Skip to main content

Autoantigens in the Autoimmune Endocrinopathies

  • Chapter
Autoimmune Endocrinopathies

Abstract

Identification and characterization of specific autoantigens are integral parts of research into the understanding of the pathogenesis of autoimmune diseases. In the case of endocrine autoimmunity, the pituitary, thyroid, parathyroids, pancreatic islet cells, adrenals, and gonads can be subject to autoimmune attack, and many of the autoantigens involved have been identified and studied in detail (Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol Today 1993;14:426–430.

    PubMed  CAS  Google Scholar 

  2. Goudie RB, Pinkerton PH. Anterior hypophysitis and Hashimoto’ s disease in a young woman. J Pathol B acterio l 1962; 83:5 84–5 85.

    Google Scholar 

  3. Ezzat S, Josse RG. Autoimmune hypophysitis. Trends Endocrinol Metab 1997;8:74–80.

    PubMed  CAS  Google Scholar 

  4. Bottazzo GF, Pouplard A, Florin-Christensen A, Doniach D. Autoantibodies to prolactin-secreting cells of human pituitary. Lancet 1975;2:97–101.

    PubMed  CAS  Google Scholar 

  5. Mirakian R, Cudworth AG, Bottazzo GF, Richardson CA, Doniach D. Autoimmunity to anterior pituitary cells and the pathogenesis of insulin-dependent diabetes mellitus. Lancet 1982:April 3:755–759.

    Google Scholar 

  6. Muir A, Maclaren NK. Autoimmune diseases of the adrenal glands, parathyroid glands, gonads and hypothalamic-pituitary axis. Endocrinol Metab Clin North Am 1991;20:619–644.

    PubMed  CAS  Google Scholar 

  7. Thodou E, Asa SL, Kontogeorgos G, Kovacs K, Horvath E, Ezzat S. Clinical case seminar: lymphocytic hypophysitis: clinicopathological findings. J Clin Endocrinol Metab 1995;80:2302–2311.

    PubMed  CAS  Google Scholar 

  8. Crock P, Salvi M, Miller A, Wall J, Guyda H. Detection of anti-pituitary autoantibodies by immunoblotting. J Immunol Methods 1993;162:31–40.

    PubMed  CAS  Google Scholar 

  9. Yabe S, Murakami M, Maruyama K, Miwa H, Fukumura Y, Ishii S, et al. Western blot analysis of rat pituitary antigens recognized by human antipituitary antibodies. Endocr J 1995;42:115–119.

    PubMed  CAS  Google Scholar 

  10. Kobayashi T, Yabe S, Kikuchi T, Kanda T, KobayashiI. Presence of anti-pituitary antibodies and GAD antibodies in NIDDM and IDDM. Diabetes Care 1997;20:864–866.

    PubMed  CAS  Google Scholar 

  11. Song Y-H, Li Y, Maclaren NK. The nature of autoantigens targeted in autoimmune endocrine diseases. Immunol Today 1996;17:232–238.

    PubMed  CAS  Google Scholar 

  12. Volpé R. Hypothesis: the immunoregulatory disturbance in autoimmune thyroid disease. Autoimmunity 1988;2:55–72.

    PubMed  Google Scholar 

  13. Hashimoto H. Zur Kenntnis der lymphomatosen veranderung der schildruse (strume lymphomatosa). Arch Klin Chir 1912;97:219–248.

    Google Scholar 

  14. Roitt IM, Doniach D, Campbell PN, Hudson RV. Autoantibodies in Hashimoto’s disease. Lancet 1956;2:820–821.

    Google Scholar 

  15. Belyavin G, Trotter WR. Investigations of thyroid antigens reacting with Hashimoto sera. Lancet 1959;March 28:648–652.

    Google Scholar 

  16. Adams DD, Purves HD. Abnormal responses in the assay of thyrotropin. Proc Univ Otago Med Sch 1956;34:11–12.

    Google Scholar 

  17. Rees Smith B, Hall R. Thyroid-stimulating immunoglobulins in Graves’ disease. Lancet 1974;August 24:427–431.

    Google Scholar 

  18. Balfour BM, Doniach D, Roitt IM, Couchman KG. Fluorescent antibody studies in human thyroiditis: autoantibodies to an antigen of the thyroid colloid distinct from thyroglobulin. Br J Exp Pathol 1961; 42:307–316.

    PubMed  CAS  Google Scholar 

  19. Spitzweg C, Heufelder AE. Update on the thyroid sodium iodide symporter: a novel thyroid antigen emerging on the horizon. Eur J Endocrinol 1997;137:22–23.

    PubMed  CAS  Google Scholar 

  20. Furmaniak J, Rees Smith B. Review: The structure of thyroid autoantigens. Autoimmunity 1990; 7:63–80.

    PubMed  CAS  Google Scholar 

  21. Baas F, van Ommen G-JB, Bikker H, Arnberg AC, de Vijlder JJM. The human thyroglobulin gene is over 300 kb long and contains introns of up to 64 kb. Nucleic Acids Res 1986;14:5171–5186.

    PubMed  CAS  Google Scholar 

  22. Mori N, Itoh N, Salvaterra PM. Evolutionary origin of cholinergic macromolecules and thyroglobulin. Proc Natl Acad Sci USA 1987;84:2813–2817.

    PubMed  CAS  Google Scholar 

  23. Takagi Y, Omura T, Go M. Evolutionary origin of thyroglobulin by duplication of esterase gene. FEBS 1991;282:17–22.

    CAS  Google Scholar 

  24. Malthiery Y, Lissitzky S. Primary structure of human thyroglobulin deduced from the sequence of its 8448-base complementary DNA. Eur J Biochem 1987;165:491–498.

    PubMed  CAS  Google Scholar 

  25. Edelhoch H. The structure of thyroglobulin and its role in iodination. Rec Prog Horm Res 1965;21:1–24.

    PubMed  CAS  Google Scholar 

  26. Kondo, Y Inoue K, Kotani T, Ohtaki S. Immunoelectron microscopy of the hormonogenic sites of the thyroglobulin molecule. Mol Cell Endocrinol 1988;57:261–267.

    PubMed  CAS  Google Scholar 

  27. Palumbo G, Gentile F, Condorelli GL, Salvatore G. The earliest site of iodination in thyroglobulin is residue number 5. J Biol Chem 1990;265:8887–8892.

    PubMed  CAS  Google Scholar 

  28. Xiao S, Dorris ML, Rawitch AB, Taurog A. Selectivity in tyrosyl iodination sites in human thyroglobulin. Arch Biochem Biophys 1996;334:284–294.

    PubMed  CAS  Google Scholar 

  29. Yang S-Y, Pollock HG, Rawitch AB. Glycosylation in human thyroglobulin: location of the N-linked oligosaccharide units and comparison with bovine thyroglobulin. Arch Biochem Biophys 1996;327: 61–70.

    PubMed  CAS  Google Scholar 

  30. Malle B, Lejeune P-J, Baudry N, Niccole P, Carayon P, Franc J-L. N-glycans modulate in vivo and in vitro thyroid hormone synthesis. J Biol Chem 1995;270:29,881–29,888.

    Google Scholar 

  31. Yamamoto K, Tsuji T, Tarutani O, Osawa T. Structural changes of carbohydrate chains of human thyroglobulin accompanying malignant transformations of thyroid glands. Eur J Biochem 1984;143: 133–144.

    PubMed  CAS  Google Scholar 

  32. Hotta T, Ishii I, Ishihara H, Tejima S, Tarutani O, Takahashi N. Comparative study of the oligosaccharides of human thyroglobulins obtained from normal subjects and patients with various diseases. J Appl Biochem 1985;7:98–103.

    PubMed  CAS  Google Scholar 

  33. Tarutani O, Ui N. Properties of thyroglobulins from normal thyroid and thyroid tumor on a concanavalin A-Sepharose column. J Biochem 1985;98:851–857.

    PubMed  CAS  Google Scholar 

  34. Yamamoto K, Tsuji T, Tarutani O, Osawa T. Phosphorylated high mannose-type and hybrid-type oligosaccharide chains of human thyroglobulin isolated from malignant thyroid tissue. Biochim Biophys Acta 1985;838:84–91.

    PubMed  CAS  Google Scholar 

  35. Sinadović J, Cvejić D, Savin S, Jančić-Zuguricas M, Mićić JV. Altered terminal glycosylation of thyroglobulin in papillary thyroid carcinoma. Exp Clin Endocrinol 1992;100:124–128.

    Google Scholar 

  36. Furmaniak J, Rees Smith B. Thyroid antibodies. In: Wheeler MH, Lazarus JH, eds. Diseases of the Thyroid. Chapman & Hall, London, 1994, pp. 117–130.

    Google Scholar 

  37. Winter WE. Review: The Immunoendocrinopathies. Part 2: autoimmune thyroid disease, autoimmune Addison disease and related disorders. Am Assoc Clin Chem 1996;14:45–52.

    Google Scholar 

  38. Ruf J, Feldt-Rasmussen U, Hegedus L, Ferrand M, Carayon P. Bispecific thyroglobulin and thyroperoxidase autoantibodies in patients with various thyroid and autoimmune diseases. J Clin Endocrinol Metab 1994;79:1404–1409.

    PubMed  CAS  Google Scholar 

  39. Ruf J, Ferrand M, Durand-Gorde J-M, Carayon P. Autoantibodies and monoclonal antibodies directed to an immunodominant antigenic region of thyroglobulin interact with thyroperoxidase through an interspecies idiotype. Autoimmunity 1994;19:55–62.

    PubMed  CAS  Google Scholar 

  40. Prentice L, Kiso Y, Fukuma K, Horimoto M, Petersen V, Grennan F, et al. Monoclonal thyroglobulin autoantibodies: variable region analysis and epitope recognition. J Clin Endocrinol Metab 1995;80: 977–986.

    PubMed  CAS  Google Scholar 

  41. McIntosh RS, Asghar MS, Watson PF, Kemp EH, Weetman AP. Cloning and analysis of IgGk and IgGλ anti-thyroglobulin autoantibodies from a patient with Hashimoto’s thyroiditis. J Immunol 1996; 157:927–935.

    PubMed  CAS  Google Scholar 

  42. Caturegli P, Mariotti S, Kuppers RC, Burek CL, Pinchera A, Rose NR. Epitopes on thyroglobulin: a study of patients with thyroid disease. Autoimmunity 1994;18:41–49.

    PubMed  CAS  Google Scholar 

  43. Saboori AM, Caturegli P, Rose NR, Mariotti S, Pinchera A, Burek CL. Tryptic peptides of human thyroglobulin: II. Immunoreactivity with sera from patients with thyroid diseases. Clin Exp Immunol 1994:98:459–463.

    PubMed  CAS  Google Scholar 

  44. Kimura S, Hong YS, Kotani T, Ohtaki S, Kikkawa F. Structure of the human thyroid peroxidase gene: comparison and relationship to the human myeloperoxidase gene. Biochemistry 1989;28:4481–4489.

    PubMed  CAS  Google Scholar 

  45. Kiso Y, Furmaniak J, Morteo C, Rees Smith B. Analysis of carbohydrate residues on human thyroid peroxidase (TPO) and thyroglobulin (Tg) and effects of deglycosylation, reduction and unfolding on autoantibody binding. Autoimmunity 1992;12:259–269.

    PubMed  CAS  Google Scholar 

  46. McLachlan SM, Rapoport B. Review: The molecular biology of thyroid peroxidase: cloning, expression and role as autoantigen in autoimmune thyroid disease. Endocr Rev 1992;13:192–206.

    PubMed  CAS  Google Scholar 

  47. Cetani F, Costagliola S, Tonacchera M, Panneels V, Vassart G, Ludgate M. The thyroperoxidase doublet is not produced by alternative splicing. Mol Cell Endocrinol 1995;115:125–132.

    PubMed  CAS  Google Scholar 

  48. Grennan Jones F, Wolstenholme A, Fowler S, Smith S, Ziemnicka K, Bradbury J, et al. High-level expression of recombinant immunoreactive thyroid peroxidase in the High Five insect cell line. J Mol Endocrinol 1996;17:165–174.

    PubMed  CAS  Google Scholar 

  49. Berman M, Magee M, Koenig RJ, Kaplan MM, Arscott P, Maastricht J, et al. Differential autoantibody responses to thyroid peroxidase in patients with Graves’ disease and Hashimoto’s thryoiditis. J Clin Endocrinol Metab 1993;77:1098–1101.

    Google Scholar 

  50. Baker JR, Arscott P, Johnson J. An analysis of the structure and antigenicity of different forms of human thyroid peroxidase. Thyroid 1994;4:173–178.

    PubMed  CAS  Google Scholar 

  51. Premawardhana LDKE, Kiso Y, Phillips DI, Morteo C, Furmaniak J, Rees Smith B. Is TPO detectable in the circulation? Thyroid 1993;3:225–228.

    PubMed  CAS  Google Scholar 

  52. McLachlan SM, Rapoport BR. Autoimmune endocrinopathies 2. Recombinant thyroid autoantigens: the keys to the pathogenesis of thyroid disease. J Int Med 1993;234:347–359.

    CAS  Google Scholar 

  53. Nagayama Y. Continuous versus discontinuous B-cell epitopes on thyroid-specific autoantigens—thyrotropin receptor and thyroid peroxidase. Eur J Endocrinol 1995;132:9–11.

    PubMed  CAS  Google Scholar 

  54. McLachlan SM, Rapoport B. Genetic and epitopic analysis of thyroid peroxidase (TPO) autoantibodies: markers of the human thyroid autoimmune response. Clin Exp Immunol 1995;101:200–206.

    PubMed  CAS  Google Scholar 

  55. 55. Grennan F, Sanders J, Wolstenholme A, Furmaniak J, Rees Smith B. Analysis of TPO autoantibody epitopes using immunoprecipitation assay based on 35S-labelled intact and modified TPO. J Endocrinol 1996;148 suppl:OC31.

    Google Scholar 

  56. Wedlock N, Furmaniak J, Fowler S, Kiso Y, Bednarek J, Baumann-Antczak A, et al. Expression of human thyroid peroxidase in the yeasts Saccharomyces cerevisiae and Hensenula polymorpha. J Mol Endocrinol 1993;10:325–336.

    PubMed  CAS  Google Scholar 

  57. Weetman AP. Editorial: Insulin-dependent diabetes mellitus and postpartum thyroiditis: an important association. J Clin Endocrinol Metab 1994;79:7–9.

    PubMed  CAS  Google Scholar 

  58. Hall R. Pregnancy and autoimmune endocrine disease. Baillière’s Clin Endocrinol Metab 1995;9: 137–155.

    CAS  Google Scholar 

  59. Roberts J, Jenkins C, Wilson R, Pearson C, Franklin IA, Maclean MA, et al. Recurrent miscarriage is associated with increased numbers of CD5/20 positive lymphocytes and an increased incidence of thyroid antibodies. Eur J Endocrinol 1996;134:84–86.

    PubMed  CAS  Google Scholar 

  60. Horimoto M, Petersen VS, Pegg CAS, Fukuma N, Wakabayashi N, Kiso Y, et al. Production and characterisation of a human monoclonal thyroid peroxidase autoantibody. Autoimmunity 1992;14:1–7.

    PubMed  CAS  Google Scholar 

  61. KaczurV, VerebGy,MolnárI,KrajczárG,KissE,FaridNR,etal.Effectofanti-thyroidperoxidase(TPO) antibodies on TPO activity measured by chemiluminescence assay. Clin Chem 1997;43:1392–1396.

    Google Scholar 

  62. Chacko S, Padlan EA. Structural studies of human autoantibodies. Crystal structure of a thyroid peroxidase autoantibody Fab. J Biol Chem 1996;271:12,191–12,198.

    Google Scholar 

  63. Gardas A, Sohi MK, Sutton BJ, McGregor AM, Banga JP. Purification and crystallisation of the autoantigen thyroid peroxidase from human Graves’ thyroid tissue. Biochem Biophys Res Commun 1997;234:366–370.

    PubMed  CAS  Google Scholar 

  64. Libert F, Passage E, Lefort A, Vassart G, Mattei M-G. Localisation of human thyrotropin receptor gene to chromosome region 14q31 by in situ hybridisation. Cytogen Cell Genet 1990;54:82–83.

    CAS  Google Scholar 

  65. Gross B, Misrahi M, Sar S, Milgrom E. Composite structure of the human thryotropin receptor gene. Biochem Biophys Res Commun 1991;177:679–687.

    PubMed  CAS  Google Scholar 

  66. Lefkowitz RJ, Coron MG. Adrenergic Receptors. J Biol Chem 1988;263:4993–4996.

    PubMed  CAS  Google Scholar 

  67. Nagayama Y, Kaufman KD, Seto P, Rapoport B. Molecular cloning, sequence and functional expression of the cDNA for the human thyrotropin receptor. Biochem Biophys Res Commun 1989;165:1184–1190.

    PubMed  CAS  Google Scholar 

  68. Akamizu T, Ikuyama S, Saji M, Kosugi S, Cozak C, McBridge OW, et al. Cloning, chromosomal assignment and regulation of the rat thyrotropin receptor: expression of the gene is regulated by thyrotropin, agents that increase cAMP levels and thyroid autoantibodies. Proc Natl Acad Sci USA 1990;87:5677–5681.

    PubMed  CAS  Google Scholar 

  69. Parmentier M, Libert F, Maenhaut C, Lefort A, Gerard C, Perret J, et al. Molecular cloning of the thyrotropin receptor. Science 1989;246:1620–1622.

    PubMed  CAS  Google Scholar 

  70. Libert F, Lefort A, Gerard C. Parmentier M, Perret J, Ludgate M, et al. Cloning, sequencing and expression of the human thyrotropin (TSH) receptor: evidence for binding of autoantibodies. Biochem Biophys Res Commun 1989;165:1250–1255.

    PubMed  CAS  Google Scholar 

  71. Frazier AL, Robbins LS, Stork PJ. Sprengel R, Segaloff DL, Cone RD. Isolation of TSH and LH/CG receptor cDNAs from human thyroid: regulation of tissue specific splicing. Mol Endocrinol 1990;4: 1264–1276.

    PubMed  CAS  Google Scholar 

  72. Misrahi M, Loosfelt H, Atger M, Sar S, Guiochon-Mantel A, Milgrom E. Cloning, sequencing and expression of the human TSH receptor. Biochem Biophys Res Commun 1990;166:394–403.

    PubMed  CAS  Google Scholar 

  73. Sanders, J, Oda, Y, Roberts, S-A, Maruyama, M, Furmaniak, J, Rees Smith, B. Understanding the TSH receptor function/structure relationship. In: Newer Aspects of Graves’ Disease—Basic and Clinical Aspects. Baillière’s Clin Endocrinol Metab 1997;11:451–479.

    CAS  Google Scholar 

  74. Shenker A. G protein-coupled receptor structure and function: the impact of disease-causing mutations. Baillière’s Clin Endocrinol Metab 1995;9:427–451.

    CAS  Google Scholar 

  75. Spiegel AM. Mutations in G proteins and G protein coupled receptors in endocrine disease. J Clin Endocrinol Metab 1996;81:2434–2442.

    PubMed  CAS  Google Scholar 

  76. Van Sande J, Parma J, Tonacchera M. Swillens S, Dumont J, Vassart G. Somatic and germline mutations of the TSH receptor gene in thyroid diseases. J Clin Endocrinol Metab 1995;80:2577–2585.

    PubMed  CAS  Google Scholar 

  77. Russo D, Arturi F, Chiefari E, Filetti S. Molecular insights into TSH receptor abnormality and thyroid disease. J Endocrinol Invest 1997;20:36–47.

    PubMed  CAS  Google Scholar 

  78. Clifton-Bligh RJ, Gregory JW, Ludgate M. John R, Persani L, Asteria C, et al. Two novel mutations in the thyrotropin (TSH) receptor gene in a child with resistance to TSH. J Clin Endocrinol Metab 1997; 82:1094–1100.

    PubMed  CAS  Google Scholar 

  79. Oda Y, Sanders J, Roberts S, Maruyama M, Kato R, Perez M, et al. Binding characteristics of antibodies to the TSH receptor. J Mol Endocrinol 1998;20:233–244.

    PubMed  CAS  Google Scholar 

  80. Misrahi M. Ghinea N, Sar S, Saunier B, Jolivet A, Loosfelt H, et al. Processing of the precursors of the human thyroid stimulating hormone receptor in various eukaryotic cells (human thyrocytes, transfected L cells and baculovirus infected insect cells). Eur J Biochem 1994;222:711–719.

    PubMed  CAS  Google Scholar 

  81. Chazenbalk GD, Kakinuma A, Jaume JC, McLachlan SM, Rapoport B. Evidence for negative cooperativity among human thyrotropin receptors over expressed in mammalian cells. Endocrinology 1996;137:4586–4591.

    PubMed  CAS  Google Scholar 

  82. Loosfelt H, Pichon C, Jolivet A, Misrahi M, Caillou B, Jamous M, et al. Two-subunit structure of the human thyrotropin receptor. Proc Natl Acad Sci USA 1992;89:3765–3769.

    PubMed  CAS  Google Scholar 

  83. Sanders JF, Roberts S, Oda Y, Maruyama M, Furmaniak J, Rees Smith B. Analysis of carbohydrate residues on human recombinant TSH receptor. J Endocrinol Invest 1997;20(Suppl):26.

    Google Scholar 

  84. Davies Jones E, Rees Smith B. A water soluble fragment of the thyroid stimulating hormone receptor which binds both thyroid stimulating hormone and thyroid stimulating hormone receptor antibodies. J Endocrinol 1984;100:113–118.

    PubMed  CAS  Google Scholar 

  85. Davies Jones E, Hashim FA, Kajita Y, Creagh FM, Buckland PR, Petersen VB, et al. Interaction of autoantibodies to thyrotropin receptor with a hydrophilic subunit of the thyrotropin receptor. Biochem J 1985;228:111–117.

    PubMed  CAS  Google Scholar 

  86. Harfst E, Nussey SS, Johnstone AP. Interaction of thyrotropin and thyroid stimulating antibodies with recombinant extracellular region of human TSH receptor. Lancet 1992;339:193–194.

    PubMed  CAS  Google Scholar 

  87. Harfst E, Johnstone AP, Nussey SS. Characterisation of the extracellular region of the human thyrotrophin receptor expressed as a recombinant protein. J Mol Endocrinol 1992;9:227–236.

    PubMed  CAS  Google Scholar 

  88. Huang GC, Page MJ, Nicholson LB, Collison KS, McGregor AM, Banga JP. The thyrotrophin hormone receptor of Graves’ disease: overexpression of the extracellular domain in insect cells using recombinant baculovirus, immunoaffinity purification and analysis of autoantibody binding. J Mol Endocrinol 1993;10:127–142.

    PubMed  CAS  Google Scholar 

  89. Vlase H, Matsuoka N, Graves PN, Magnusson RP, Davies TF. Folding dependent binding of thyrotropin (TSH) and TSH receptor autoantibodies to the murine TSH receptor ectodomain. Endocrinology 1997;138:1658–1666.

    PubMed  CAS  Google Scholar 

  90. Brennan A, Petersen VB, Petersen MM, Rees Smith B, Hall R. Time-dependent stabilisation of the TSH-TSH receptor complex. FEBS 1980;111:35–38.

    CAS  Google Scholar 

  91. Chazenbalk GD, Tanaka K, Nagayama Y, Kakinuma A, Jaume JC, McLachlan SM, et al. Evidence that the thyrotropin receptor ectodomain contains not one, but two, cleavage sites. Endocrinology 1997; 138:2893–2899.

    PubMed  CAS  Google Scholar 

  92. Chazenbalk GD, McLachlan SM, Nagayama Y, Rapoport B. Is receptor cleavage into two subunits necessary for thyrotropin action? Biochem Biophys Res Commun 1996;225:479–484.

    PubMed  CAS  Google Scholar 

  93. Couet J, Sar S, Jolivet A, Hai M-TV, Milgrom E, Misrahi M. Shedding of human thyrotropin receptor ectodomain. J Biol Chem 1996;271:4545–4552

    PubMed  CAS  Google Scholar 

  94. Couet J, de Bernard S, Loosfelt H, Saunier B, Milgrom E, Misrahi M. Cell surface protein disulfide isomerase is involved in the shedding of human thyrotropin receptor ectodomain. Biochemisty 1996;35: 14,800–14,805.

    Google Scholar 

  95. Paschke R, Metcalfe A, Alcalde L, Vassart G, Weetman A, Ludgate M. Presence of nonfunctional thyrotropin receptor transcripts in retroocular and other tissues. J Clin Endocrinol Metab 1994;79: 1234–1238.

    PubMed  CAS  Google Scholar 

  96. Furmaniak J, Rees Smith B. Immunity to the thyroid-stimulating hormone receptor. Springer Semin Immunopathol 1993;14:309–321.

    PubMed  CAS  Google Scholar 

  97. Nagayama Y, Russo D, Chazenbalk GD, Wadsworth HL, Rapoport B. Extracellular domain chimeras of the TSH and LH/CG receptors reveal the mid-region (amino acids 171–260) to play a vital role in high affinity TSH binding. Biochem Biophys Res Commun 1990;173:1150–1156.

    PubMed  CAS  Google Scholar 

  98. Nagayama Y, Wadsworth HL, Russo D, Chazenbalk GD, Rapoport B. Binding domains of stimulatory and inhibitory thyrotropin (TSH) receptor autoantibodies determined with chimeric TSH-lutropin/ chorionic gonadotropin receptors. J Clin Invest 1991;88:336–340.

    PubMed  CAS  Google Scholar 

  99. Watanabe Y, Tahara K, Hirai A, Tada H, Kohn LD, Amino N. Subtypes of anti-TSH receptor antibodies classified by various assays using CHO cells expressing wild type or chimeric human TSH receptor. Thyroid 1997;7:13–19.

    PubMed  CAS  Google Scholar 

  100. Wadsworth HL, Chazenbalk GD, Nagayama Y, Russo D, Rapoport B. An insertion in the human thyrotropin receptor critical for high affinity hormone binding. Science 1990;249:1423–1425.

    PubMed  CAS  Google Scholar 

  101. Wadsworth HL, Russo D, Nagayama Y, Chazenbalk GD, Rapoport B. Studies on the role of amino acids 38–45 in the expression of a functional thyrotropin receptor. Mol Endocrinol 1992;6:394–398.

    PubMed  CAS  Google Scholar 

  102. Kosugi S, Sugawa H, Mori T. Epitope analysis of the thyrotropin receptor, 1997. Mol Cell Endocrinol 1997;128:11–18.

    Google Scholar 

  103. Harfst E, Johnstone AP. Characterization of the glutamine synthase amplifiable eukaryotic expression system applied to an integral membrane protein—the human thyrotropin receptor. Anal Biochem 1992;207:80–84.

    PubMed  CAS  Google Scholar 

  104. Chazenbalk GD, Jaume JC, McLachlan SM, Rapoport B. Engineering the human thyrotropin receptor ectodomain from a non-secreted form to a secreted, highly immunoreactive glycoprotein that neutralizes autoantibodies in Graves’ patients’ sera. J Biol Chem 1997;272:18,959–18,965.

    Google Scholar 

  105. Huang GC, Collison KS, McGregor AM, Banga JP. Expression of a human thyrotrophin receptor fragment in Escherichia coli and its interaction with the hormone and autoantibodies from patients with Graves’ disease. J Mol Endocrinol 1992;8:137–144.

    PubMed  CAS  Google Scholar 

  106. Seetharamaiah GS, Dallas JS, Patibandla SA, Thotakura NR, Prabhakar BS. Requirement of glycosylation of the human thyrotropin receptor ectodomain for its reactivity with autoantibodies in patients’ sera. J Immunol 1997;158:2799–2803.

    Google Scholar 

  107. Rapoport B, McLachlan SM, Kakinuma A, Chazenbalk GD. Critical relationship between autoantibody recognition and thyrotropin receptor maturation as reflected in the acquisition of complex carbohydrate. J Clin Endocrinol Metab 1996;81:2525–2533.

    PubMed  CAS  Google Scholar 

  108. Morgenthaler NG, Tremble J, Huang G, Scherbaum WA, McGregor AM, Banga, JP. Binding of antithyrotropin receptor autoantibodies in Graves’ disease serum to nascent in vitro translated thyrotropin receptor: ability to map epitopes recognised by antibodies. J Clin Endocrinol Metab 1996; 81:700–706.

    PubMed  CAS  Google Scholar 

  109. Prentice L, Sanders JF, Perez M, Kato R, Sawicka J, Oda Y, et al. Thyrotropin (TSH) receptor autoantibodies do not appear to bind to the TSH receptor produced in an in vitro transcription/translation system. J Clin Endocrinol Metab 1997;82:1288–1292.

    PubMed  CAS  Google Scholar 

  110. Dai G, Levy 0, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature 1996;379:458–460.

    CAS  Google Scholar 

  111. Smanik PA, Liu Q, Furminger TL, Rhu K, Xing S, Mazzaferri EL, et al. Cloning of the human sodium iodide symporter. Biochem Biophys Res Commun 1996;226:339–345.

    PubMed  CAS  Google Scholar 

  112. Morris JC, Bergert ER, Bryant WP. Binding of immunoglobulin G from patients with autoimmune thyroid disease to rat sodium-iodide symporter peptides: evidence for the iodide transporter as an autoantigen. Thyroid 1997;7:527–534.

    PubMed  CAS  Google Scholar 

  113. Morris J, Bergert E, Bryant W. Binding of IgG from patients with autoimmune thyroid disease to human sodium-iodine symporter peptides: interspecies variability in the autoimmune response to NIS. Thyroid 1997;7(Suppl 1):234.

    Google Scholar 

  114. Endo T, Kogai T, Nakazato M, Saito T, Kaneshige M, OnayaT. Autoantibody againstNa+/I-ymporter in the sera of patients with autoimmune thyroid disease. Biochem Biophys Res Commun 1996;224: 92–95.

    PubMed  CAS  Google Scholar 

  115. Rees Smith B, Furmaniak J. Editorial: adrenal and gonadal autoimmune diseases. J Clin Endocrinol Metab 1995;80:1502–1505.

    Google Scholar 

  116. Betterle C, Greggio NA, Volpato M. Clinical review: autoimmune polyglandular syndrome Type I. J Clin Endocrinol Metab 1998;83:1049–1055.

    PubMed  CAS  Google Scholar 

  117. Blizzard RM, Chee D, Davis W. The incidence of parathyroid and other antibodies in the sera of patients with idiopathic hypoparathyroidism. Clin Exp Immunol 1966;1:119–128.

    PubMed  CAS  Google Scholar 

  118. Li Y, Song Y-H, Rais N, Connor E, Schatz D, Muir A, et al. Autoantibodies to the extracellular domain of the calcium sensing receptor in patients with acquired hypoparathyroidism. J Clin Invest 1996;97: 910–914.

    PubMed  CAS  Google Scholar 

  119. Pearce SHS, Brown EM. Editorial: calcium-sensing receptor mutations: insights into a structurally and functionally novel receptor. J Clin Endocrinol Metab 1996;81:1309–1311.

    PubMed  CAS  Google Scholar 

  120. Freichel M, Zinklorenz A, Holloschi A, Hafner M, Flockerzi V, Raue F. Expression of a calciumsensing receptor in a human medullary thyroid carcinoma cell line and its contribution to calcitonin secretion. Endocrinology 1996;137:3842–3848.

    PubMed  CAS  Google Scholar 

  121. Sepe V, Lai M, Shattock M, Foxon R, Collins P, Bottazzo GF. Islet-related autoantigens and the pathogenesis of insulin-dependent diabetes mellitus. In: Leslie RDG, ed. Molecular Pathogenesis of Diabetes Mellitus, vol. 22. Karger, Basel, 1997, pp. 68–89.

    Google Scholar 

  122. 122. Bottazzo GF, Florin-Christensen A, Doniach D. Islet cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiency. Lancet 1974;ii:1279–1283.

    Google Scholar 

  123. Christie MR. Islet cell autoantigens in type 1 diabetes. Eur J Clin Invest 1996;26:827–838.

    PubMed  CAS  Google Scholar 

  124. Mennuni C, Santini C, Lazzaro D, Dotta F, Farilla L, Fierabracci A, et al. Identification of a novel type 1 diabetes-specific epitope by screening phage libraries with sera from pre-diabetic patients. J Mol Biol 1997;268:599–606.

    PubMed  CAS  Google Scholar 

  125. Bingley PJ, Bonifacio E, Williams AJK, Genovese S, Bottazzo GF, Gale EAM. Prediction of IDDM in the general population—strategies based on combinations of autoantibody markers. Diabetes 1997; 46:1701–1710.

    PubMed  CAS  Google Scholar 

  126. Baekkeskov S, Nielsen JH, Marner B, Bilde T, Ludvigsson J, Lernmark A. Autoantibodies in newly diagnosed diabetic children immunoprecipitate human pancreatic islet cell proteins. Nature 1982; 298:167–169.

    PubMed  CAS  Google Scholar 

  127. Baekkeskov S, Aanstoot H-J, Christgau S, Reetz A, Solimena M, Cascalho M, et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 1990;347:151–156.

    PubMed  CAS  Google Scholar 

  128. Ellis TM, Atkinson MA. The clinical significance of an autoimmune response against glutamic acid decarboxylase. Nature Med 1996;2:148–153.

    PubMed  CAS  Google Scholar 

  129. Lernmark A. Glutamic acid decarboxylase—gene to antigen to disease. J Int Med 1996;240:259–277.

    CAS  Google Scholar 

  130. Bu D-F, Erlander MG, Hitz BC, Tillakaratne NJK, Kaufman DL, Wagner-McPherson CB, et al. Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci USA 1992;89:2115–2119.

    PubMed  CAS  Google Scholar 

  131. Erlander MG, Tobin AJ. The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res 1991;16:215–226.

    PubMed  CAS  Google Scholar 

  132. Namchuk M, Lindsay L, Turck CW, Kanaani J, Baekkeskov S. Phosphorylation of serine residues 3, 6, 10, and 13 distinguishes membrane anchored from soluble glutamic acid decarboxylase 65 and is restricted to glutamic acid decarboxylase 65a. J Biol Chem 1997;272:1548–1557.

    PubMed  CAS  Google Scholar 

  133. Rowley MJ, Mackay IR, Chen Q-Y, Knowles WJ, Zimmet PZ. Antibodies to glutamic acid decarboxylase discriminate major types of diabetes mellitus. Diabetes 1992;41:548–551.

    PubMed  CAS  Google Scholar 

  134. Ohta M, Obayashi H, Takahashi K, Kitagawa Y, Nakano K, Matsuo S, et al. A simple solid-phase radioimmunoassay for glutamic acid decarboxylase (GAD) antibodies in patients with diabetes mellitus. J Clin Biochem Nutr 1996;20:139–148.

    CAS  Google Scholar 

  135. Kaufman DL, Erlander MG, Clare-Salzier M, Atkinson MA, Maclaren NK, Tobin AJ. Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J Clin Invest 1992; 89:283–292.

    PubMed  CAS  Google Scholar 

  136. Petersen JS, Hejnæs KR, Moody A, Karlsen AE, Marshall MO, HØier-Madsen M, et al. Detection of GAD65 antibodies in diabetes and other autoimmune diseases using a simple radioligand assay. Diabetes 1994: 43:459–467.

    PubMed  CAS  Google Scholar 

  137. Grubin CE, Daniels T, Toivola B, Landin-Olsson M, Hagopian WA, Li L, et al. A novel radioligand binding assay to determine diagnostic accuracy of isoform-specific glutamic acid decarboxylase antibodies in childhood IDDM. Diabetologia 1994;37:344–350.

    PubMed  CAS  Google Scholar 

  138. Hagopian WA, Karlsen AE, Gottsätter A, Landin-Olsson M, Grubin CE, Sundkvist G, et al. Quantitative assay using recombinant human islet glutamic acid decarboxylase (GAD65) shows that 64K autoantibody positivity at onset predicts diabetes type. J Clin Invest 1993;91:368–374.

    PubMed  CAS  Google Scholar 

  139. Aanstoot H-J, Sigurdsson E, Jaffe M, Shi Y, Christgau S, Grobbee D, et al. Value of antibodies to GAD65 combined with islet cell cytoplasmic antibodies for predicting IDDM in a childhood population. Diabetologia 1994;37:917–924.

    PubMed  CAS  Google Scholar 

  140. Lühder F, Schlosser M, Mauch L, Haubruck H, Rjasanowski I, Michaelis D, et al. Autoantibodies against GAD65 rather than GAD67 precede the onset of type 1 diabetes. Autoimmunity 1994;19:71–80.

    PubMed  Google Scholar 

  141. Lühder F, Woltanski K-P, Mauch L, Haubruck H, Kohnert K-D, Rjasanowski I, et al. Detection of autoantibodies to the 65-kD isoform of glutamate decarboxylase by radioimmunoassay. Eur J Endocrinol 1994;130:575–580.

    PubMed  Google Scholar 

  142. Matsuba T, Yano M, Abiru N, Takino H, Akazawa S, Nagataki S, et al. Expression of recombinant human glutamic acid decarboxylase (GAD) in myeloma cells and enzyme-linked immunosorbent assay (ELISA) for autoantibodies to GAD. J Biochem 1997;121:20–24.

    PubMed  CAS  Google Scholar 

  143. Powell M, Prentice L, Asawa T, Kato R, Sawicka J, Tanaka H, et al. Glutamic acid decarboxylase autoantibody assay using 125I-labelled recombinant GAD65 produced in yeast. Clin Chim Acta 1996; 256:175–188.

    PubMed  CAS  Google Scholar 

  144. Ohta M, Obayashi H, Takahashi K, Kitagawa Y, Nakano K, Matsuo S, et al. Radioimmunoprecipitation assay for glutamic acid decarboxylase antibodies evaluated clinically with sera from patients with insulin-dependent diabetes mellitus. Clin Chem 1996;42:1975–1978.

    PubMed  CAS  Google Scholar 

  145. Falorni A, Ackefors M, Carlberg C, Daniels T, Persson B, Robertson J, et al. Diagnostic sensitivity of immunodominant epitopes of glutamic acid decarboxylase (GAD65) autoantibodies in childhood IDDM. Diabetologia 1996;39:1091–1098.

    PubMed  CAS  Google Scholar 

  146. Richter W, Jury KM, Loeffler D, Manfras BJ, Eiermann TH, Boehm BO. Immunoglobulin variable gene analysis of human autoantibodies reveals antigen-driven immune response to glutamate decarboxylase in type 1 diabetes mellitus. Eur J Immunol 1995;25:1703–1712.

    PubMed  CAS  Google Scholar 

  147. Jury KM, Loeffle, D, Eiermann TH, Ziegler B, Richter W. Evidence for somatic mutation and affinity maturation of diabetes associated human autoantibodies to glutamate decarboxylase. J Autoimmunity 1996;9:371–377.

    CAS  Google Scholar 

  148. Madec A-M, Rousset F, Ho S, Robert F, Thivolet C, Orgiazzi J, et al. Four IgG anti-islet human monoclonal antibodies isolated from a type 1 diabetes patient recognize distinct epitopes of glutamic acid decarboxylase 65 and are somatically mutated. J Immunol 1996;156:3541–3549.

    PubMed  CAS  Google Scholar 

  149. Daw K, Ujihara N, Atkinson M, Powers AC. Glutamic acid decarboxylase autoantibodies in stiff-man syndrome and insulin-dependent diabetes mellitus exhibit similarities and differences in epitope recognition. J Immunol 1996;156:818–825.

    PubMed  CAS  Google Scholar 

  150. Björk E, Velloso LA, Kampe O, Karlsson FA. GAD autoantibodies in IDDM, stiff-man syndrome and autoimmune polyendocrine syndrome type I recognize different epitopes. Diabetes 1994;43:161–165.

    PubMed  Google Scholar 

  151. Seissler J, Bieg S, Yassin N, Mauch L, Northemann W, Boehm BO, et al. Association between antibodies to the MR 67,000 isoform of glutamate decarboxylase (GAD) and type 1 (insulin-dependent) diabetes mellitus with coexisting autoimmune polyendocrine syndrome type II. Autoimmunity 1994;19:231–238.

    PubMed  CAS  Google Scholar 

  152. Tuomi T, Bjorses P. Falorni A, Partanen J, Perheentupa J, Lernmark A, et al. Antibodies to glutamic acid decarboxylase and insulin-dependent diabetes in patients with autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab 1996;81:1488–1494.

    PubMed  CAS  Google Scholar 

  153. 153. Maclaren NK, Atkinson MA. Insulin-dependent diabetes mellitus: the hypothesis of molecular mimicry between islet cell antigens and microorganisms. Mol Med Today 1997;February:76–83.

    Google Scholar 

  154. Volpé R. The autoimmune endocrinopathies—the complexities continue to ravel. Trends Endocrinol Metab 1997;8:59–63.

    PubMed  Google Scholar 

  155. Bonifacio E, Christie MR. Tyrosine phosphatase-like proteins as autoantigens in insulin-dependent diabetes mellitus: the targets for 37/40k antibodies. Diabetes Nutr Metab 1996;9:183–187.

    CAS  Google Scholar 

  156. Pietropaolo M, Hutton JC, Eisenbarth GS. Protein tyrosine phosphatase-like proteins: link with IDDM. Diabetes Care 1997;20:208–214.

    PubMed  CAS  Google Scholar 

  157. Notkins AL, Lu J, Li Q, VanderVegt FP, Was serfall C, Maclaren NK, et al. IA-2 and IA-2ββ are major autoantigens in IDDM and the precursors of the 40 kDa and 37 kDa tryptic fragments. J Autoimmunity 1996;9:677–682.

    CAS  Google Scholar 

  158. Lan MS, Modi WS, Xie H, Notkins AL. Assignment of the IA-2 gene encoding an autoantigen in IDDM to chromosome 2q35. Diabetologia 1996;39:1001–1003.

    PubMed  CAS  Google Scholar 

  159. Notkins AL, Zhang B, Matsumoto Y, Lan MS. Comparison of IA-2 with IA-2b and with six other members of the protein tyrosine phosphatase family: recognition of antigenic determinants by IDDM sera. J Autoimmunity 1997;10:245–250.

    CAS  Google Scholar 

  160. Hatfield ECI, Hawkes CJ, Payton MA, Christie MR. Cross reactivity between IA-2 and phogrin/IA-2β in binding of autoantibodies in IDDM. Diabetologia 1997;40:1327–1333.

    PubMed  CAS  Google Scholar 

  161. Powell M, Chen S, Tanaka H, Masuda M, Beer C, Rees Smith B, et al. Autoantibodies to IA-2 in IDDM —measurements with a new immunoprecipitation assay. J Endocrinol 1997;155(Suppl 2):P27.

    Google Scholar 

  162. Palmer JP, Asplin CM, Clemons P, Lyen K, Tatpati O, Raghu PK, et al. Insulin antibodies in insulindependent diabetics before insulin treatment. Science 1983;222:1337–1339.

    PubMed  CAS  Google Scholar 

  163. Porte D, Halter JB. The endocrine pancreas and diabetes mellitus. In: Williams R, ed. Textbook of Endocrinology. W.B. Saunders, Philadelphia, 1981, pp. 716–843.

    Google Scholar 

  164. Bell GI, Swain WF, Pictet R, Cordell B, Goodman HM, Rutter WJ. Nucleotide sequence of a cDNA clone encoding human preproinsulin. Nature 1979;282:525–527.

    PubMed  CAS  Google Scholar 

  165. Bell GI, Pictet RL, Rutter WJ, Cordell B, Tischer E, Goodman HM. Sequence of the human insulin gene. Nature 1980;284:26–32.

    PubMed  CAS  Google Scholar 

  166. Greenbaum CJ, Palmer JP, Kuglin B, Kolb H, Participating Laboratories. Insulin autoantibodies measured by RIA methodology are more related to IDDM than those measured by ELISA. J Clin Endocrinol Metab 1992;74:1040–1044.

    PubMed  CAS  Google Scholar 

  167. Addison T. On the constitutional and local effects of disease of the suprarenal capsules. A collection of the published writings of the late Thomas Addison MD, Physician to Guy’s Hospital, London London 1868 New Sydenham Society Reprinted in Medical Classics 1937;2:244–293.

    Google Scholar 

  168. Anderson JR, Goudie RB, Gray KG, Timbury GC. Preliminary communication. Autoantibodies in Addison’s disease. Lancet June 1957;1:1123–1124.

    Google Scholar 

  169. Blizzard RM, Kyle M. Studies of the adrenal antigens and antibodies in Addison’s disease. J Clin Invest 1963;42:1653–1660.

    PubMed  CAS  Google Scholar 

  170. Betterle C, Pedini B, Presotto F. Serological markers of Addison’s disease. In: Bhatt HR, James VHT, Besser GM, Bottazzo GF, Keen H, eds. Advances in Thomas Addison’s Diseases. Journal of Endocrinology Ltd, Bristol, 1994, pp. 67–84.

    Google Scholar 

  171. Anderson JR, Goudie RB, Gray K, Stuart-Smith DA. Immunological features of idiopathic Addison’s disease: antibodies to cells producing steroid hormones. Clin Exp Immunol 1968;3:107–117.

    PubMed  CAS  Google Scholar 

  172. Bottazzo GF, Mirakian R, Drexhage HA. Adrenalitis, oophoritis and autoimmune polyglandular disease. In: Rich RR, Fleisher TA, Shearer WT, Schwartz BD, Strober W, ed. Clinical Immunology Principles and Practice. St. Louis, Mosby-Year Book, 1996, pp. 1523–1536.

    Google Scholar 

  173. Furmaniak J, Talbot D, Reinwein D, Benker G, Creagh FM, Rees Smith B. Immunoprecipitation of human adrenal microsomal antigen. FEBS 1988;231:25–28.

    CAS  Google Scholar 

  174. Baumann-Antczak A, Wedlock N, Bednarek J, Kiso Y, Krishnan H, Fowler S, et al. Autoimmune Addison’s disease and 21-hydroxylase. Lancet 1992;340:429–430.

    PubMed  CAS  Google Scholar 

  175. Winqvist O, Karlsson A, Kämpe O. 21-hydroxylase, a major autoantigen in idiopathic Addison’s disease. Lancet 1992;339:1559–1562.

    PubMed  CAS  Google Scholar 

  176. Bednarek J, Furmaniak J, Wedlock N, Kiso Y, Baumann-Antczak A, Fowler S, et al. Steroid 21-hydroxylase is a major autoantigen involved in adult onset autoimmune Addison’s disease. FEBS 1992;309:51–55.

    CAS  Google Scholar 

  177. Song Y-H, Connor EL, Muir A, She JX, Zorovich B, Derovanesian D, et al. Autoantibody epitope mapping of the 21-hydroxylase antigen in autoimmune Addison’s disease. J Clin Endocrinol Metab 1994;78:1108–1112.

    Google Scholar 

  178. Uibo R, Aavik E, Peterson P, Perheentupa J, Aranko S, Pelkonen R, Krohn KJE. Autoantibodies to cytochrome P450 enzymes P450scc, P450c17 and P450c21 in autoimmune polyglandular disease types I and II and in isolated Addison’s disease. J Clin Endocrinol Metab 1994;78:323–328.

    PubMed  CAS  Google Scholar 

  179. Uibo R, Perheentupa J, Ovod V, Krohn KJE. Characterization of adrenal autoantigens recognized by sera from patients with autoimmune polyglandular syndrome (APS) type I. J Autoimmunity 1994;7:399–4 11.

    Google Scholar 

  180. Miller WL. Clinical review 54. Genetics, diagnosis, and management of 21-hydroxylase deficiency. J Clin Endocrinol Metab 1994;78:241–246.

    PubMed  CAS  Google Scholar 

  181. Azziz R, Dewailly D, Owerbach D. Clinical review 56. Nonclassic adrenal hyperplasia: current concepts. J Clin Endocrinol Metab 1994;78:810–815.

    PubMed  CAS  Google Scholar 

  182. Wilson RC, Mercado AB, Cheng KC, New MI. Steroid 21-hydroxylase deficiency: genotype may not predict phenotype. J Clin Endocrinol Metab 1995;80:2322–2329.

    PubMed  CAS  Google Scholar 

  183. White PC, New MI, Dupont B. Structure of human steroid 21-hydroxylase genes. Proc Natl Acad Sci USA 1986;83:5111–5115.

    PubMed  CAS  Google Scholar 

  184. Trowsdale J, Ragoussis J, Campbell RD. Map of the human MHC. Immunology Today 1991;12: 443–446.

    PubMed  CAS  Google Scholar 

  185. Kominami S, Ochi H, Kobayashi Y, Takemori S. Studies on the steroid hydroxylation system in adrenal cortex microsomes. J Biol Chem 1980;255:3386–3394.

    PubMed  CAS  Google Scholar 

  186. Bumpus JA, Dus KM. Bovine adrenocortical microsomal hemeproteins P-45017α and P-450c-21. Isolation, partial characterization and comparison to P-450scc. J Biol Chem 1982;257:12,696–12,704.

    Google Scholar 

  187. Hsu LC, Hu MC, Cheng HC, Lu JC, Chung B. The N-terminal hydrophobic domain of P450c21 is required for membrane insertion and enzyme stability. J Biol Chem 1993;268:14,682–14,686.

    Google Scholar 

  188. Picado-Leonard J, Miller WL. Cloning and sequence of the human gene for P450c17 (steroid 17a-hydroxylase/17,201yase): similarity with the gene for P450c21. DNA 1987;6:439–448.

    PubMed  CAS  Google Scholar 

  189. Lin D, Zhang L, Chiao E, Miller WL. Modeling and mutagenesis of the active site of human P450c17. Mol Endocrinol 1994;8:392–402.

    PubMed  CAS  Google Scholar 

  190. Colls J, Betterle C, Volpato M, Prentice L, Rees Smith B, Furmaniak J. Immunoprecipitation assay for autoantibodies to steroid 21-hydroxylase in autoimmune adrenal disease. Clin Chem 1995;41:375–380.

    PubMed  CAS  Google Scholar 

  191. Falorni A, Nikoshkov A, Laureti S, Grenbäck E, Hulting A-L, Casucci G, et al. High diagnostic accuracy for idiopathic Addison’s disease with a sensitive radiobinding assay for autoantibodies against recombinant human 21-hydroxylase. J Clin Endocrinol Metab 1995;80:2752–2755.

    PubMed  CAS  Google Scholar 

  192. Chen S, Sawicka J, Betterle C, Powell M, Prentice L, Volpato M, et al. Autoantibodies to steroidogenic enzymes in autoimmune polyglandular syndrome, Addison’s disease and premature ovarian failure. J Clin Endocrinol Metab 1996;81:1871–1876.

    PubMed  CAS  Google Scholar 

  193. Soderbergh A, Winqvist 0, Norheim I, Rorsman F, Huseby ES, Dolva 0, et al. Adrenal autoantibodies and organ-specific autoimmunity in patients with Addison’s disease. Clin Endocrinol 1996;45:453–460.

    CAS  Google Scholar 

  194. Peterson P, Uibo R, Peranen J, Krohn K. Immunoprecipitation of steroidogenic enzyme autoantigens with autoimmune polyglandular syndrome type I (APS I) sera; further evidence for independent humoral immunity to P450c17 and P450c21. Clin Exp Immunol 1997;107:335–340.

    PubMed  CAS  Google Scholar 

  195. Tanaka H, Perez MS, Powell M, Sanders JF, SawickaJ, Chen S, et al. Steroid 21-hydroxylase autoantibodies: measurements with a new immunoprecipitation assay. J Clin Endocrinol Metab 1997;82: 1440–1446.

    PubMed  CAS  Google Scholar 

  196. Wedlock N, Asawa T, Baumann-Antczak A, Rees Smith B, Furmaniak J. Autoimmune Addison’s disease. Analysis of autoantibody binding sites on human steroid 21-hydroxylase. FEBS 1993;332:123–126.

    CAS  Google Scholar 

  197. Asawa T, Wedlock N, Baumann-Antczak A, Rees Smith B, Furmaniak J. Naturally occurring mutations in human steroid 21-hydroxylase influence adrenal autoantibody binding. J Clin Endocrinol Metab 1994;79:372–376.

    PubMed  CAS  Google Scholar 

  198. Nikishkov A, Lajic S, Holst M, Wedell A, Luthman H. Synergistic effect of partially inactivating mutations in steroid 21-hydroxylase deficiency. J Clin Endocrinol Metab 1997;82:194–199.

    Google Scholar 

  199. Tanaka H, Asawa T, Powell M, Chen S, Rees Smith B, Furmaniak J. Autoantibody binding to steroid 21-hydroxylase—effect of five mutations. Autoimmunity 1997;26:253–259.

    PubMed  CAS  Google Scholar 

  200. Hu MC, Hsu LC, Hsu NC, Chung B. Function and membrane topology of wild-type and mutated cytochrome P450c21. Biochem J 1996;316:325–329.

    PubMed  CAS  Google Scholar 

  201. Furmaniak J, Kominami S, Asawa T, Wedlock N, Colls J, Rees Smith B. Autoimmune Addison’s disease—evidence for a role of steroid 21-hydroxylase autoantibodies in adrenal insufficiency. J Clin Endocrinol Metab 1994;79:1517–1521.

    PubMed  CAS  Google Scholar 

  202. Boscaro M, Betterle C, Volpato M, Fallo F, Furmaniak J, Rees Smith B, et al. Hormonal responses during various phases of autoimmune adrenal failure: no evidence for 21-hydroxylase enzyme activity inhibition in vivo. J Clin Endocrinol Metab 1996;81:2801–2804.

    PubMed  CAS  Google Scholar 

  203. Volpato M, Prentice L, Chen S, Betterle C, Rees Smith B, Furmaniak J. A study of the epitopes on steroid 21-hydroxylase recognized by autoantibodies in patients with or without Addison’s disease. Clin Exp Immunol 1998;111:422–428.

    PubMed  CAS  Google Scholar 

  204. Winqvist 0, Gustafsson J, Rorsman F, Karlsson FA, Kampe 0. Two different cytochrome P450 enzymes are the adrenal antigens in autoimmune polyendocrine syndrome type I and Addison’s disease. J Clin Invest 1993;92:2377–2385.

    Google Scholar 

  205. Richter W, Northemann W, Müller M, Böhm 0. Mapping of an autoreactive epitope within glutamate decarboxylase using a diabetes-associated human monoclonal autoantibody and an epitope cDNA library. Hybridoma 1996;15:103–108.

    PubMed  CAS  Google Scholar 

  206. Betterle C, Volpato M, Rees Smith B, Furmaniak J, Chen S, Zanchetta R, et al. II. Adrenal cortex and steroid 21-hydroxylase autoantibodies in children with organ-specific autoimmune diseases: markers of high progression to clinical Addison’s disease. J Clin Endocrinol Metab 1997;82:939–942.

    PubMed  CAS  Google Scholar 

  207. Betterle C, Volpato M, Rees Smith B, Furmaniak J, Chen S, Greggio NA, et al. I. Adrenal cortex and steroid 21-hydroxylase autoantibodies in adult patients with organ-specific autoimmune diseases: markers of low progression to clinical Addison’s disease. J Clin Endocrinol Metab 1997;82:932–938.

    PubMed  CAS  Google Scholar 

  208. Krohn K, Uibo R, Aavik E, Peterson P, Savilahti K.; Identification by molecular cloning of an autoantigen associated with Addison’s disease as steroid 17a-hydroxylase. Lancet 1992;339:770–773.

    PubMed  CAS  Google Scholar 

  209. Chung B, Picado-Leonard J, Haniu M, Bienkowski M, Hall PF, Shivley JE, et al. Cytochrome P450c 17 (steroid 17α-hydroxylase/17,201yase): cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues. Proc Natl Acad Sci USA 1987;84:407–411.

    PubMed  CAS  Google Scholar 

  210. Peterson P, Krohn KJE. Mapping of B cell epitopes on steroid 17α-hydroxylase, an autoantigen in autoimmune polyglandular syndrome type I. Clin Exp Immunol 1994;98:104–109.

    PubMed  CAS  Google Scholar 

  211. Chung B-C, Matteson KJ, Voutilainen R, Mohandas TK, Miller WL. Human cholesterol side-chain cleavage enzyme, P450scc: cDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta. Proc Natl Acad Sci USA 1986;83:8962–8966.

    PubMed  CAS  Google Scholar 

  212. Velloso LA, Winqvist O, Gustafsson J, Kampe O, Karlsson FA. Autoantibodies against a novel 51 kDa islet antigen and glutamate decarboxylase isoforms in autoimmune polyendocrine syndrome type I. Diabetologia 1994;37:61–69.

    PubMed  CAS  Google Scholar 

  213. Rorsman F, Husebye ES, Winqvist O, Björk E, Karlsson FA, Kampe O. Aromatic-L-amino-acid decarboxylase, a pyridoxal phosphate-dependent enzyme, is aββ-cell autoantigen. Proc Natl Acad Sci USA 1995;92:8626–8629.

    PubMed  CAS  Google Scholar 

  214. Husebye ES, Gebre-Medhin G, Tuomi T, Perheentupa J, Landin-Olsson M, Gustafsson J, et al. Autoantibodies against aromatic L-amino acid decarboxylase in autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab 1997;82:147–150.

    PubMed  CAS  Google Scholar 

  215. Winqvist O, Gebre-Medhin G, Gustafsson J, Martin E, Lundkvist O, Karlsson FA, et al. Identification of the main gonadal autoantigens in patients with adrenal insufficiency and associated ovarian failure. J Clin Endocrinol Metab 1995;80:1717–1723.

    PubMed  CAS  Google Scholar 

  216. 216. Winqvist O, Söderbergh A, Kämpe O. The autoimmune basis of adrenocortical destruction in Addison’s disease. Mol Med Today 1996;July:282–289.

    Google Scholar 

  217. Arif S, Vallian S, Farzaneh F, Zanone MM, James SL, Pietropaolo M, et al. Identification of 3β-hydroxysteroid dehydrogenase as a novel target of steroid cell autoantibodies: association of autoantibodies with endocrine autoimmune disease. J Clin Endocrinol Metab 1996;81:4439–4445.

    PubMed  CAS  Google Scholar 

  218. Peterson P, Perheentupa J, Krohn KJE. Detection of candidal antigens in autoimmune polyglandular syndrome type I. Clin Diag Lab Immunol 1996;3:290–294.

    CAS  Google Scholar 

  219. Betterle C, Volpato M, Greggio AN, Presotto F. Type 2 polyglandular autoimmune disease (Schmidt’s syndrome). J Pedriat Endocrinol Metab 1996;9:113–123.

    Google Scholar 

  220. Weetman AP. Editorial review. Autoantigens in Addison’s disease and associated syndromes. Clin Exp Immunol 1997;107:227–229.

    PubMed  CAS  Google Scholar 

  221. Betterle C, Rossi A, Dalla Pria S, Artifoni A, Pedini B, Gavasso S, et al. Premature ovarian failure: autoimmunity and natural history. Clin Endocrinol 1993;39:35–43.

    CAS  Google Scholar 

  222. Wheatcroft NJ, Toogood AA, Li TC, Cooke ID, Weetman AP. Detection of antibodies to ovarian antigens in women with premature ovarian failure. Clin Exp Immunol 1994;96:122–128.

    PubMed  CAS  Google Scholar 

  223. Wheatcroft N, Weetman A. Is premature ovarian failure an autoimmune disease? Autoimmunity 1997; 25:157–165.

    PubMed  CAS  Google Scholar 

  224. Anasti JN, Flack MR, Froehlich J, Nelson LM. The use of human recombinant gonadotropin receptors to search for immunoglobulin G-mediated premature ovarian failure. J Clin Endocrinol Metab 1995; 80:824–828.

    PubMed  CAS  Google Scholar 

  225. Lambert A, Weetman AP, McLoughlin J, Wardle C, Sunderland J, Wheatcroft N, et al. A search for immunoglobulins inhibiting gonadal cell steroidogenesis in premature ovarian failure. Hum Reprod 1996;11:1871–1876.

    PubMed  CAS  Google Scholar 

  226. Roitt IM. Essential Immunology, 7th ed. Blackwell Scientific, Oxford, 1991, pp. 305–324.

    Google Scholar 

  227. Jacobson DL, Gange SJ, Rose NR, Graham NMH. Short analytical review—epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 1997;84:223–243.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Furmaniak, J., Sanders, J., Smith, B.R. (1999). Autoantigens in the Autoimmune Endocrinopathies. In: Volpé, R. (eds) Autoimmune Endocrinopathies. Contemporary Endocrinology, vol 15. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-704-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-704-8_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4572-6

  • Online ISBN: 978-1-59259-704-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics