Skip to main content

HIV-1 Coreceptors and Viral Tropism

  • Chapter
Chemokines in Disease

Part of the book series: Contemporary Immunology ((CONTIM))

  • 64 Accesses

Abstract

The past two years have witnessed the rapid merging of the HIV and chemokine-receptor fields, no doubt to the surprise of all involved (reviewed in refs. 14). It became evident soon after the discovery of CD4 as the primary receptor for HIV-1 that one or more additional cell-surface molecules (coreceptors) were required in conjunction with CD4 to support entry of the virus into cells (5). The realization that HIV-1 strains exhibit distinct cellular tropisms indicated that strain-specific coreceptors might exist. Over the ensuing decade, numerous candidate coreceptors were proposed, none of which stood the test of time. Finally, the first significant step towards solving this problem came in late 1995 when Cocchi, Lusso, and co-workers identified the CC chemokines RANTES, MIP-1α, and MIP-1β as factors secreted by CD8+ T cells that were able to suppress some HIV-1 strains (6). However, the true significance of this finding was not fully apparent until Berger and colleagues independently identified the first bona fide HIV-1 coreceptor, termed fusin (7). This was an orphan seven transmembrane domain receptor first cloned in 1993 (8). Of significance for understanding HIV-1 tropism was that, whereas fusin was clearly shown to serve as a coreceptor for T-tropic virus strains, expression of fusin with CD4 did not allow entry of the more common M-tropic viruses (7). However, the homology of fusin to the chemokine receptor family indicated that a receptor competent to bind RANTES, MIP1-α, and MIP1-β would be an excellent candidate for the M-tropic virus coreceptor. The publication of a receptor with this binding profile, termed CCR5 (9) enabled five groups to simultaneously identify this molecule as the major HIV-1 coreceptor (1014). Confirmation that CCR5 is the major HIV-1 coreceptor in vivo came from the finding that individuals who lack CCR5 because of an inherited polymorphism (D32-ccr5) are highly resistant to virus infection, and that individuals who have only one copy of this allele exhibit a delayed progression to AIDS (1517). Subsequently, fusin was shown to be the receptor for the CXC chemokine SDF-1 and, as a result, was renamed CXCR4 (18,19).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, E. A. (1997) HIV entry and tropism: The chemokine receptor connection. AIDS11, S3–S16.

    Google Scholar 

  2. Broder, C. C. and Collman, R. G. (1997) Chemokine receptors and HIV. J. Leukocyte Biol. 62, 20–29.

    PubMed  CAS  Google Scholar 

  3. Doms, R. W. and Peiper, S. C. (1997) Unwelcome guests with master keys: How HIV uses chemokine receptors for cellular entry. Virology 235, 179–190.

    Article  PubMed  CAS  Google Scholar 

  4. Moore, J. P., Trkola, A., and Dragic, T. (1997) Co-receptors for HIV-1 entry. Curr. Opinion Immunol. 9, 551–562.

    Article  CAS  Google Scholar 

  5. Maddon, P. J., Dalgleish, A. G., McDougal, J. S., Clapham, P. R., Weiss, R. A., and Axel, R. (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47, 333–348.

    Article  PubMed  CAS  Google Scholar 

  6. Cocchi, F., DeVico, A. L., Garzino-Demo, A., Arya, S. K., Gallo, R. C., and Lusso, P. (1995) Identification of RANTES, MIP-1α, and MIP-1β as the major HIV suppressive factors produced by CD8+ T cells. Science 270, 1811–1815.

    Article  PubMed  CAS  Google Scholar 

  7. Feng, Y., Broder, C. C., Kennedy, P. E., and Berger, E. A. (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane domain, G-protein coupled receptor. Sci-ence 272,872–877.

    CAS  Google Scholar 

  8. Federsppiel, B., Melhado, I. G., Duncan, A., M. V., Delaney, A., Schappert, K., Clark-Lewis, I., and Jirik, F. R. (1993) Molecular cloning of the cDNA and chromosomal localization of the gene for a putative seven-transmembrane segment (7-TMS) receptor isolated from human spleen. Genomics 16, 707–712.

    Article  PubMed  CAS  Google Scholar 

  9. Samson, M., Labbe, O., Mollereau, C., Vassart, G., and Parmentier, M. (1996) Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochem. 35, 3362–3367.

    Article  CAS  Google Scholar 

  10. Alkhatib, G., Combadiere, C., Broder, C. C., Feng, Y., Kennedy, P. E., Murphy, P. M., and Berger, E. A. (1996) CC CKR5: A RANTES, MIP-la, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272, 1955–1958.

    Article  PubMed  CAS  Google Scholar 

  11. Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P. D., Wu, L., Mackay, C. R., LaRosa, G., Newman, W., Gerard, N., Gerard, C., and Sodroski, J. (1996) The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 85,1135–1148.

    Article  PubMed  CAS  Google Scholar 

  12. Deng, H., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., P. DiMarzio, Marmon, S., Sutton, R. E., Hill, C. M., Davis, C. B., Peiper, S. C., Schall, T. J., Littman, D. R., and Landau, N. R. (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666.

    Article  PubMed  CAS  Google Scholar 

  13. Doranz, B. J., Rucker, J., Yi, Y., Smyth, R. J., Samson, M., Peiper, S. C., Parmentier, M., Collman, R. G., and Doms, R. W. (1996) A dual-tropic primary HIV-1 isolate that uses fusin and the -chemokine receptors CKR-5, CKR-3, and CKR-2β as fusion cofactors. Cell 85, 1149–1158.

    Article  PubMed  CAS  Google Scholar 

  14. Dragic, T., Litwin, V., Allaway, G. P., Martin, S. R., Huang, Y., Nagashima, K. A., Cayanan, C., Maddon, P. J., Koup, R. A., Moore, J. P., and Paxton, W. A. (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667–673.

    Article  PubMed  CAS  Google Scholar 

  15. Dean, M., Carrington, M., Winkler, C., Huttley, G. A., Smith, M. W., Allikmets, R., Goedert, J. J., Buchbinder, S. P., Vittinghoff, E., Gomperts, E., Donfield, S., Vlahov, D., Kaslow, R., Saah, A., Rinaldo, C., Detels, R., Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study, and S. J. O’Brien. (1996) Genetic resistance of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273, 1856–1862.

    Google Scholar 

  16. Liu, R., Paxton, W. A., Choe, S., Ceradini, D., Martin, S. R., Horuk, R., MacDonald, M. E., Stuhlmann, H., Koup, R. A., and Landau, N. R. (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377.

    Article  PubMed  CAS  Google Scholar 

  17. Samson, M., Libert, F., Doranz, B. J., Rucker, J., Liesnard, C., Farber, C.-M., Saragosti, S., Lapoumèroulie, C., Cogniaux, J., Forceille, C., Muyldermans, G., Verhofstede, C., Burtonboy, G., Georges, M., Imai, T., Rana, S., Yi, Y., Smyth, R. J., Collman, R. G., Doms, R. W., Vassart, G., and Parmentier, M. (1996) Resistance to HIV-1 infection of Caucasian individuals bearing mutant alleles of the CCR5 chemokine receptor gene. Nature 382, 722–725.

    Article  PubMed  CAS  Google Scholar 

  18. Bleul, C. C., Farazan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J., and Springer, T. A. (1996) The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/Fusin and blocks HIV-1 entry. Nature 382, 829–833.

    Article  PubMed  CAS  Google Scholar 

  19. Oberlin, E., Amara, A., Bachelerie, F., Bessia, C., Virelizier, J.-L., Arenzana-Seisdedos, F., Schwartz, O., Heard, J.-M., Clark-Lewis, I., Legler, D. F., Loetscher, M., Baggiolini, M., and Moser, B. (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell line-adapted HIV-1. Nature 382, 833–835.

    Article  PubMed  CAS  Google Scholar 

  20. Moore, J., Jameson, B., Weiss, R., and Sattentau, Q. (1993) The HIV-cell fusion reaction, in Viral Fusion Mechanisms (Bentz, J., ed.), CRC Press, Boca Raton, FL, pp. 233–289.

    Google Scholar 

  21. Hesselgesser, J., Halks-Miller, M., DelVecchio, V., Peiper, S. C., Hoxie, J., Kolson, D. L., Taub, D., and Horuk, R. (1997) CD4-independent association between HIV-1 gp120 and CXCR4: Functional chemokine receptors are expressed in human neurons. Curr. Biol. 7,112–121.

    Article  PubMed  CAS  Google Scholar 

  22. Hill, C. M., Deng, H., Unutmaz, D., Kewalramani, V. N., Bastiani, L., Gorny, M. K., Zolla-Pazner, S., and Littman, D. R. (1997) Envelope glycoproteins from human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus can use human CCR5 as a coreceptor for viral entry and make direct CD4-dependent interactions with this chemokine receptor. J. Virol. 71, 6296–6304.

    PubMed  CAS  Google Scholar 

  23. Lapham, C. K., Ouyang, J., Chandrasekhar, B., Nguyen, N. Y., Dimitrov, D. S., and Golding, H. (1996) Evidence for cell-surface association between Fusin and the CD4-gp120 complex in human cell lines. Science 274, 602–605.

    Article  PubMed  CAS  Google Scholar 

  24. Trkola, A., Dragic, T., Arthos, J., Binley, J. M., Olson, W. C., Allaway, G. P., Cheng-Mayer, C., Robinson, J., Maddon, P. J., and Moore, J. P. (1996) CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384, 184–187.

    Article  PubMed  CAS  Google Scholar 

  25. Wu, L., Gerard, N. P., Wyatt, R., Choe, H., Parolin, C., Ruffing, N., Borsetti, A., Cardoso, A. A., Desjardin, E., Newman, W., Gerard, C., and Sodroski, J. (1996) CD4-induced inter-action of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 384, 179–183.

    Article  PubMed  CAS  Google Scholar 

  26. Connor, R. I., Mohri, H., Cao, Y., and Ho, D. D. (1993) Increased viral burden and cytopathicity correlate temporally with CD4+ T-lymphocyte decline and clinical progression in human immunodeficiency virus type 1-infected individuals. J. Virol. 67, 1772–1777.

    PubMed  CAS  Google Scholar 

  27. Connor, R. I., Sheridan, K. E., Ceradini, D., Choe, S., and Landau, N. R. (1997) Change in coreceptor use correlates with disease progression in HIV-1 infected individuals. J. Exp. Med. 185,621–628.

    Article  PubMed  CAS  Google Scholar 

  28. Schuitemaker, H., Koot, M., Koostra, N. A., Dercksen, M. W., Goede, R. E. Y. d., Steenwijk, R., P. v., Lange, J., M. A., Schattenkerk, J. K. M. E., Miedema, F., and Tersmette, M. (1992) Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: Progression of disease is associated with a shift from monocytotropic to T-cell tropic populations. J. Virol. 66, 1354–1360.

    PubMed  CAS  Google Scholar 

  29. Tersmette, M., Gruters, R., Wolf, F. d., Goede, R. E. Y. d., Lange, J. M. A., Schellekens, P. T. A., Goudsmit, J., Huisman, H. G., and Meidema, F. (1989) Evidence for a role of virulent human immunodeficiency virus (HIV) variants in the pathogenesis of acquired immunodeficiency virus syndrome: Studies on sequential isolates. J. Virol. 63, 2118–2125.

    PubMed  CAS  Google Scholar 

  30. Tersmette, M., Lange, J., M. A., Goed, R. E., Y. d., Wolf, F. d., Schattenkerk, J. K. M. E., Schellekens, P. T. A., Coutinho, R. A., Huisman, H. G., Goudsmit, J., and Meidema, F. (1989) Association between biological properties of human immunodeficiency virus variants and risk for AIDS and AIDS mortality. Lancet i, 983–985.

    Google Scholar 

  31. Roos, M. T. L., Lange, J. M. A., Goede, R. E., Y. d., Coutinho, R. A., Schellekens, P. T. A., Miedema, F., and Tersmette, M. (1992) Viral phenotype and immune response in primary human immunodeficiency virus type 1 infection. J. Infect. Dis. 165, 427–432.

    Article  PubMed  CAS  Google Scholar 

  32. Zhu, T., Mo, H., Wang, N., Nam, D. S., Cao, Y., Koup, R. A., and Ho, D. D. (1993) Genotypic and phenotypic characterization of HIV-1 in patients with primary infection. Science 261, 1179–1181.

    Article  PubMed  CAS  Google Scholar 

  33. Fenyo, E., L. Morfeldt-Mason, Chiodi, F., Lind, B., A. VonGegerfelt, Albert, J., and Asjö, B. (1988) Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. J. Virol. 62, 4414–4419.

    PubMed  CAS  Google Scholar 

  34. Tersmette, M., R. deGoede, E. Y., Ai, B. J. M., Winkel, I. N., Gruters, R. A., Cuypers, H. T., Huisman, H. G., and Miedema, F. (1988) Differential syncytium-inducing capacity of human immunodeficiency virus isolates: Frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency virus syndrome (AIDS) and AIDS-related complex. J. Virol. 62, 2026–2032.

    PubMed  CAS  Google Scholar 

  35. Collman, R., Balliet, J. W., Gregory, S. A., Friedman, H., Kolson, D. L., Nathanson, N., and Srinivasan, A. (1992) An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain of human immunodeficiency virus type 1. J. Virol. 66, 7517–7521.

    PubMed  CAS  Google Scholar 

  36. Connor, R. I. and Ho, D. D. (1994) Human immunodeficiency virus type 1 variants with increased replicative capacity develop during the asymptomatic stage before disease progres-sion. J. Virol. 68, 4400–4408.

    PubMed  CAS  Google Scholar 

  37. Doms, R. W. and Moore, J. P. (1998) HIV-1 coreceptor use: A molecular window into viral tropism.

    Google Scholar 

  38. Simmons, G., Wilkinson, D., Reeves, J. D., Dittman, M. T., Beddows, S., Weber, J., Carnegis, G., Gesselberger, U., Gray, P. W., Weiss, R. A., and Clapham, P. R. (1996) Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. J. Virol. 70, 8355–8360.

    PubMed  CAS  Google Scholar 

  39. Berger, E. A., Doms, R. W., Fenyö, E.-M., Korber, B. T. M., Littman, D. R., Moore, J. P., Sattentau, Q. J., Schuitemaker, H., Sodroski, J., and Weiss, R. A. (1998) HIV-1 phenotypes classified by co-receptor usage. Nature 391, 240.

    Article  PubMed  CAS  Google Scholar 

  40. Moore, J. P. and Ho, D. D. (1995) HIV-1 neutralization: The consequences of viral adaptation to growth on transfomred T cells. AIDS 9(suppl A), S117–S136.

    Google Scholar 

  41. Montefiori, D. C., Collman, R. G., Zhou, T. R. F. J. Y., Bilska, M., Hoxie, J. A., Moore, J. P., and Bolognesi, D. P. (1998) Evidence that antibody-mediated neutralization of human immu-nodeficiency virus type 1 by sera from infected individuals is independent of coreceptor usage. J. Virol. 72, 1886–1893.

    PubMed  CAS  Google Scholar 

  42. Trkola, A., Ketas, T., KewalRamani, V. N., Endorf, F., Binley, J. M., Katinger, H., Robinson, J., Littman, D. R., and Moore, J. P. (1998) Neutralization sensitivity of human immuno-deficiency virus type 1 primary isolates to antibodies and CD4-based reagents is independent of co-receptor usage. J. Virol. (in press).

    Google Scholar 

  43. Granelli-Piperno, A., Moser, B., Pope, M., Chen, D., Wei, Y., Isdell, F., U. O’Doherty, Paxton, W., Koup, R., Mojsov, S., Bhardwaj, N., Clark-Lewis, I., Baggiolini, M., and Steinman, R. M. (1996) Efficient interaction of HIV-1 with purified dendritic cells via multiple chemokine coreceptors. J. Exp. Med. 184, 2433–2438.

    Article  PubMed  CAS  Google Scholar 

  44. Rana, S., Besson, G., Cook, D. G., Rucker, J., Smyth, R. J., Yi, Y., Turner, J., Guo, H., Du, J.-G., Peiper, S. C., Lavi, E., Samson, M., Libert, F., Liesnard, C., Vassart, G., Doms, R. W., Parmentier, M., and Collman, R. G. (1997) Role of CCR5 in infection of primary macrophages and lymphocytes by M-tropic strains of HIV: Resistance to patient-derived and prototype isolates resulting from the Δccr5 mutation. J. Virol. 71, 3219–3227.

    PubMed  CAS  Google Scholar 

  45. Yi, Y., Rana, S., Turner, J. D., Gaddis, N., and Collman, R. G. (1998) CXCR4 is expressed by primary macrophages and supports CCR5-independent infection by dual-tropic but not T-tropic isolates of HIV-1. J. Virol. 72, 772–777.

    PubMed  CAS  Google Scholar 

  46. Premack, B. A. and Schall, T. J. (1996) Chemokine receptors: Gateways to inflammation and infection. Nature Med. 2, 1174–1178.

    Article  PubMed  CAS  Google Scholar 

  47. Deng, H., Unutmaz, D., Kewalramani, V. N., and Littman, D. R. (1997) Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 388, 296–300.

    Article  PubMed  CAS  Google Scholar 

  48. Edinger, A. L., Hoffman, T. L., Yi, Y., Sharron, M., Collman, R. G., Mitrovic, B., Faulds, D., Hesselgesser, J., Horuk, R., and Doms, R. W. (1998) An orphan seven transmembrane domain receptor expressed widely in brain functions as a coreceptor for HIV-1 and SIV. J. Virol. 72, 7934–7940.

    PubMed  CAS  Google Scholar 

  49. Farzan, M., Choe, H., Vaca, L., Martin, K., Sun, Y., Desjardins, E., Ruffing, N., Wu, L., Wyatt, R., Gerard, N., Gerard, C., and Sodroski, J. (1998) A tyrosine-rich region in the N terminus of CCR5 is important for human immunodeficiency virus type 1 entry and mediates an association between gp120 and CCR5. J. Virol. 72, 1160–1164.

    PubMed  CAS  Google Scholar 

  50. Doranz, B. J., Lu, Z., Rucker, J., Zhang, T., Sharron, M., Cen, Y., Wang, Z., Guo, H., Du, J., Accavitti, M. A., Doms, R. W., and Peiper, S. C. (1997) Two distinct CCR5 domains can mediate coreceptor usage by human immunodeficiency virus type 1. J. Virol. 71, 6305–6314.

    PubMed  CAS  Google Scholar 

  51. Dragic, T., Trkola, A., Lin, S. W., Nagashima, K. A., Kajumo, F., Zhao, L., Olson, W. C., Wu, L., Mackay, C. R., Allaway, G. P., Sakmar, T. P., Moore, J. P., and Maddon, P. J. (1998) Amino-terminal substitutions in the CCR5 co-receptor impair gp120 binding and human immuno-deficiency virus type 1 entry. J. Virol. 72, 279–285.

    PubMed  CAS  Google Scholar 

  52. Ross, T. M., Bieniasz, P. D., and Cullen, B. R. (1997) Multiple residues contribute to the inability of murine CCR5 to function as a coreceptor for macrophage-tropic HIV-1 isolates. J. Virol. 72, 1918–1924.

    Google Scholar 

  53. Farzan, M., Choe, H., Martin, K., Marcon, L., Hofmann, W., Karlsson, G., Sun, Y., Barrett, P., Marchand, N., Sullivan, N., Gerard, N., Gerard, C., and Sodroski, J. (1997) Two orphan seven-transmembrane segment receptors which are expressed in CD4-positive cells support simian immunodeficiency virus infection. J. Exp. Med. 186, 405–411.

    Article  PubMed  CAS  Google Scholar 

  54. Liao, F., Alkhatib, G., Peden, K. W. C., Sharma, G., Berger, E. A., and Farber, J. M. (1997) STRL33, a novel chemokine receptor-like protein, functions as a fusion cofactor for both macrophage-tropic and T cell line-tropic HIV-1. J. Exp. Med. 185, 2015–2023.

    Article  PubMed  CAS  Google Scholar 

  55. Pleskoff, O., Treboute, C., Brelot, A., Heveker, N., Seman, M., and Alizon, M. (1997) Identi-fication of a chemokine receptor encoded by human cytomegalovirus as a cofactor for HIV-1 entry. Science 276, 1874–1878.

    Article  PubMed  CAS  Google Scholar 

  56. Reeves, J. D., McKnight, A., Potempa, S., Simmons, G., Gray, P. W., Power, C. A., Wells, T., Weiss, R. A., and Talbot, S. J. (1997) CD4-independent infection by HIV-2 (ROD/B): Use of the 7-transmembrane receptors CXCR-4, CCR-3, and V28 for entry. Virol. 231, 130–134.

    Article  CAS  Google Scholar 

  57. Rucker, J., Edinger, A. L., Sharron, M., Samson, M., Lee, B., Berson, J. F., Yi, Y., Collman, R. G., Doranz, B. J., Parmentier, M., and Doms, R. W. (1997) Utilization of chemokine recep-tors, orphan receptors, and herpesvirus encoded receptors by diverse human and simian immu-nodeficiency viruses. J. Virol. 71, 8999–9007.

    PubMed  CAS  Google Scholar 

  58. Kozak, S. L., Platt, E. J., Madani, N., Ferro, F. E., Peden, K., and Kabat, D. (1997) CD4, CXCR-4, and CCR5 dependencies for infections by primary patient and laboratory-adapted isolates of human immunodeficiency virus type 1. J. Virol. 71, 873–882.

    PubMed  CAS  Google Scholar 

  59. Platt, E. J., Wehrly, K., Kuhnman, S. E., Chesbro, B., and Kabat, D. (1998) Effects of CCR5 and CD4 cell surface concentrations on infections by macrophage-tropic isolates of human immunodeficiency virus type 1. J. Virol. 72, 2855–2864.

    PubMed  CAS  Google Scholar 

  60. Clapham, P., Weber, J. N., Whitby, D., K. McKintosh, Dalgleish, A. G., Maddon, P. J., Deen, K. C., Sweet, R. W., and Weiss, R. A. (1989) Soluble CD4 blocks the infectivity of diverse strains of HIV and SIV for T cells and monocytes but not for brain and muscle cells. Nature 337, 368–370.

    Article  PubMed  CAS  Google Scholar 

  61. Harouse, J. M., Kunsch, C., Hurtle, H. T., Laughlin, M. A., Hoxie, J. A., Wigdahl, B., and Gonzalez-Scarano, F. (1989) CD4-independent infection of human neural cells by human immunodeficiency virus type 1. J. Virol. 63, 2527–2533.

    PubMed  CAS  Google Scholar 

  62. Li, X. L., Moudgil, T., Vinters, H. V., and Ho, D. D. (1990) CD4-independent, productive infec-tion of a neuronal cell line by human immunodeficiency virus type 1. J. Virol. 64, 1383–1387.

    PubMed  CAS  Google Scholar 

  63. Moses, A. V., Bloom, F. E., Pauza, C. D., and Nelson, J. A. (1993) Human immunodeficiency virus infection of human brain capillary endothelial cells occurs via a CD4/galactosylceramide-independent mechanism. Proc. Natl. Acad. Sci. USA 90, 10474–10478.

    Article  PubMed  CAS  Google Scholar 

  64. Nelson, J. A., Wiley, C. A., Reynolds-Kohler, C., Reese, C. E., Margaretten, W., and Levy, J. A. (1988) Human immunodeficiency virus detected in bowel epithelium from patients with gastrointestinal symptoms. Lancet i, 259–262.

    Google Scholar 

  65. Endres, M. J., Clapham, P. R., Marsh, M., Ahuja, M., Turner, J. D., A. McKnight, Thomas, J. F., Stoebenau-Haggarty, B., Choe, S., Vance, P. J., Wells, T., N. C., Power, C. A., Sutterwala, S. S., Doms, R. W., Landau, N. R., and Hoxie, J. A. (1996) CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Cell 87, 745–756.

    Article  PubMed  CAS  Google Scholar 

  66. Dumonceaux, J., Nisole, S., Chanel, C., Quivet, L., Amara, A., Baleux, F., Briand, P., and Hazan, U. (1998) Spontaneous mutations in the env gene of the human immunodeficiency virus type 1 NDKisolate are associatedwith a CD4-independent entry phenotype. J. Virol. 72,512–519.

    PubMed  CAS  Google Scholar 

  67. Mankowski, J. L., Spelman, J. P., Ressetar, H. G., Strandberg, J. D., Laterra, J., Carter, D. L., Clements, J. E., and Zink, M. C. (1994) Neurovirulent simian immunodeficiency virus repli-cates productively in endothelial cells of the central nervous system in vivo and in vitro. J. Virol. 68, 8202–8208.

    PubMed  CAS  Google Scholar 

  68. Edinger, A. L., Mankowski, J. L., Doranz, B. J., Margulies, B. J., Lee, B., Rucker, R. J., Sharron, M., Hoffman, T. L., Bierson, J. F., Zink, M. C., Hirsch, V. M., Clements, J. E., and Doms, R. W. (1997) CD4-independent, CCR5-dependent infection of brain capillary endothelial cells by a neurovirulent simian immunodeficiency virus strain. Proc. Natl. Acad. Sci. USA 94,14,742–14,747.

    CAS  Google Scholar 

  69. Zhang, Y. and Moss, B. (1991) Inducer-dependent conditional lethal mutant animal viruses. Proc. Natl. Acad. Sci. USA 88, 1511–1515.

    Article  PubMed  CAS  Google Scholar 

  70. Chen, Z., Zhou, P., Ho, D. D., Landau, N. R., and Marx, P. A. (1997) Genetically divergent strains of simian immunodeficiency virus use CCR5 as a coreceptor for entry. J. Virol. 71, 2705–2714.

    PubMed  CAS  Google Scholar 

  71. Edinger, A. L., Amedee, A., Miller, K., Doranz, B. J., Endres, M., Sharron, M., Samson, M., Lu, Z., Clements, J. E., Murphey-Corb, M., Peiper, S. C., Parmentier, M., Broder, C. C., and Doms, R. W. (1997) Differential utilization of CCR5 by macrophage and T-cell tropic SIV strains. Proc. Natl. Acad. Sci. USA 94, 4005–4010.

    Article  PubMed  CAS  Google Scholar 

  72. Marcon, L., Choe, H., Martin, K. A., Farzan, M., Ponath, P. D., Wu, L., Newman, W., Gerard, N., Gerard, C., and Sodroski, J. (1997) Utilization of C-C chemokine receptor 5 by the envelope glycoproteins of a pathogenic simian immunodeficiency virus, SIVmac239. J. Virol. 71, 2522–2527.

    PubMed  CAS  Google Scholar 

  73. Hirsch, V. M., Martin, J. E., Dapolito, G., Elkins, W. R., London, W. T., Goldstein, S., and Johnson, P. R. (1994) Spontaneous substitutions in the vicinity of the V3 analog affect cell tropism and pathogenicity of simian immunodeficiency virus. J. Virol. 68, 2649–2661.

    PubMed  CAS  Google Scholar 

  74. Mori, K., Ringler, D. J., Kodama, T., and Derosiers, R. C. (1992) Complex determinants of macrophage tropism in env of simian immunodeficiency virus. J. Virol. 66, 2067–2075.

    PubMed  CAS  Google Scholar 

  75. Bieniasz, P. D., Fridell, R. A., Aramori, I., Ferguson, S. S. G., Caron, M. G., and Cullen, B. R. (1997) HIV-1 induced cell fusion is mediated by multiple regions within both the viral envelope and the CCR-5 coreceptor. EMBO J. 16, 2599–2609.

    Article  PubMed  CAS  Google Scholar 

  76. Rucker, J., Samson, M., Doranz, B. J., Libert, F., Berson, J., Yi, Y., Collman, R. G., Vassart, G., Broder, C. C., Doms, R. W., and Parmentier, M. (1996) Regions in b-chemokine receptors CKR-5 and CKR-2β that determine HIV-1 cofactor specificity. Cell 87, 437–446.

    Article  PubMed  CAS  Google Scholar 

  77. Weissman, D., Rabin, R. L., Arthos, J., Rubbert, A., Dybul, M., Swofford, R., Venkatesan, S., Farber, J. M., and Fauci, A. S. (1997) Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor. Nature 389, 981985.

    Google Scholar 

  78. Davis, C. B., Dikic, I., Unutmaz, D., Hill, C. M., Arthos, J., Siani, M. A., Thompson, D. A., Schlessinger, J., and Littman, D. R. (1997) Signal transduction due to HIV-1 envelope interac-tions with chemokine receptors CXCR4 or CCR5. J. Exp. Med. 186, 1793–1798.

    Article  PubMed  CAS  Google Scholar 

  79. Alkhatib, G., Locati, M., Kennedy, P. E., Murphy, P. M., and Berger, E. A. (1997) HIV-1 coreceptor activity of CCR5 and its inhibition by chemokines: Independence from G protein signaling and importance of coreceptor downmodulation. Virology 234, 340–348.

    Article  PubMed  CAS  Google Scholar 

  80. Aramori, I., Ferguson, S. S. G., Bieniasz, P. D., Cullen, B. R., and Caron, M. G. (1997) Molecu-lar mechanism of desensitization of the chemokine receptor CCR-5: Receptor signaling and internalization are dissociable from its role as an HIV-1 co-receptor. EMBO J. 16, 4606–4616.

    Article  PubMed  CAS  Google Scholar 

  81. Atchison, R. E., Gosling, J., Monteclaro, F. S., Franci, C., Digilio, L., Charo, I. F., and Goldsmith, M. (1996) Multiple extracellular elements of CCR5 and HIV-1 entry: Dissociation from response to chemokines. Science 274, 1924–1926.

    Article  PubMed  CAS  Google Scholar 

  82. Farzan, M., Choe, H., Martin, K. A., Sun, Y., Sidelko, M., Mackay, C. R., Gerard, N. P., Sodroski, J., and Gerard, C. (1997) HIV-1 entry and macrophage inflammatory protein 1β-mediated signaling are independent functions of the chemokine receptor CCR5. J. Biol. Chem. 272, 6854–6857.

    Article  PubMed  CAS  Google Scholar 

  83. Gosling, J., Monteclaro, F. S., Atchison, R. E., Arai, H., Tsou, C., Goldsmith, M. A., and Charo, I. F. (1997) Molecular uncoupling of C-C chemokine receptor 5-induced chemotaxis and singnal transduction from HIV-1 coreceptor activity. Proc. Natl. Acad. Sci. USA 94, 5061–5066.

    Article  PubMed  CAS  Google Scholar 

  84. Chackerian, B., Long, E. M., Luciw, P. A., and Overbaugh, J. (1997) Human immunodeficiency virus type 1 coreceptors participate in postentry stages in the virus replication cycle and function in simian immunodeficiency virus infection. J. Virol. 71, 3932–3939.

    PubMed  CAS  Google Scholar 

  85. Mori, K., Ringler, D. J., and Desrosiers, R. C. (1993) Restricted replication of simian immuno-deficiency virus strain 239 in macrophages is determined by env but is not due to restricted entry. J. Virol. 67, 2807–2814.

    PubMed  CAS  Google Scholar 

  86. Arenzanaseisdos, F., Virelizier, J. L., Rousset, D., I. Clark-Lewis, Loetscher, P., Moser, B., and Baggiolini, M. (1996) HIV blocked by chemokine antagonist. Nature 383, 400.

    Article  Google Scholar 

  87. Simmons, G., Clapham, P. R., Picard, L., Offord, R. E., Rosenkilde, M. M., Schwartz, T. W., Buser, R., Wells, T. N. C., and Proudfoot, A. E. I. (1997) Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 276, 276–279.

    Article  PubMed  CAS  Google Scholar 

  88. McKnight, A., Wilkinson, D., Simmons, G., Talbot, S., Picard, L., Ahuja, M., Marsh, M., Hoxie, J. A., and Clapham, P. R. (1997) Inhibition of human immunodeficiency virus fusion by a monoclonal antibody to a coreceptor (CXCR4) is both cell type and virus strain dependent. J. Virol. 71, 1692–1696.

    PubMed  CAS  Google Scholar 

  89. Wu, L., LaRosa, G., Kassam, N., Gordon, C. J., Heath, H., Ruffing, N., Chen, H., Humblias, J., Samson, M., Parmentier, M., Moore, J. P., and Mackay, C. R. (1997) Interaction of chemokine receptor CCR5 with its ligands: Multiple domains for HIV-1 gp120 binding and a single domain for chemokine binding. J. Exp. Med. 186, 1373–1381.

    Article  PubMed  CAS  Google Scholar 

  90. Donzella, G. A., Schols, D., Lin, S. W., Esté, J. A., Nagashima, K. A., Maddon, P. J., Allaway, G. P., Sakmar, T. P., Henson, G., E. De Clerq, and Moore, J. P. (1998) AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nature Med. 4, 72–77.

    Article  PubMed  CAS  Google Scholar 

  91. Doranz, B. J., Grovit-Ferbas, K., Sharron, M. P., Mao, S.-H., Goetz, M. B., Daar, E. S., Doms, R. W., and W. A. O’Brien. (1997) A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J. Exp. Med. 186, 1395–1400.

    Article  PubMed  CAS  Google Scholar 

  92. Murakami, T., Nakajima, T., Koyanagi, Y., Tachibana, K., Fujii, N., Tamamura, H., Yoshida, N., Waki, M., Matsumoto, A., Yoshie, O., Kishimoto, T., Yamamoto, N., and Nagasawa, T. (1997) A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J. Exp. Med. 186, 1389–1393.

    Article  PubMed  CAS  Google Scholar 

  93. Schols, D., Struyf, S., Van Damme, J., Esté, J. A., Henson, G., and De Clerq, E. (1997) Inhi-bition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J. Exp. Med. 186, 1383–1388.

    Article  PubMed  CAS  Google Scholar 

  94. Trkola, A., Paxton, W. A., Monard, S. P., Hoxie, J. A., Siani, M. A., Thompson, D. A., Wu, L., Mackay, C. R., Horuk, R., and Moore, J. P. (1998) Genetic subtype-independent inhibition of human immunodeficiency virus type 1 replication by CC and CXC-chemokines. J. Virol. 72, 396–404.

    PubMed  CAS  Google Scholar 

  95. O’Brien, W. A., M. Sumner-Smith, Mao, S., Sadeghi, S., Zhao, J., and Chen, I. Y. (1996) Anti-human immunodeficiency virus type 1 activity of an oligocationic compound mediated via gp120 V3 interactions. J. Virol. 70, 2825–2831.

    PubMed  Google Scholar 

  96. Datema, R., Rabin, L., Hincenbergs, M., Moreno, M. B., Warren, S., Linquist, V., Rosenwirth, B., Seifert, J., and McCune, J. M. (1996) Antiviral efficacy in vivo of the anti-human immuno-deficiency virus bicyclam SDZ SID 791 (JM 3100), an inhibitor of infectious cell entry. Anti-microbial Agents and Chemotherapy 40, 750–754.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doms, R.W., Moore, J.P. (1999). HIV-1 Coreceptors and Viral Tropism. In: Hébert, C.A. (eds) Chemokines in Disease. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-706-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-706-2_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4762-1

  • Online ISBN: 978-1-59259-706-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics