Skip to main content

Part of the book series: Contemporary Endocrinology ((COE,volume 21))

  • 108 Accesses

Abstract

Under ordinary conditions, the principal catecholamine that regulates cardiac function is the norepinephrine (NE) liberated from the sympathetic nerve endings in the heart. In this chapter, initially, the factors that regulate the release of NE and its concentration in the cardiac interstitium are discussed. The various factors that govern the rate at which the cardiac responses develop in response to the initiation of sympathetic neural activity, and that govern the rate at which those responses decay when that activity ceases, are then considered. Because the neural control of the heart depends on the antagonistic influence of the two divisions of the autonomic nervous system (ANS), the powerful influence of the sympathetic and parasympathetic interactions on cardiac performance are then described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Riemersma RA, Oliver MF, eds. Catecholamines in the Non-Ischaemic and Ischaemic Myocardium. Elsevier, Amsterdam, 1982.

    Google Scholar 

  2. Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G. Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiol Rev 1990; 70: 963–985.

    PubMed  CAS  Google Scholar 

  3. Ganguli PK, ed. Catecholamines and Heart Disease. CRC, Boca Raton, FL, 1991.

    Google Scholar 

  4. Goldstein DS. Stress, Catecholamines, and Cardiovascular Disease. Oxford University Press, New York, 1995.

    Google Scholar 

  5. Cryer PE. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med 1980; 303: 436–444.

    Article  PubMed  CAS  Google Scholar 

  6. Shah S, Tse TF, Clutter WE, Cryer PE. Human sympathochromaffin system. Am J Physiol 1984; 247: E380–E384.

    PubMed  CAS  Google Scholar 

  7. Esler M, Jennings G, Korner P, Blombery P, Sacharias N, Leonard P. Measurement of total and organ-specific norepinephrine kinetics in humans. Am J Physiol 1984; 247: E21–E28.

    PubMed  CAS  Google Scholar 

  8. Levy MN. Neural and reflex control of the circulation. In: Garfein OB, ed. Current Concepts in Cardiovascular Physiology. Academic, San Diego, 1990, pp. 133–207.

    Google Scholar 

  9. Goldstein DS, Eisenhofer G. Plasma catechols-What do they mean? News Physiol Sci 1988; 3: 138–144.

    CAS  Google Scholar 

  10. Yamaguchi N, de Champlain J, Nadeau R. Noradrenaline liberation from the dog heart. Can J Physiol Pharmacol 1973; 51: 297–305.

    Article  PubMed  CAS  Google Scholar 

  11. Lindmar R, Löffelholz K. Neuronal and extraneuronal uptake and efflux of catecholamines in the isolated rabbit heart. Naunyn-Schmiedeberg’s Arch Pharmacol 1974; 284: 63–92.

    Article  PubMed  CAS  Google Scholar 

  12. Trendelenburg U. Metabolizing systems involved in the inactivation of catecholamines. NaunynSchmiedeberg’ s Arch Pharmacol 1986; 332: 201–207.

    Article  CAS  Google Scholar 

  13. Levy MN, Masuda Y. Effects of heart rate on the myocardial disposition of norepinephrine. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology and Arrhythmias. Grune & Stratton, Orlando, FL, 1985, pp. 145–150.

    Google Scholar 

  14. Blombery PA, Heinzow BGJ. Cardiac and pulmonary norepinephrine release and removal in the dog. Circ Res 1983; 53: 688–694.

    Article  PubMed  CAS  Google Scholar 

  15. Esler M, Jennings G, Korner P. Willett I, Dudley F, Hasking G, Anderson W, Lambert G. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension 1988; 11: 3–20.

    Article  PubMed  CAS  Google Scholar 

  16. Young MA, Hintze TH, Vatner SF. Correlation between cardiac performance and plasma catecholamine levels in conscious dogs. Am J Physiol 1985; 248: H82–H88.

    PubMed  CAS  Google Scholar 

  17. Vatner SF, Hittinger L. Sympathetic mechanisms regulating myocardial contractility in conscious animals. In: Shepherd JT, Vatner SF, eds. Nervous Control of the Heart. Harwood, Amsterdam, 1996, pp. 1–28.

    Google Scholar 

  18. Langer SZ. Presynaptic regulation of the release of catecholamines. Pharmacol Rev 1981; 32: 337–362.

    Google Scholar 

  19. Vanhoutte PM, Verbeuren TJ, Webb RC. Local modulation of adrenergic neuroeffector interaction in the blood vessel wall. Physiol Rev 1981; 61: 151–247.

    PubMed  CAS  Google Scholar 

  20. Starke K, Göthert M, Kilbinger H. Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 1989; 69: 864–989.

    PubMed  CAS  Google Scholar 

  21. Warner HR, Cox A. Mathematical model of heart rate control by sympathetic and vagus efferent information. J Appl Physiol 1962; 17: 349–355.

    PubMed  CAS  Google Scholar 

  22. Levy MN, Yang T, Wallick DW. Assessment of beat-by-beat control of heart rate by the autonomic nervous system: molecular biology technics are necessary, but not sufficient. J Cardiovasc Electrophysiol 1993; 4: 183–193.

    Article  PubMed  CAS  Google Scholar 

  23. Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B. GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 1985; 317: 536–538.

    Article  PubMed  CAS  Google Scholar 

  24. Holmer SR, Homcy CJ. G proteins in the heart. Circulation 1991; 84: 1891–1902.

    Article  PubMed  CAS  Google Scholar 

  25. Löffelholz K, Pappano AJ. Parasympathetic neuroeffector junction of the heart. Pharmacol Rev 1985; 37: 1–24.

    PubMed  Google Scholar 

  26. Dexter F, Levy MN, Rudy Y. Mathematical model of the changes in heart rate elicited by vagal stimulation. Circ Res 1989; 65: 1330–1339.

    Article  PubMed  CAS  Google Scholar 

  27. Hartzell HC. Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Prog Biophys Mol Biol 1988; 52: 165–247.

    Article  PubMed  CAS  Google Scholar 

  28. Reiter M. Calcium mobilization and cardiac inotropic mechanisms. Pharmacol Rev 1988; 40: 189–217.

    PubMed  CAS  Google Scholar 

  29. Clapham D. Control of intracellular calcium. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside 2nd ed. W. B. Saunders, Philadelphia, 1995, pp. 127–136.

    Google Scholar 

  30. Yatani A, Brown AM. Rapid (3-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. Science 1989; 245: 71–74.

    Article  PubMed  CAS  Google Scholar 

  31. Brown AM. Ion channels as G protein effectors. News Physiol Sci 1991; 6: 158–161.

    CAS  Google Scholar 

  32. Hartzell HC, Mery P-F, Fischmeister R, Szabo G. Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature 1991; 351: 573–576.

    Article  PubMed  CAS  Google Scholar 

  33. Folkow B, Nilsson H. Transmitter release at adrenergic nerve endings: total exocytosis or fractional release. News Physiol Sci 1997; 12: 32–36.

    CAS  Google Scholar 

  34. Haft JI. Cardiovascular injury induced by sympathetic catecholamines. Prog Cardiovasc Dis 1974; 17: 73–86.

    Article  PubMed  CAS  Google Scholar 

  35. Hammermeister KE, Reichenbach DD. QRS changes, pulmonary edema, and myocardial necrosis associated with subarachnoid hemorrhage. Am Heart J 1969; 78: 94–100.

    Article  PubMed  CAS  Google Scholar 

  36. Quezado ZN, Keiser HR, Parker MM. Reversible myocardial depression after massive catecholamine release from a pheochromocytoma. Crit Care Med 1992; 20: 549–551.

    Article  PubMed  CAS  Google Scholar 

  37. Downing SE, Chen V. Myocardial injury following endogenous catecholamine release in rabbits. J Mol Cell Cardiol 1985; 17: 377–387.

    Article  PubMed  CAS  Google Scholar 

  38. Shanlin RJ, Sole MJ, Rahimifar M, Tator CH, Factor SM. Increased intracranial pressure elicits hypertension, increased sympathetic activity, electrocardiographic abnormalities and myocardial damage in rats. J Am Coll Cardiol 1988; 12: 727–736.

    Article  PubMed  CAS  Google Scholar 

  39. Lang SA, Maron MB, Bosso FJ, Pilati CF. Temporal changes in left ventricular function after massive sympathetic nervous system activation. Can J Physiol Pharmacol 1994; 72: 693–700.

    Article  PubMed  CAS  Google Scholar 

  40. Novitzky D, Cooper DKC, Rose AG, Reichart B. Prevention of myocardial injury by pretreatment with verapamil hydrochloride prior to experimental brain death. Am J Emerg Med 1987; 5: 11–18.

    Article  PubMed  CAS  Google Scholar 

  41. Todd GL, Eliot RS. Cardioprotective effects of diltiazem when given before, during or delayed after infusion of norepinephrine in anesthetized dogs. Am J Cardiol 1988; 62: 25G–29G.

    Article  PubMed  CAS  Google Scholar 

  42. Singal PK, Kapur N, Dhillon KS, Beamish RE, Dhalla NS. Role of free radicals in catecholamineinduced cardiomyopathy. Can J Physiol Pharmacol 1982; 60: 1390–1397.

    Article  PubMed  CAS  Google Scholar 

  43. Haggendal J, Jonsson L, Johansson G, Bjurstrom S, Carlsten J, Thoren-Tolling K. Catecholamineinduced free radicals in myocardial cell necrosis on experimental stress in pigs. Acta Physiol Scand 1987; 131: 447–452.

    Article  PubMed  CAS  Google Scholar 

  44. Pilati CF, Bosso FJ, Maron MB. Factors involved in left bentricular dysfunction after massive sympathetic activation. Am J Physiol 1992; 263: H784–H791.

    PubMed  CAS  Google Scholar 

  45. Cousineau D, Goresky CA, Bach GG, Rose CP. Effect of (3-adrenergic blockade on in vivo norepinephrine release in canine heart. Am J Physiol 1984; 246: H283–H292.

    PubMed  CAS  Google Scholar 

  46. Masuda Y, Matsuda Y, Levy MN. Effects of cocaine and metanephrine on the cardiac responses to norepinephrine infusions. J Pharmacol Exp Ther 1980; 215: 20–27.

    PubMed  CAS  Google Scholar 

  47. Novi A. Electron microscopic study of the innervation of the papillary muscle of the rat. Anat Rec 1968; 160: 123–142.

    Article  PubMed  CAS  Google Scholar 

  48. Iversen LL. Catecholamine uptake processes. Brit Med Bull 1973; 29: 130–135.

    PubMed  CAS  Google Scholar 

  49. Levy MN, Zieske H. Autonomic control of cardiac pacemaker activity and atrioventricular transmission. J Appl Physiol 1969; 27: 465–470.

    PubMed  CAS  Google Scholar 

  50. Levy MN. Sympathetic-parasympathetic interactions in the heart. Circ Res 1971; 29: 437–445.

    Article  PubMed  CAS  Google Scholar 

  51. Levy MN. Sympathetic-parasympathetic interactions in the heart. In: Kulbertus HE, Franck G, eds. Neurocardiology. Futura, Mount Kisco, New York, 1988, pp. 85–98.

    Google Scholar 

  52. Stiles GL, Caron MG, Lefkowitz RJ. (3-Adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol Rev 1984; 64: 661–743.

    PubMed  CAS  Google Scholar 

  53. Fleming JW, Strawbridge RA, Watanabe AM. Muscarinic receptor regulation of cardiac adenylate cyclase activity. J Mol Cell Cardiol 1987; 19: 47–61.

    Article  PubMed  CAS  Google Scholar 

  54. Löffelholz K, Muscholl E. Inhibition by parasympathetic nerve stimulation of the release of the adrenergic transmitter. Naunyn-Schmiedebergs Arch Pharmakol 1970; 267: 181–184.

    Article  PubMed  Google Scholar 

  55. Levy MN, Blattberg B. Effect of vagal stimulation on the overflow of norepinephrine into the coronary sinus during cardiac sympathetic nerve stimulation in the dog. Circ Res 1976; 38: 81–85.

    Article  PubMed  CAS  Google Scholar 

  56. Potter EK. Neuropeptide Y as an autonomic neurotransmitter. Pharmacol Ther 1988; 37: 251–273.

    Article  PubMed  CAS  Google Scholar 

  57. Warner MR, Levy MN. Role of neuropeptide Y in neural control of the heart. J Cardiovasc Electrophysiol 1990; 1: 80–91.

    Google Scholar 

  58. Warner MR, Senanayake P, Ferrario CM, Levy MN. Sympathetic stimulation-evoked overflow of norepinephrine and neuropeptide Y from the heart. Circ Res 1991; 69: 455–465.

    Article  PubMed  CAS  Google Scholar 

  59. Revington ML, McCloskey DI. Sympathetic-parasympathetic interactions at the heart, possibly involving neuropeptide Y, in anaesthetized dogs. J Physiol (London) 1990; 428: 359–370.

    CAS  Google Scholar 

  60. Wetzel GT, Brown JH. Presynaptic modulation of acetylcholine release from cardiac parasympathetic neurons. Am J Physiol 1985; 248: H33–H39.

    PubMed  CAS  Google Scholar 

  61. Wetzel GT, Goldstein D, Brown JH. Acetylcholine release from rat atria can be regulated through an al-adrenergic receptor. Circ Res 1985; 56: 763–766.

    Article  PubMed  CAS  Google Scholar 

  62. Potter EK. Prolonged non-adrenergic inhibition of cardiac vagal action following sympathetic stimulation: neuromodulation by neuropeptide Y? Neurosci Lett 1985; 54: 117–121.

    Article  PubMed  CAS  Google Scholar 

  63. Revington M, Potter EK, McCloskey DI. Prolonged inhibition of cardiac vagal action following sympathetic stimulation and galanin in anaesthetized cats. J Physiol (London) 1990; 431: 495–503.

    CAS  Google Scholar 

  64. Courtice GP, Potter EK, McCloskey DI. Inhibition of cardiac vagal action by galanin but not neuropeptide Y in the brush-tailed possum trichosurus vulpecula. J Physiol (London) 1993; 461: 379–386.

    CAS  Google Scholar 

  65. Yang T, Levy MN. Sequence of excitation as a factor in sympathetic-parasympathetic interactions in the heart. Circ Res 1992; 71: 898–905.

    Article  PubMed  CAS  Google Scholar 

  66. Yang T, Senturia JB, Levy MN. Antecedent sympathetic stimulation alters the time course of the chronotropic response to vagal stimulation in dogs. Am J Physiol 1994; 266: H1339–H1347.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Levy, M.N. (1999). Catecholamines and the Heart. In: Share, L. (eds) Hormones and the Heart in Health and Disease. Contemporary Endocrinology, vol 21. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-708-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-708-6_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5420-9

  • Online ISBN: 978-1-59259-708-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics