Skip to main content

The Neuroendocrine Control of Circadian Rhythms

  • Chapter
Neuroendocrinology in Physiology and Medicine

Abstract

The bilateral suprachiasmatic nuclei (SCN) of the hypothalamus is the location of the primary circadian clock in mammals. Humoral and/or neuronal outputs from the SCN drive rhythms in behavioral, physiological, and biochemical functions. Other chapters in this textbook have discussed circadian rhythmicity of hormone secretion, reflecting the output of the SCN to various neuroendocrine systems. The focus of this chapter will consider evidence that neurohormones can feed back on the SCN and modulate circadian clock function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Readings

  • Albers HE, Liou S-Y, Ferris CF, Stopa EG, Zoeller RT. Neurochemistry of circadian timing. In: Klein DC, Moore RY, Rep-pert SM, eds. Suprachiasmatic Nucleus: The Mind’s Clock. New York: Oxford University Press, 1991; 263.

    Google Scholar 

  • Cassone VM. Melatonin and suprachiasmatic nucleus function. In: Klein DC, Moore RY, Reppert SM, eds. Suprachiasmatic Nucleus: The Mind’s Clock. New York: Oxford University Press, 1991; 309.

    Google Scholar 

  • Czeisler CA, Turek FW, eds. Special issue: Melatonin, sleep, and circadian rhythms: current progress and controversies. J Biol Rhythms vol 12(6). Thousand Oaks: SAGE Publications, 1997; 489.

    Google Scholar 

  • Gillette MU. SCN electrophysiology in vitro: rhythmic activity and endogenous clock properties. In Klein DC, Moore RY, Reppert SM, eds. Suprachiasmatic Nucleus: The Mind’s Clock. New York: Oxford University Press, 1991; 125.

    Google Scholar 

  • Gillette MU, McArthur AJ. Circadian actions of melatonin at the Suprachiasmatic nucleus. Behav Brain Res 1996; 73: 135.

    Article  PubMed  CAS  Google Scholar 

  • Inouye S-IT. Circadian rhythms of neuropeptides in the suprachiasmatic nucleus. In: Buijs RM, Kalsbeck A, Romijn HJ, Pennartz CMA, Mirmiran M, eds. Progress in Brain Research, vol 111. New York: Elsevier Science, 1996; 75.

    Google Scholar 

  • Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 1997; 19: 91.

    Article  PubMed  CAS  Google Scholar 

  • McArthur AJ, Hunt AE, Gillette MU. Melatonin action and signal transduction in the rat suprachiasmatic circadian clock: activation of protein kinase C at dusk and dawn. Endocrinology 1997; 138: 627.

    Article  PubMed  CAS  Google Scholar 

  • Piggins HD, Antle MC, Rusak B. Neuropeptides phase shift the mammalian circadian pacemaker. J Neurosci 1995; 15: 5612.

    PubMed  CAS  Google Scholar 

  • Reppert SM. Interaction between the circadian clocks of mother and fetus. In: Chadwick DJ, Ackrill K, eds. Circadian Clocks and Their Adjustment. Chichester; New York: Wiley, (Ciba Foundation Symp 183 ), 1995; 198.

    Google Scholar 

  • Silver R, LeSauter J, Tresco PA, Lehman MN. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 1996; 382: 810.

    Article  PubMed  CAS  Google Scholar 

  • Tosini G, Menaker M. Circadian rhythms in cultured mammalian retina. Science 1996; 272: 419.

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan N, Davis FC. Single prenatal injections of melatonin or the Dl-dopamine receptor agonist SKF 38393 to pregnant hamsters sets the offsprings’ circadian rhythms to phases 180 degrees apart. J Comp Physiol A 1997; 180: 339.

    Article  PubMed  CAS  Google Scholar 

  • Weaver DR, Rivkees SA, Carlson LL, Reppert SM. Localization of melatonin receptors in mammalian brain. In: Klein DC, Moore RY, Reppert SM, eds. Suprachiasmatic Nucleus: The Mind’s Clock. New York: Oxford University Press, 1991; 289.

    Google Scholar 

  • Weaver DR, Liu C, Reppert SM. Nature’s knockout: the Mel„ receptor is not necessary for reproductive and circadian responses to melatonin in Siberian hamsters. Mol Endocrinol 1996; 10: 1478.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wayne, N.L. (2000). The Neuroendocrine Control of Circadian Rhythms. In: Conn, P.M., Freeman, M.E. (eds) Neuroendocrinology in Physiology and Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-707-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-707-9_24

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-153-0

  • Online ISBN: 978-1-59259-707-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics