mol Cell 1997; 1: 3 - 11.PubMedCrossRefGoogle Scholar
  143. 143.
    Greenblatt MS, Bennett, WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994; 54: 4855 - 4878.PubMedGoogle Scholar
  144. 144.
    Harris CC, Hollstein M. Clinical implications of the p53 tumor suppressor gene, N Engl J Med 1993; 329: 1318 - 1327.PubMedCrossRefGoogle Scholar
  145. 145.
    Visakorpi T, Kallioniemi OP, Heikinen A, Koivula T, Isola J Small subgroup of aggressive, highly proliferative prostatic carcinomas defined by p53 accumulation. J Natl Cancer Inst 1992; 84: 883 - 887.Google Scholar
  146. 146.
    Bookstein R, MacGrogan D, Hisenbeck SG, Sharkey F, Allred DC. p53 mutated in a subset of advanced stage prostate cancers. Cancer Res 1993; 53: 3369 - 3373.PubMedGoogle Scholar
  147. 147.
    Berner A, Harvei S, Treti S, Fossa SD, Nesland JM. Prostate carcinoma: a multivariate analysis of prognostic factors. Br J Cancer 1994; 69: 924 - 930.PubMedCrossRefGoogle Scholar
  148. 148.
    Brooks JD, Bova GS, Ewing CM, Piantadosi SP, Carter BS, Robinson JC, et al. An uncertain role of p53 gene alterations in human prostate cancers. Cancer Res 1996; 56: 3814 - 3822.PubMedGoogle Scholar
  149. 149.
    Stricker HJ, Jay JK, Linder MD, Tamboli P, Amin MB. Determining prognosis of clinically localized prostate cancer by immunohistochemical detection of mutant p53. Urology 1996; 47: 366 - 269.PubMedCrossRefGoogle Scholar
  150. 150.
    Van Veldhuizen PJ, Sadasivan R, Garcia F, Austenfield MD, Stephens RL. Mutant p53 expression in prostate carcinoma. Prostate 1993; 22: 23 - 30.PubMedCrossRefGoogle Scholar
  151. 151.
    Van Veldhuizen PZ, Sadasivan R, Cherian R, Dwyer T, Stephens RL. p53 expression in incidental prostatic cancer. Am J Med Sci 1993; 305: 275 - 279.PubMedCrossRefGoogle Scholar
  152. 152.
    Henke RP, Kruger E, Ayhan N, Hubner D, Hammerer P, Huland H. Immunohistochemical detection of p53 protein in human prostatic cancer. J Urol 1994; 152: 1296 - 1301.Google Scholar
  153. 153.
    Bauer JJ, Sesterhenn IA, Mostofi FK, McLeod DG, Srivastava S, Moul JW. p53 nuclear protein expression is an independent prognostic marker in clinically localized prostate cancer patients undergoing radical prostatectomy. Clin Cancer Res 1995; 1: 1295 - 1300.PubMedGoogle Scholar
  154. 154.
    Stapelton AMF, Timme TL, Gousse AE, Li Q-F, Tobon AA, Kattan MW, et al. Primary prostate cancer cells harboring p53 mutations are clonally expanded in metastases. Clin Cancer Res 1997; 3: 1389 - 1397.Google Scholar
  155. 155.
    Yang G, Stapleton AMF, Wheeler TM, Truong LD, Timme TL, Scardino PT, et al. Clustered p53 immunostaining: a novel pattern associated with prostate cancer progression. Clin Cancer Res 1996; 2: 399 - 401.PubMedGoogle Scholar
  156. 156.
    Chi, S-G, deVere White R, Meyers FJ, Siders DB, Lee F, Gumerlock PH. p53 in prostate cancer: frequent expression transition mutations J Natl Cancer Inst 1994; 86: 926 - 933.Google Scholar
  157. 157.
    Ittman M, Wieczorek R, Helle P, Dave A, Provet J, Krolewski J. Alterations in the p53 and MDM-2 genes are infrequent in clinically localized, stage B prostate adenocarcinomas. Am J Pathol 1994; 145: 287 - 293.Google Scholar
  158. 158.
    Heidenberg HB, Sesterhenn IA, Gaddipati P, Weghorst CM, Buzard GS, Moul JW, et al. Alterations of the tumor suppressor gene p53 in a high fraction of treatment resistant prostate cancer. J Urol 1995; 154: 414 - 421.PubMedCrossRefGoogle Scholar
  159. 159.
    Zhang X, Colombel M, Raffo A, Buttyan R. Enhanced expression of p53 mRNA and protein in regressing rate ventral prostate gland. Biochem Biophys Res Commun 1994; 198: 1189 - 1194.PubMedCrossRefGoogle Scholar
  160. 160.
    Berges RR, Ruruya Y, Remington L, English HF, Jacks T, Issacs J. Cell proliferation, DNA repair, and p53 function are not required for programmed cell death of prostatic glandular cells induced by androgen ablation. Proc Natl Acad Sci USA 1993; 90: 8910 - 8914.PubMedCrossRefGoogle Scholar
  161. 161.
    Colombel M, Radvanyi F, Blanche M, Abbou C, Buttyan R, Donehower LA, et al. Androgen suppressed apoptosis is modified in p53 deficient mice. Oncogene 1995; 10: 1269 - 1274.PubMedGoogle Scholar
  162. 162.
    Srivastava S, Katayose D, Tong YA, Craig CR, McLeod DG, Moul JW, et al. Recombinant adenovirus vector expressing wild-type p53 is a potent inhibitor of prostate cancer cell proliferation. Urology 1995; 46: 843 - 848.PubMedCrossRefGoogle Scholar
  163. 163.
    Eastham JA, Hall SJ, Sehgal I, Wang J, Timmie TL, Yang G, et al. In vivo gene therapy with p53 or p21 adenovirus for prostate cancer. Cancer Res 1995; 55: 5151 - 5155.PubMedGoogle Scholar
  164. 164.
    Yang C, Cirielli C, Capogrossi MC, Passaniti A. Adenovirus-mediated wild-type p53 expression induced apoptosis and suppresses tumorigenesis of prostatic tumors cells. Cancer Res 1995; 55: 4210 - 4213.PubMedGoogle Scholar
  165. 165.
    Ko SC, Gotoh A, Thalmann GN, Zhau HE, Jhonston DA, Zhang WW, et al. Molecular therapy with recombinant p53 adenovirus in androgen independent metastatic human prostate cancer model. Hum Gene Ther 1996; 7: 1683 - 1691.PubMedCrossRefGoogle Scholar
  166. 166.
    Asgari K, Sesterhenn IA, McLeod DG, Cowan K, Moul JW, Seth P, et al. Inhibition of the growth of pre-established subcutaneous tumor nodules of human prostate cancer cells by single injection of the recombinant adenovirus p53 expression vector. Int J Cancer 1997; 71: 377 - 382.PubMedCrossRefGoogle Scholar
  167. 167.
    Foulkes WD, Flanders TV, Pollock PM, Hayward NK. The CDKN2A (pl 6) gene and human cancer. Mol Med 1997; 3: 5 - 20.PubMedGoogle Scholar
  168. 168.
    Liu Q, Neuhausen S, McClure M, Frye C, Weaver-Feldhaus J, Gruis NA, et al. CDKN2 (MTS 1) tumor suppressor gene alterations in human tumor cell lines. Oncogene 1995; 10: 1061 - 1067.PubMedGoogle Scholar
  169. 169.
    Komiya A, Suzuki H, Aida S, Yatani R and Shimazaki J Mutational analysis of CDKN2 (CDK4/MTS 1) gene in tissues and cell lines of human prostate cancer. Jpn J Cancer Res 1995; 86: 622 - 625.PubMedCrossRefGoogle Scholar
  170. 170.
    Tanimi Y, Bringuier PP, Smit F, van Bokhoven A, Debruyne FM, Schalken JA. p16 mutations/ deletions are not frequent events in prostate cancer. Br J Cancer 1996; 74: 120 - 122.CrossRefGoogle Scholar
  171. 171.
    Chen W, Weghorst CM, Sabourin CL, Wang Y, Wang D, Bostwick DG, et al. Absence of p16 MTS1 gene mutations in human prostate cancer. Carcinogenesis 1996; 17: 2603 - 2607.PubMedCrossRefGoogle Scholar
  172. 172.
    Gaddipati JP, McLeod DG, Sesterhenn IA, Hussussian CJ, Tong YA, Seth P, et al. Mutations of p16 gene product are rare in prostate cancer. Prostate 1997; 30: 188 - 194.PubMedCrossRefGoogle Scholar
  173. 173.
    Jarard DF, Bova GS, Ewing CM, Pin SS, Nguyen SH, Baylin SB, et al. Deletional, mutational, and methylation analysis of CDKN2 (p16/MTS 1) in primary and metastatic prostate cancer. Genes Chromosomes Cancer 1997; 19: 90 - 96.CrossRefGoogle Scholar
  174. 174.
    Heidenreich B, Heidenreich A, Moul JW, Srivastava S, Sesterhenn IA. Personal communication. (unpublished)Google Scholar
  175. 175.
    Cairns P, Polascik TJ, Eby Y, Tokino K, Califano J, Merlo A, et al. Frequency of homozygous deletions at p16/CDKN2 in primary human tumors. Nat Genet 1995; 11: 210 - 212.PubMedCrossRefGoogle Scholar
  176. 176.
    Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, et al. Inactivation of CDKN2/p16/ MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 1995; 55: 4525 - 4530.PubMedGoogle Scholar
  177. 177.
    Chi S-G, deVere White R, Muenzer JT, Gumerlock PH. Frequent alteration of CDKN2 (p16INK4A/ MTS1) expression in primary prostate carcinomas. Clin Can Res 1997; 3: 1889 - 1897.Google Scholar
  178. 178.
    Carter BS, Ewing CM, Ward WS, Treiger BF, Aalders TW, Schalken JA, et al. Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci USA 1990; 87: 8751 - 8755.PubMedCrossRefGoogle Scholar
  179. 179.
    Giroldi LA, Schalken JA. Decreased expression of the intercellular adhesion molecule E. cadherin in prostate cancer: Biological significance and implications. Cancer Met Rev 1993; 12: 29 - 37.Google Scholar
  180. 180.
    Cher ML, Ito T, Weidner N, Carroll PR, Jensen RH. Mapping of regions of physical deletion on chromosome 16q in prostate cancer cells by fluorescence in situhybridization (FISH): J Urol 1995; 153: 249 - 254.PubMedCrossRefGoogle Scholar
  181. 181.
    Cooney KA, Wetzel JC, Consolino CM, Wojno KJ. Identification and characterization of proximal 6q deletions in prostate cancer. Cancer Res 1996; 56: 4150 - 4153.PubMedGoogle Scholar
  182. 182.
    Cunningham JM, Shan A, Wick MJ, McDonnell SK, Schaid DJ, Tester DJ, et al. Allelic imbalance and microsatellite instability in prostate adenocarcinoma. Cancer Res 1996; 56: 4475 - 4482.PubMedGoogle Scholar
  183. 183.
    Srikantan V, Sesterhenn IA, Davis L, Hankins GR, Mostofi FK, McLeod DG, et al. Allelic loss of chromosome 6q in human prostate cancer. J Urol 1997;175 (Abstract #873).Google Scholar
  184. 184.
    Takahashi S, Shan AL, Ritland SR, Delacey KA, Bostwick DG, Lieber MM, et al. Frequent loss of heterozygosity at 7g31.1 in primary prostate cancer is associated with tumor aggressiveness and progression. Cancer Res 1995; 55: 4114 - 4119.PubMedGoogle Scholar
  185. 185.
    Latil A, Anssenot O, Fournier G, Baron JC, Lidereau R. Loss of heterozygosity at 7q31 is a frequent and early event in prostate cancer. Clin Cancer Res 1995; 11: 1385 - 1389.Google Scholar
  186. 186.
    Zenklusen JC, Thompson JC, Troncoso P, Kagan J, Conti CJ. Loss of heterozygosity in human primary prostate carcinomas: a possible tumor suppressor gene at 7831.1. Cancer Res 1994; 54: 6370 - 6373.PubMedGoogle Scholar
  187. 187.
    Gao X, Zacharek A, Salkowski A, Grignon DJ, Sakr W, Porter AT, et al. Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer. Cancer Res 1995; 55: 1002 - 1005.PubMedGoogle Scholar
  188. 188.
    Williams BJ, Jones E, Zhu XL, Steele MR, Stephenson RA, Rohr RL, et al. Evidence for a tumor suppressor gene distal to BRCA1 in prostate cancer. J Urol 1996; 155: 720 - 725.PubMedCrossRefGoogle Scholar
  189. 189.
    Latil A, Baron JC, Cussenot O, Fournier G, Soussi T, Boccon-Gibod L, et al. Genetic alterations in localized prostate cancer: identification of a common region of deletion on chromosome arm 18q. Genes Chromosomes Cancer 1994; 11: 119 - 125.PubMedCrossRefGoogle Scholar
  190. 190.
    Brewster SF, Browne S, Brown KW. Somatic allelic loss at the DCC, APC, nm23-H 1, and p53 tumor suppressor gene loci in human prostatic carcinoma. J Urol 1994; 151: 1073 - 1077.PubMedGoogle Scholar
  191. 191.
    Melamed J, Einhorn JM, Ittman MM. Allelic loss of chromosome 13q in human prostate carcinoma. Clin Can Res 1997; 3: 1867 - 1872.Google Scholar
  192. 192.
    Huggins C, Hodges CV. Studies on prostatic cancer, effects of castration, of estrogens and of androgen injection on serum phosphatase in metastatic carcinoma of the prostate. Cancer Res 1941; 1: 293 - 297.Google Scholar
  193. 193.
    Crawford ED, Eisenberger MA, McLeod DG, Spaulding JT, Benson R, Dorr FA, et al. A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N Engl J Med 1989; 321: 419 - 424.PubMedCrossRefGoogle Scholar
  194. 194.
    Coffey DS. The molecular biology, endocrinology and physiology of the prostate and seminal vesicle. In: Walsh PC, Retik AB, Stamey TA, Vaughan ED Jr, eds. Campbells Urology. W.B. Sanders, New York, 1992, pp. 221 - 266.Google Scholar
  195. 195.
    Hakimi JM, Schoenberg MP, Rondinelli RH, Piantadosi S, Barrack ER. Androgen receptor variants with short glutamine or glycine repeats may identify unique sub-populations of men with prostate cancer. Clin Can Res 1997; 3: 1599 - 1602.Google Scholar
  196. 196.
    Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 1992; 12: 241 - 253.PubMedCrossRefGoogle Scholar
  197. 197.
    Irvine RA, Yu MC, Ross RK, Coetzee GA. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res 1995; 55: 1937 - 1940.PubMedGoogle Scholar
  198. 198.
    La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991; 352: 77 - 79.PubMedCrossRefGoogle Scholar
  199. 199.
    Suzuki H, Sato N, Watabe Y, Msai M, Seino S, Shimazaki J. Androgen receptor gene mutations in human prostate cancer. J Steroid Biochem Mol Biol 1993; 46: 759 - 765.PubMedCrossRefGoogle Scholar
  200. 200.
    Castagnaro M, Yandell DW, Dockhorn-Dworhiczak B, Wolfe HJ, Poremba C. Human androgen receptor gene mutations and p53 gene analysis in advanced prostate cancer. Verh Dtsch Ges Pathol 1993; 77: 119 - 123.PubMedGoogle Scholar
  201. 201.
    Cullig Z, Hobisch A, Cronauer MV, Cuto ACB, Hittmair A, Radmayr C, et al. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol 1993; 7: 1541 - 1550.CrossRefGoogle Scholar
  202. 202.
    Gaddipati JP, McLeod DG, Heidenberg HB, Sesterhenn IA, Finger MJ, Moul JW, et al. Frequent detection of codon 877 mutation in the androgen receptor gene in advanced prostate cancer. Cancer Res 1994; 54: 2861 - 2864.PubMedGoogle Scholar
  203. 203.
    Taplin M-E, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 1995; 332: 1393 - 1398.PubMedCrossRefGoogle Scholar
  204. 204.
    Tilley WD, Buchanan G, Hickey TE, Bentel JM. Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin Can Res 1996; 2: 277 - 285.Google Scholar
  205. 205.
    Suzuki H, Koichiro A, Komiya A, Aida S, Akimoato S, Shimazaki J Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: Relation to antiandrogen withdrawal syndrome. Prostate 1996; 29: 153 - 158.Google Scholar
  206. 206.
    Kazemi-Esfarjani P, Trifiro MA, Pinsky L. Evidence for a repressive function of the long polyglutamine tract in the human androgen receptor: possible pathogenetic relevance for the (CAG)„ expanded neuronopathies. Hum Mol Genet 1995; 4: 523 - 527.PubMedCrossRefGoogle Scholar
  207. 207.
    Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res 1994; 22: 3181 - 3186.PubMedCrossRefGoogle Scholar
  208. 208.
    Schoenberg MP, Hakimi JM, Wang S, Bova GS, Epstein JI, Fischbeck KH, et al. Microsatellite mutation (CAG24_,18) in the androgen receptor gene in human prostate cancer. Biochem Biophys Res Commun 1994; 198: 74 - 80.PubMedCrossRefGoogle Scholar
  209. 209.
    Giovannucci, E, Stampfer MJ, Kiothivas K, Brown M, Brufsky A, Talcott J, et al. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 1997; 94: 3320 - 3323.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Meena Augustus
  • Judd W. Moul
  • Shiv Srivastava

There are no affiliations available

Personalised recommendations