Skip to main content

Animal Models for Insulin-Dependent Diabetes Mellitus

  • Chapter
Autoimmune Endocrinopathies

Part of the book series: Contemporary Endocrinology ((COE,volume 15))

Abstract

Insulin-dependent diabetes mellitus (IDDM) in humans is a complex disease. Environmental and genetic factors contribute in variable proportions to the etiopathogenesis. In order to develop effective strategies to predict, prevent, and treat diabetes, it is important to identify and characterize the individual factors involved in the disease process and to study synergistic effects that may control progression toward the clinical onset of diabetes. In human diabetes, this goal has proven cumbersome and complicated to pursue, owing to the lack of knowledge of the development of human autoimmune diseases, lack of human pancreatic islet tissue to study the target organ, as well as complex inheritance patterns (see also Chapter 12). Thus, the use of animals to study IDDM has contributed fundamentally to the current knowledge and to hypotheses aimed at clarifying the nature of the disease. The reader is referred to recent excellent reviews on animals with IDDM, including the nonobese diabetic (NOD) mouse (1–3) and the BioBreeding (BB) rat (4,5). This chapter will describe important animal models for IDDM and some of the implications of the research data that have been obtained by studying diabetes in these animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leiter E. The genetics of diabetes susceptibility in mice. FASEB J 1989;3:2231–2241.

    PubMed  CAS  Google Scholar 

  2. Berggren P-O. (1993) New concepts in the pathogenesis of NIDDM, 2nd ed. In: Ostenson C-G, ed. Toronto-Stockholm on Perspective in Diabetes Research: Adv Exp Med Biol. Plenum, New York, 1993, pp. 24–45.

    Google Scholar 

  3. Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu 1980;29:1–13.

    PubMed  CAS  Google Scholar 

  4. Crisá L, Mordes JP, Rossini, AA. Autoimmune diabetes mellitus in the BB rat. Diabetes Metab Rev 1992;8:9–37.

    Google Scholar 

  5. Pettersson A, Jacob H, Lernmark A. Lessons from the animal models: the BB rat. In: Palmer JP, ed. Diabetes Prediction, Prevention and Genetic Counseling in IDDM. John Wiley, New York, 1996, pp. 182–200.

    Google Scholar 

  6. Velasquez MT, Kimmel PL, Michaelis OET. Animal models of spontaneous diabetic kidney disease. FASEB J 1990;4:2850–2859.

    PubMed  CAS  Google Scholar 

  7. Nakhooda AF, Like AA, Chappel CI, Murray FT, Marliss EB. The spontaneously diabetic Wistar rat. Metabolic and morphologic studies. Diabetes 1977;26:100–112.

    PubMed  CAS  Google Scholar 

  8. Guberski DL, Thomas VA, Shek WR, Like AA, Handler ES, Rossini AA, et al. Induction of type 1 diabetes by Kilham’s rat virus in diabetes-resistant BB wor rats. Science 1991;254:1010–1013.

    PubMed  CAS  Google Scholar 

  9. Field CJ. A diet producing a low diabetes incidence modifies immune abnormalities in diabetes-prone BB rats. J Nutr 1995;125:2595–2603.

    PubMed  CAS  Google Scholar 

  10. Jacob H, Pettersson A, Wilson D, Lernmark A, Lander ES. Genetic dissection of autoimmune type 1 diabetes in the BB rat. Nature Genet 1992;2:56–60.

    PubMed  CAS  Google Scholar 

  11. Jackson R, Rassi N, Crump T, Haynes B, Eisenbarth GS. The BB diabetic rat. Profound T-cell lymphocytopenia. Diabetes 1981;30:887–889.

    PubMed  CAS  Google Scholar 

  12. Colle E, Ono S, Fuks A, Guttman RD, Seemayer TA. Association of susceptibility to spontaneous diabetes in rat with genes of major histocompatibility complex. Diabetes 1988;37:1483–1486. 13. Markholst H, Andreasen B, Eastman S, Lernmark A. Diabetes segregates as a single locus in crosses between inbred BB rats prone or resistant to diabetes. J Exp Med 1991;174:297–300.

    Google Scholar 

  13. Awata T, Guberski DL, Like AA. Genetics of the BB rat: Association of autoimmune disorders (diabetes, insulitis, and thyroiditis) with lymphopenia and major histocompatibility complex class II. Endocrinology 1995;136:5731–5735.

    PubMed  CAS  Google Scholar 

  14. Pettersson A, Wilson D, Daniels T, Tobin S, Jacob JJ, Lander ES, et al. Thyroiditis in the BB rat is associated with lymphopenia but occurs independently of diabetes. J Autoimmunity 1995;8:493–505.

    CAS  Google Scholar 

  15. Like AA, Weringer EJ, Holdash A, McGill P, Atkinson D, Rossini AA. Adoptive transfer of autoimmune diabetes mellitus in Biobreeding/Worcester (BB/W) inbred and hybrid rats. J Immunol 1985;34: 1583–1586.

    Google Scholar 

  16. Whalen BJ, Griner DL, Mordes JP, Rossini AA. Adoptive transfer of autoimmune diabetes mellitus to athymic rats: synergy of CD4+ and CD8+ T cells and prevention of RT6+ T cells. J. Autoimmunity 1994;7:819–831.

    CAS  Google Scholar 

  17. Nepom BS, Nepom GT, Coleman M, Kwok WW. Critical contribution of beta chain residue 57 in peptide binding ability of both HLA-DR and -DQ molecules. Proc Natl Acad Sci USA 1996;33:7 202–7206.

    Google Scholar 

  18. Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T. New inbred strain of Long-Evans Tokushima lean rats with IDDM without lymphopenia. Diabetes 1991;40:1375–138 1.

    Google Scholar 

  19. Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochima Y. Breeding of non-obese diabetic strain of mice. Exp Anim 1980;29:1–13.

    CAS  Google Scholar 

  20. Tochino Y. The NOD mouse as a model of type 1 diabetes. Crit Rev Immunol 1987;1:49–81.

    Google Scholar 

  21. Bodansky HJ, Staines A, Stephenson C, Haigh D, Cartwright R. Evidence for an environmental effect in the aetiology of insulin dependent diabetes in a transmigratory population. Brit Med J 1992; 304:1020–1022.

    PubMed  CAS  Google Scholar 

  22. Tochino Y. The NOD mouse as a model of type I diabetes. Crit Rev Immunol 1987;8:49–81.

    PubMed  CAS  Google Scholar 

  23. Lo D, Burkly LC, Widera G, Cowing C, Flavell RA, Palmiter RD, et al. Diabetes and tolerance in transgenic mice expressing class II MHC molecules in pancreatic beta cells. Cell 1988;53:159–168.

    PubMed  CAS  Google Scholar 

  24. Frankel BJ, Korsgren O, Andersson A. DNA replication in pancreatic islets and adrenals in diabetic Chinese hamsters. Horm Res 1993;39:67–72.

    PubMed  CAS  Google Scholar 

  25. Palmer JP, Lemmark A. Pathophysiology of type 1 (Insulin-Dependent) diabetes. In: Daniel Porte J, Sherwin RS, eds. Ellenberg and Rifkin’s Diabetes Mellitus: Theory and Practice. Elsevier, Stamford, CT, 1996, pp. 455–486.

    Google Scholar 

  26. Bach JF. Insulin-dependent diabetes mellitus as an autoimmune disease. Endocrine Rev 1994;15: 516–542.

    CAS  Google Scholar 

  27. Jenson AB, Rosenberg HS, Notkins AL. Pancreatic islet-cell damage in children with fatal viral infections. Lancet 1980;ii:354–358.

    Google Scholar 

  28. Katz JD, Wang B, Haskins K, Benoist C, Mathis D. Following a diabetogenic T cell from genesis through pathogenesis. Cell 1993;74:1089–1100.

    PubMed  CAS  Google Scholar 

  29. Shizuru JA, Sarvetnick N. Transgenic mice for the study of diabetes mellitus. Trends Endocrinol Metab 1991;2:97–104.

    PubMed  CAS  Google Scholar 

  30. Lipes MA, Eisenbarth GS. Transgenic mouse models of type I diabetes. Diabetes 1990;39:879–884.

    PubMed  CAS  Google Scholar 

  31. Hanahan D. Transgenic mouse models of self-tolerance and autoreactivity by the immune system. Annu Rev Cell Biol 1990;6:493–537.

    PubMed  CAS  Google Scholar 

  32. Allison J, Campbell IL, Morahan G, Mandel TE, Harrison LC, Miller JFAP. Diabetes in transgenic mice resulting from over-expression of class I histocompatibility molecules in pancreatic β cells. Nature 1988;333:529–533.

    PubMed  CAS  Google Scholar 

  33. Lo D, Burkly LC, Widera G. Diabetes and tolerance in transgenic mice expressing class II MHC molecules in pancreatic beta cells. Cell 1988;53:159–168.

    PubMed  CAS  Google Scholar 

  34. Markmann J, Lo D, Naji A, Palmiter RD, Brinster RL, Heber-Katz E. Antigen presenting function of class II MHC expressing pancreatic beta cells. Nature 1988;336:476–479.

    PubMed  CAS  Google Scholar 

  35. Bottazzo GF, Dean BM, McNally JM, MacKay EH, Swift PGF, Gamble DR. In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. N Engl J Med 1985;313:353–360.

    PubMed  CAS  Google Scholar 

  36. Homo-Delarche F, Fitzpatrick F, Christeff N, Nunez EA, Bach JF, Dardenne M. Sex steroids, glucocorticoids, stress and autoimmunity. J Steroid Biochem Mol Biol 1991;40:619–637.

    PubMed  CAS  Google Scholar 

  37. Garchon HJ, Bedossa P, Eloy L, Bach JF. Identification and mapping to chromosome 1 of a susceptibility locus for periinsulitis in non-obese diabetic mice. Nature 1991;353:260–262.

    PubMed  CAS  Google Scholar 

  38. Cand’eias S, Katz J, Benoist C, Mathis D, Haskins K. Islet-specific T-cell clones from nonobese diabetic mice express heterogeneous T-cell receptors. Proc Natl Acad Sci USA 1991;88:6167–6170.

    Google Scholar 

  39. Sarvetnick N, Liggitt D, Pitts SL, Hansen SE, Stewart TA. Insulin-dependent diabetes mellitus induced in transgenic mice by ectopic expression of class II MHC and interferon-gamma. Cell 1988; 52:773–782.

    PubMed  CAS  Google Scholar 

  40. Gonzalez A, Katz JD, Mattei MG, Kikutani H, Benoist C, Mathis D. Genetic control of diabetes progression. Immunity 1997;7:873–883.

    PubMed  CAS  Google Scholar 

  41. von Herrath MG, Guerder S, Lewicki H, Flavell RA, Oldstone MB. Coexpression of B7–1 and viral (“self’) transgenes in pancreatic beta cells can break peripheral ignorance and lead to spontaneous autoimmune diabetes. Immunity 1995;3:727–738.

    Google Scholar 

  42. Ohashi PS, Oehen S, Aichele P, Pircher H, Odermatt B, Herrera P, et al. Induction of diabetes is influenced by the infectious virus and local expression of MHC class I and tumor necrosis factor-alpha. J Immunol 1993;150:5185–5194.

    PubMed  CAS  Google Scholar 

  43. Grodsky GM, Ma YH, Cullen B, Sarvetnick N. Effect on insulin production sorting and secretion by major histocompatibility complex class II gene expression in the pancreatic beta-cell of transgenic mice. Endocrinology 1992;131:933–938.

    PubMed  CAS  Google Scholar 

  44. Elliott EA, Flavell RA. Transgenic mice expressing constitutive levels of IL-2 in islet beta cells develop diabetes. Int Immunol 1994;6:1629–1637.

    PubMed  CAS  Google Scholar 

  45. Ehl S, Hombach J, Aichele P, Hengartner H, Zinkernagel RM. Bystander activation of cytotoxic T cells: studies on the mechanism and evaluation of in vivo significance in a transgenic mouse model. J Exp Med 1997;185:1241–1251.

    PubMed  CAS  Google Scholar 

  46. Higuchi Y, Herrera P, Muniesa P, Huarte J, Belin D, Ohashi P, et al. Expression of a tumor necrosis factor alpha transgene in murine pancreatic beta cells results in severe and permanent insulitis without evolution towards diabetes. J Exp Med 1992;176:1719–1731.

    PubMed  CAS  Google Scholar 

  47. von Herrath M, Holz A. Pathological changes in the islet milieu precede infiltration of islets and destruction of beta-cells by autoreactive lymphocytes in a transgenic model of virus-induced IDDM. J Autoimmunity 1997;10:231–238.

    Google Scholar 

  48. von Herrath MG, Homann D, Gairin JE, Oldstone MB. Pathogenesis and treatment of virus-induced autoimmune diabetes: novel insights gained from the RIP-LCMV transgenic mouse model. Biochem Soc Trans 1997;25:630–635.

    Google Scholar 

  49. von Herrath MG, Oldstone MB. Interferon-gamma is essential for destruction of beta cells and development of insulin-dependent diabetes mellitus. J Exp Med 1997;185:531–539.

    Google Scholar 

  50. Bonnevie-Nielsen V, Steffes MW, Lernmark Å. A major loss in islet mass and ß-cell function precedes hyperglycemia in mice given multiple low doses of streptozotocin. Diabetes 1981;30:424–429.

    PubMed  CAS  Google Scholar 

  51. Like AA, Rossini AA. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 1976;93:415–417.

    Google Scholar 

  52. Groot PC, Moen CJ, Dietrich W, Stoye JP, Lander ES, Demant P. The recombinant congenic strains for analysis of multigenic traits: genetic composition. FASEB J 1992;6:2826–2835.

    PubMed  CAS  Google Scholar 

  53. Pipeleers D, Van De Winkel M. Pancreatic B cells possess defense mechanisms against cell-specific toxicity. Proc Natl Acad Sci USA 1986;83:5267–5271.

    PubMed  CAS  Google Scholar 

  54. Uchigata Y, Yamamoto H, Nagai H, Okamoto H. Effect of poly(ADP-ribose) synthetase inhibitor administration to rats before and after injection of alloxan and streptozotocin on islet proinsulin synthesis. Diabetes 1983;32(4):316–318.

    PubMed  CAS  Google Scholar 

  55. McAleer MA, Reifsnyder P, Palmer SM, Prochazka M, Love JM, Copeman JB, et al. Crosses of NOD mice with the related NON strain. A polygenic model for IDDM. Diabetes 1995;44:1186–1195.

    PubMed  CAS  Google Scholar 

  56. Oehen S, Ohashi PS, Aichele P, Burki K, Hengartner H, Zinkernagel RM. Vaccination or tolerance to prevent diabetes. Eur J Immunol 1992;22:3149–3153.

    PubMed  CAS  Google Scholar 

  57. Kagi D, Odermatt B, Ohashi PS, Zinkernagel RM, Hengartner H. Development of insulitis without diabetes in transgenic mice lacking perforin-dependent cytotoxicity. J Exp Med 1996;183:2143–152.

    PubMed  CAS  Google Scholar 

  58. Degermann S, Reilly C, Scott B, Ogata L, von B-H, Lod. On the various manifestations of spontaneous autoimmune diabetes in rodent models. Eur J Immunol 1994;24:3155–3160.

    PubMed  CAS  Google Scholar 

  59. Herold KC, Baumann E, Vezys V, Buckingham F. Expression and immune response to islet antigens following treatment with low doses of streptozotocin in H-2d mice. J Autoimmunity 1997;10:17–25.

    CAS  Google Scholar 

  60. Herold KG, Lenschow DJ, Bluestone JA. CD28/B7 regulation of autoimmune diabetes. Immunol Res 1997;16:71–84.

    PubMed  CAS  Google Scholar 

  61. Herold KC, Vezys V, Koons A, Lenschow D, Thompson C, Bluestone JA. CD28/B7 costimulation regulates autoimmune diabetes induced with multiple low doses of streptozotocin. J Immunol 1997; 58:984–991.

    Google Scholar 

  62. Grama D, Eriksson B, Martensson H, Cedermark B, Ahr’en B, Kristoffersson A, et al. Clinical characteristics, treatment and survival in patients with pancreatic tumors causing hormonal syndromes. World J Surg 1992;16:632–639.

    PubMed  CAS  Google Scholar 

  63. Kiesel U, Freytag G, Biener J, Kolb H. Transfer of experimental autoimmune insulitis by spleen cells in mice. Diabetologia 1980;19:516–520.

    PubMed  CAS  Google Scholar 

  64. Buschard K, Rygaard J. Passive transfer of streptozotocin induced diabetes mellitus with spleen cells. Acta Pathol Microbiol Scand 1977;85(C):469–472.

    Google Scholar 

  65. Mustafa MI, Diener P, Hojeberg B, Van der-Meide P, Olsson T. T cell immunity and interferon-gamma secretion during experimental allergic encephalomyelitis in Lewis rats. J Neuroimmunol 1991;31: 165–177.

    PubMed  CAS  Google Scholar 

  66. Kendall MD. Functional anatomy of the thymic microenvironment. J Anat 1991;177:1–29.

    PubMed  CAS  Google Scholar 

  67. Herold KC, Vezys V, Sun Q, Viktora D, Seung E, Reiner S, et al. Regulation of cytokine production during development of autoimmune diabetes induced with multiple low doses of streptozotocin. J Immunol 1996;156:3521–3527.

    PubMed  CAS  Google Scholar 

  68. Baumann EE, Buckingham F, Herold KC. Intrathymic transplantation of islet antigen affects CD8+ diabetogenic T-cells resulting in tolerance to autoimmune IDDM. Diabetes 1995;44:871–877.

    PubMed  CAS  Google Scholar 

  69. Herold KC, Bloch TN, Vezys V, Sun Q. Diabetes induced with low doses of streptozotocin is mediated by V beta 8.2+ T-cells. Diabetes 1995;44:354–359.

    PubMed  CAS  Google Scholar 

  70. Pont A, Rubino JM, Bishop D, Peal R. Diabetes mellitus and neuropathy following Vacor ingestion in man. Arch Intern Med 1979;39:185–187.

    Google Scholar 

  71. Herold KC, Vezys V, Gage A, Montag AG. Prevention of autoimmune diabetes by treatment with antiLFA-1 and anti-ICAM-1 monoclonal antibodies. Cell Immunol 1994;57:489–500.

    Google Scholar 

  72. Yoon J-W, Austin M, Onodera T, Notkins AL. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 1975;300:1174–1179.

    Google Scholar 

  73. Ferner RE, Antsiferov ML, Kelman AW, Alberti KG, Rawlins MD. The relationships between dose and concentration of tolbutamide and insulin and glucose responses in patients with non-insulindependent diabetes. Eur J Clin Pharmacol 1991;40:163–168.

    PubMed  CAS  Google Scholar 

  74. Serreze DV, Prochazka M, Reifsnyder PC, Bridgett MM, Leiter EH. Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene. J Exp Med 1994;180:1553–1558.

    PubMed  CAS  Google Scholar 

  75. Wilander E. Streptozotocin-diabetes in the Chinese hamster. Long-term effects on the light microscopic structure of the pancreatic islet tissue, liver and kidney. Acta Pathol Microbiol Scand A 1974; 82:767–776.

    PubMed  CAS  Google Scholar 

  76. Mauer SM, Sutherland DE, Steffes MW, Lee CS, Najarian JS, Brown DM. Effects of kidney and pancreas transplantation on streptozotocin-induced malignant kidney tumors in rats. Cancer Res 1974; 34:1643–1645.

    PubMed  CAS  Google Scholar 

  77. Pitkin RM, Van Orden DE. Fetal effects of maternal streptozotocin-diabetes. Endocrinology 1974;94:1247–1253.

    PubMed  CAS  Google Scholar 

  78. Hoftiezer V, Carpenter AM. Comparison of streptozotocin and alloxan-induced diabetes in the rat, including volumetric quantitation of the pancreatic islets. Diabetologia 1973;9:178–184.

    PubMed  CAS  Google Scholar 

  79. Schein PS, Rakieten N, Cooney DA, Davis R, Vernon ML. Streptozotocin diabetes in monkeys and dogs, and its prevention by nicotinamide. Proc Soc Exp Biol Med 1973;143:514–518.

    PubMed  CAS  Google Scholar 

  80. McClive PJ, Baxter AG, Morahan G. Genetic polymorphisms of the non-obese diabetic (NOD) mouse. Immunol Cell Biol 1994;72:137–142.

    PubMed  CAS  Google Scholar 

  81. Zouali H, Vaxillaire M, Lesage S, Sun F, Velho G, Vionnet N, et al. Linkage analysis and molecular scanning of glucokinase gene in NIDDM families. Diabetes 1993;42:1238–1245.

    PubMed  CAS  Google Scholar 

  82. Aanstot HJ, Kang SM, Kim J, Lindsay LA, Roll U, Knip M, et al. Identification and characterization of glima 38, a glycosylated islet cell membrane antigen, which together with GAD(65) and IA2 marks the early phases of autoimmune response in type 1 diabetes. J Clin Invest 1996;97:2772–2783.

    Google Scholar 

  83. Adamus G, Aptsiauri N, Guy J, Heckenlively J, Flannery J, Hargrave PA. The occurrence of serum autoantibodies against enolase in cancer-associated retinopathy. Clin Immunol Immunopathol 1996; 78:120–129.

    PubMed  CAS  Google Scholar 

  84. Colle E, Guttmann RD, Seemayer TA, Michel F. Spontaneous diabetes mellitus syndrome in the rat. IV. Immunogenetic interactions of MHC and non-MHC components of the syndrome. Metabolism 1983;32:54–61.

    PubMed  CAS  Google Scholar 

  85. Agardh D, Gaur LK, Agardh E, Landin-Olsson M, Agardh C-D, Lernmark A. HLA-DQB 1*0201 /0302 is associated with severe retinopathy in patients with insulin-dependent diabetes mellitus. Diabetologia 1996;39:1313–1317.

    PubMed  CAS  Google Scholar 

  86. Bellgrau D, Lagarde C. Cytotoxic T-cell precursors with low-level CD8 in the diabetes-prone biobreeding rat: Implications for generation of an autoimmune T-cell repertoire. Proc Natl Acad Sci USA 1990;87:313–317.

    PubMed  CAS  Google Scholar 

  87. Bieg S, Moller C, Olsson T, Lernmark A. The lymphopenia (lyp) gene controls the intrathymic cytokine ratio in congenic BioBreeding rats. Diabetologia 1997;40:786–792.

    PubMed  CAS  Google Scholar 

  88. Podolin PL, Denny P, Lord CJ, Hill NJ, Todd JA, Peterson LB, et al. Congenic mapping of the insulindependent diabetes (Idd) gene, Idd10, localizes two genes mediating the Idd10 effect and eliminates the candidate Fcgrl. J Immunol 1997;159:1835–1843.

    PubMed  CAS  Google Scholar 

  89. Wicker LS, Todd JA, Peterson LB. Genetic control of autoimmune diabetes in the NOD mouse. Annu Rev Immunol 1995;13:179–200.

    PubMed  CAS  Google Scholar 

  90. Todd JA. Genetic analysis of susceptibility to type 1 diabetes. Springer Semin Immunopathol 1992; 14:33–58.

    PubMed  CAS  Google Scholar 

  91. Hattori M, Buse JB, Jackson RA, Glimcher L, Dorf ME, Minami M, et al. The NOD mouse: recessive gene in the major histocompatibility complex. Science 1986;231:733–735.

    PubMed  CAS  Google Scholar 

  92. Alexander DP, Britton HG, Cohen NM, Mashiter K, Nixon DA, Smith FG, Jr. Streptozotocin induced diabetes in the newborn lamb. Biol Neonate 1971;17:381–393.

    PubMed  CAS  Google Scholar 

  93. Ghosh S, Palmer SM, Rodrigues NR, Cordell HJ, Hearne CM, Cornall RJ, et al. Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nature Genet 1993;4:404–409.

    PubMed  CAS  Google Scholar 

  94. Brashear HR, Caccamo DV, Heck A, Keeney PM. Localization of antibody in the central nervous system of a patient with paraneoplastic encephalomyeloneuritis. Neurology 1991;41:1583–1587.

    PubMed  CAS  Google Scholar 

  95. Pitkin RM, Reynolds WA. Diabetogenic effects of streptozotocin in rhesus monkeys. Diabetes 1970; 19:85–90.

    PubMed  CAS  Google Scholar 

  96. Golob EK, Rishi S, Becker KL, Moore C, Shah N. Effect of streptozotocin-induced diabetes on pancreatic insulin content of the fetus. Diabetes 1970;19:610–613.

    PubMed  CAS  Google Scholar 

  97. Junod A, Lambert AE, Stauffacher W, Renold AE. Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest 1969;48:2129–2139.

    PubMed  CAS  Google Scholar 

  98. Scott FW. Food-induced type 1 diabetes in the BB rat. Diabetes/Metabolism Rev 1996;12:341–359.

    CAS  Google Scholar 

  99. Kloting I, Voigt B, Kov’acs P. Metabolic features of newly established congenic diabetes-prone BB.SHR rat strains. Life Sci 1998;62:973–979.

    PubMed  CAS  Google Scholar 

  100. Logothetopoulos J, Valiquette N, Madura E, Cvet D. The onset of the progression of pancreatic insulitis in the overt, spontaneously diabetic, young adult BB rat studied by pancreatic biopsy. Diabetes 1984;33:33–36.

    PubMed  CAS  Google Scholar 

  101. Walker R, Bone A, Cooke A, Baird J. Distinct macrophage subpopulations in pancreas of prediabetic BB/E rats. Diabetes 1988;37:1301–1304.

    PubMed  CAS  Google Scholar 

  102. Huang X, Hultgren B, Dybdal N, Stewart TA. Islet expression of interferon-alpha precedes diabetes in both the BB rat and streptozotocin-treated mice. Immunity 1994;1:469–478.

    PubMed  CAS  Google Scholar 

  103. Bass J, Kurose T, Pashmforoush M, Steiner DF. Fusion of insulin receptor ectodomains to immunoglobulin constant domains reproduces high-affinity insulin binding in vitro. J Biol Chem 1996; 271:19,367–19,375.

    Google Scholar 

  104. Rabinovitch A. Immunoregulatory and cytokine imbalances in the pathogenesis of IDDM. Therapeutic intervention by immunostimulation? Diabetes 1994;43:613–621.

    Google Scholar 

  105. Bazan NG, Rodriguez-de-Turco EB. Platelet-activating factor is a synapse messenger and a modulator of gene expression in the nervous system. Neurochem Int 1995;26:435–441.

    PubMed  CAS  Google Scholar 

  106. Björk E, Kampe O, Karlsson FA, Pipeleers DG, Andersson A, Hellerström C, et al. Glucose regulation of the autoantigen GAD65 in human pancreatic islets. J. Clin Endocrinol Metab 1992;75:1574–1576.

    PubMed  Google Scholar 

  107. Dyrberg T. Humoral autoimmunity in the pathogenesis of insulin-dependent diabetes mellitus. Studies in the spontaneously diabetic BB rat. Acta Endocrinol Suppl Copenh 1986;280:1–29.

    PubMed  CAS  Google Scholar 

  108. Pipeleers D, Van de Winkel M, Dyrberg T, Lernmark A. Spontaneously diabetic BB rats have agedependent islet beta-cell-specific surface antibodies at clinical onset. Diabetes 1987;36:1111–1115.

    PubMed  CAS  Google Scholar 

  109. Pipeleers DG, In’t Veld PA, Pipeleers-Marichal MA, Gepts W, van de Winkel M. Presence of pancreatic hormones in islet cells with MHC-class II antigen expression. Diabetes 1987;36:872–876.

    CAS  Google Scholar 

  110. Pipeleers D. The biosociology of pancreatic B cells. Diabetologia 1987;30:277–291.

    PubMed  CAS  Google Scholar 

  111. Reddy S, Bibby N, Elliott RB. Longitudinal study of islet cell antibodies and insulin autoantibodies and development of diabetes in non-obese diabetic (NOD) mice. Clin Exp Immuno11990;81:400–405.

    Google Scholar 

  112. Martignat L, Elmansour A, Audrain M, Julien JF, Charbonnel B, Sai P. Pancreatic expression of antigens for islet cell antibodies in non-obese diabetic mice. J Autoimmunity 1995;8:465–482.

    CAS  Google Scholar 

  113. Nayak RC, Omar MAK, Rabizadeh A, Srikanta S, Eisenbarth GS. “Cytoplasmic” islet cell antibodies. Evidence that the target antigen is a sialoglycoconjugate. Diabetes 1985;34:617–619.

    PubMed  CAS  Google Scholar 

  114. Bain SC, Bennett AH, Todd JA. The British Diabetic Association Warren Repository. Autoimmunity 1990;7:83–85.

    PubMed  CAS  Google Scholar 

  115. Bain SC, Rowe BR, Barnett AH, Todd JA. Parental origin of diabetes-associated HLA types in sibling pairs with type I diabetes. Diabetes 1994;43:1462–1468.

    PubMed  CAS  Google Scholar 

  116. Baekkeskov S, Dyrberg T, Lernmark A. Autoantibodies to a 64-kilodalton islet cell protein precede the onset of spontaneous diabetes in the BB rat. Science 1984;224:1348–1350.

    PubMed  CAS  Google Scholar 

  117. Bingley PJ. Interactions of age, islet cell antibodies, insulin autoantibodies, and first-phase insulin response in predicting risk of progression to IDDM in ICA(+) relatives: The ICARUS data set. Diabetes 1996:45:1720–1728.

    Google Scholar 

  118. Björk E, Kampe O, Andersson A, Karlsson FA. Expression of the 64 kDa/glutamic acid decarboxylase rat islet cell autoantigen is influenced by the rate of insulin secretion. Diabetologia 1992;35:490–493.

    PubMed  Google Scholar 

  119. Brosky G, Logothetopoulos J. Streptozotocin diabetes in the mouse and guinea pig. Diabetes 1969;18: 606–611.

    PubMed  CAS  Google Scholar 

  120. Bell GI, Pilkis SJ, Weber IT, Polonsky KS. Glucokinase mutations, insulin secretion, and diabetes mellitus. Annu Rev Physiol 1996;58:171–186.

    PubMed  CAS  Google Scholar 

  121. Whalen BJ, Rossini AA, Mordes JP, Greiner DL. DR-BB rat thymus contains thymocyte populations predisposed to autoreactivity. Diabetes 1995;44:963–967.

    PubMed  CAS  Google Scholar 

  122. Ellerman KE, Richards CA, Guberski DL, Shek WR, Like AA. Kilham rat triggers T-cell-dependent autoimmune diabetes in multiple strains of rat. Diabetes 1996;45:557–562.

    PubMed  CAS  Google Scholar 

  123. Bellgrau D, Redd JM, Sellins KS. Peculiar T-cell signaling does not preclude positive selection in the diabetes-prone BB rat. Diabetes 1994;43:47–52.

    PubMed  CAS  Google Scholar 

  124. Like AA, Rossini AA. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 1976;193:415–417.

    PubMed  CAS  Google Scholar 

  125. Haskins K, Portas M, Bergman B, Lafferty K, Bradley B. Pancreatic islet-specific T-cell clones from nonobese diabetic mice. Proc Natl Acac Sci USA 1989;86:8000–8004.

    CAS  Google Scholar 

  126. Kaufman DL, Clare-Salzler M, Tian J, Forsthuber T, Ting GSP, Robinson P, et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 1993; 366:69–72.

    PubMed  CAS  Google Scholar 

  127. Tisch R, Yang X-D, Singer SM, Liblau RS, Fugger L, McDevitt HO. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 1993;366:72–75.

    PubMed  CAS  Google Scholar 

  128. Wegmann DR, Gill RG, Daniel D. The role of insulin-specific T cells in IDDM in NOD mice. 13th Immunology and Diabetes Workshop. Montvillargenne, France, 1994, p. 12.

    Google Scholar 

  129. Blue ML, Shin SI. Diabetes induction by subdiabetogenic doses of streptozotocin in BALB/cBOM mice. Noninvolvement of host B-lymphocyte functions. Diabetes 1984;33:105–110.

    PubMed  CAS  Google Scholar 

  130. Nakhoda A, Wong HA. The induction of diabetes in rats by intramuscular administration of streptozotocin. Experientia 1979;35:1679–1680.

    PubMed  CAS  Google Scholar 

  131. Lee DS, Tian J, Phan T, Kaufman DL. Cloning and sequence analysis of a murine cDNA encoding glutamate decarboxylase (GAD65). Biochim. Biophys. Acta 1993;1216:157–160.

    CAS  Google Scholar 

  132. Ferner RE. Drug-induced diabetes. Baillieres Clin Endocrinol Metab 1992;6:849–866.

    PubMed  CAS  Google Scholar 

  133. Wilson GL, Leiter EH. Streptozotocin interactions with pancreatic beta cells and the induction of insulin-dependent diabetes. Curr Top Microbiol Immunol 1990;156:27–54.

    PubMed  CAS  Google Scholar 

  134. Bae YS, Eun HM, Yoon JW. Genomic differences between the diabetogenic and nondiabetogenic variants of encephalomyocarditis virus. Virology 1989;170:282–287.

    PubMed  CAS  Google Scholar 

  135. Onodera T, Ray UR, Melez KA, Suzuki H, Toniolo A, Notkins AL. Virus-induced diabetes mellitus. Autoimmunity and polyendocrine disease prevented by immunosuppression. Nature 1982;297:66–68.

    PubMed  CAS  Google Scholar 

  136. Yoon JW, Morishima T, McClintock PR, Austin M, Notkins AL. Virus-induced diabetes mellitus: mengovirus infects pancreatic beta cells in strains of mice resistant to the diabetogenic effect of encephalomyocarditis virus. J Virol 1984;50:684–690.

    PubMed  CAS  Google Scholar 

  137. Rayfield EJ, Kelly KJ, Yoon J.-W. Rubella virus-induced diabetes in the hamster. Diabetes 1986; 35:1278–1281.

    PubMed  CAS  Google Scholar 

  138. Hermitte L, Vialettes B, Naquet P, Atlan C, Payan MJ, Vague P. Paradoxical lessening of autoimmune processes in non-obese diabetic mice after infection with the diabetogenic variant of encephalomyocarditis virus. Eur J Immunol 1990;20:1297–1303.

    PubMed  CAS  Google Scholar 

  139. von Herrath MG, Evans CF, Horwitz MS, Oldstone MB. Using transgenic mouse models to dissect the pathogenesis of virus-induced autoimmune disorders of the islets of Langerhans and the central nervous system. Immunol Rev 1996;152:111–143.

    Google Scholar 

  140. Gaskins HR, Prochazka M, Hamaguchi K, Serreze DV, Leiter EH. Beta cell expression of endogenous xenotropic retrovirus distinguishes diabetes-susceptible NOD/Lt from resistant NON/Lt mice. J Clin Invest 1992;90:2220–2227.

    PubMed  CAS  Google Scholar 

  141. Yoon JW. Induction and prevention of type 1 diabetes mellitus by viruses. Diabetes Metab 1992;18: 378–386.

    CAS  Google Scholar 

  142. Kaufman DJ, Erlander MG, Clare-Salzler M, Atkinson MA, Maclaren NK, Tobin AJ. Autoimmunity to two forms of glutamate decarboxylase in Insulin-dependent diabetes mellitus. J Clin Invest 1992; 89:283–292.

    PubMed  CAS  Google Scholar 

  143. Oldstone MB, Ahmed R, Salvato M. Viruses as therapeutic agents. II. Viral reassortants map prevention of insulin-dependent diabetes mellitus to the small RNA of lymphocytic choriomeningitis virus. J Exp Med 1990;171:2091–2100.

    PubMed  CAS  Google Scholar 

  144. Oldstone MB. Viruses as therapeutic agents. I. Treatment of nonobese insulin-dependent diabetes mice with virus prevents insulin-dependent diabetes mellitus while maintaining general immune competence. J Exp Med 1990;171:2077–2089.

    PubMed  CAS  Google Scholar 

  145. Dyrberg T, Schwimmbeck PL, Oldstone MBA. Inhibition of diabetes in BB rats by virus infection. J Clin Invest 1988;81:928–931.

    PubMed  CAS  Google Scholar 

  146. Wilberz S, Partke HJ, Dagnaes H-F, Herberg L. Persistent MHV (mouse hepatitis virus) infection reduces the incidence of diabetes mellitus in non-obese diabetic mice. Diabetologia 1991;34:2–5.

    PubMed  CAS  Google Scholar 

  147. Takei I, Asaba Y, Kasatani T, Maruyama T, Watanabe K, Yanagawa T, et al. Suppression of development of diabetes in NOD mice by lactate dehydrogenase virus infection. J Autoimmunity 1992;5:665–673.

    CAS  Google Scholar 

  148. Like AA, Guberski DL, Butler L. Influence of environmental viral agents on frequency and tempo of diabetes mellitus in BB/wor rats. Diabetes 1991;40:259–262.

    PubMed  CAS  Google Scholar 

  149. Kawamura T, Nagata M, Utsugi T, Yoon JW. Prevention of autoimmune type I diabetes by CD4+ suppressor T cells in superantigen-treated non-obese diabetic mice. J Immunol 1993;151:4362–4370.

    PubMed  CAS  Google Scholar 

  150. McDuffie M, Ostrowska A. Superantigen-like effects and incidence of diabetes in NOD mice. Diabetes 1993;42:1094–1098.

    PubMed  CAS  Google Scholar 

  151. Radons J, Burkart V, Kolb H. MHC class II-dependent abnormal reactivity toward bacterial superantigens in immune cells of NOD mice. Diabetes 1997;46:379–385.

    PubMed  CAS  Google Scholar 

  152. Elliott RB, Martin JM. Dietary protein: a trigger of insulin dependent diabetes in the BB rat? Diabetologia 1984;26:297–299.

    PubMed  CAS  Google Scholar 

  153. Lefkowith J, Schreiner G, Cormier J, Handler ES, Driscoll HK, Greiner D, et al. Prevention of diabetes in the BB rat by essential fatty acid deficiency. Relationship between physiological and biochemical changes. J Exp Med 1990;171:729–743.

    PubMed  CAS  Google Scholar 

  154. Scott FW, Cloutier HE, Kleemann R, Woerz P-U, Rowsell P, Modler HW, et al. Potential mechanisms by which certain foods promote or inhibit the development of spontaneous diabetes in BB rats: dose, timing, early effect on islet area, and switch in infiltrate from Thl to Th2 cells. Diabetes 1997;46: 589–598.

    PubMed  CAS  Google Scholar 

  155. Li XB, Scott FW, Park YH, Yoon JW. Low incidence of autoimmune type I diabetes in BB rats fed a hydrolysed casein-based diet associated with early inhibition of non-macrophage-dependent hyperexpression of MHC class I molecules on beta cells [see comments]. Diabetologia 1995;38:1138–1147.

    PubMed  CAS  Google Scholar 

  156. Karjalainen J, Martin JM, Knip M, Ilonen J, Robinson BH, Savilathi E, et al. A bovine albumin peptide as a possible trigger of insulin-dependent diabetes mellitus. N Engl J Med 1992;327:302–307.

    PubMed  CAS  Google Scholar 

  157. Paxson JA, Weber JG, Kulczyck, A Jr. Cow’s milk-free diet does not prevent diabetes in NOD mice. Diabetes 1997;46:1711–1717.

    PubMed  CAS  Google Scholar 

  158. Malkani S, Nompleggi D, Hansen JW, Greiner DL, Mordes JP, Rossini AA. Dietary cow’s milkprotein does not alter the frequency of diabetes in the BB rat. Diabetes 1997;46:1133–1140.

    PubMed  CAS  Google Scholar 

  159. Lehman CD, Rodin J, McEwen B, Brinton R. Impact of environmental stress on the expression of insulin-dependent diabetes mellitus. Behav Neurosci 1991;105:241–245.

    PubMed  CAS  Google Scholar 

  160. Saravia-Fernandez F, Durant S, el Hasnaoui A, Dardenne M, Homo-Delarche F. Environmental and experimental procedures leading to variations in the incidence of diabetes in the nonobese diabetic (NOD) mouse. Autoimmunity 1996;24:113–121.

    PubMed  CAS  Google Scholar 

  161. Amrani A, Chaouloff F, Mormede P, Dardenne M, Homo-Delarche F. Glucose, insulin, and open field responses to immobilization in nonobese diabetic (NOD) mice. Physiol Behav 1994;56:241–246.

    PubMed  CAS  Google Scholar 

  162. Durant S, Coulaud J, Amrani A, el-Hasnaoui A, Dardenne M, Homo-Delarche F. Effects of various environmental stress paradigms and adrenalectomy on the expression of autoimmune type 1 diabetes in the non-obese diabetic (NOD) mouse. J Autoimmunity 1993;6:735–751.

    CAS  Google Scholar 

  163. Utsugi T, Yoon JW, Park BJ, Imamura M, Averill N, Kawazu S, et al. Major histocompatibility complex class I-restricted infiltration and destruction of pancreatic islets by NOD mouse-derived betacell cytotoxic CD8+ T-cell clones in vivo. Diabetes 1996;45:1121–1131.

    PubMed  CAS  Google Scholar 

  164. Nagata M, Santamaria P, Kawamura T, Utsugi T, Yoon JW. Evidence for the role of CD8+ cytotoxic T cells in the destruction of pancreatic beta-cells in nonobese diabetic mice. J Immunol 1994;152: 2042–2050.

    PubMed  CAS  Google Scholar 

  165. Wicker LS, Leiter EH, Todd JA, Renjilian RJ, Peterson E, Fischer PA, et al. Beta 2-microglobulindeficient NOD mice do not develop insulitis or diabetes. Diabetes 1994;43:500–504.

    PubMed  CAS  Google Scholar 

  166. Markmann JF, Bassiri H, Desai NM, Odorico JS, Kim JI, Koller BH, et al. Indefinite survival of MHC class I-deficient murine pancreatic islet allografts. Transplantation 1992;54:1085–1089.

    PubMed  CAS  Google Scholar 

  167. Gazda LS, Gilchrist KA, Lafferty KJ. Autoimmune diabetes: caught in the causality trap? Immunol Cell Biol 1995;73:549–551.

    PubMed  CAS  Google Scholar 

  168. Cameron MJ, Arreaza GA, Delovitch TL. Cytokine- and costimulation-mediated therapy of IDDM. Crit Rev Immunol 1997;17:537–544.

    PubMed  CAS  Google Scholar 

  169. Gill BM, Jaramillo A, Ma L, Laupland KB, Delovitch TL. Genetic linkage of thymic T-cell proliferative unresponsiveness to mouse chromosome 11 in NOD mice. A possible role for chemokine genes. Diabetes 1995;44:614–619.

    PubMed  CAS  Google Scholar 

  170. Serreze DV. Autoimmune diabetes results from genetic defects manifest by antigen presenting cells. FASEB J 1993;7:1092–1096.

    PubMed  CAS  Google Scholar 

  171. Serreze DV, Gaskins HR, Leiter EH. Defects in the differentiation and function of antigen presenting cells in NOD/Lt mice. J Immunol 1993;150:2534–2543.

    PubMed  CAS  Google Scholar 

  172. Carrasco M-E, Shimizu J, Kanagawa O, Unanue ER. The class II MHC I-Ag7 molecules from nonobese diabetic mice are poor peptide binders. J Immunol 1996;156:450–458.

    Google Scholar 

  173. Bellgrau D, Stenger D, Richards C, Bao F. The diabetic BB rat. Neither Thl nor Th2? Horm Metab Res 1996:28:299–301.

    PubMed  CAS  Google Scholar 

  174. Savino W, Boitard C, Bach JF, Dardenne M. Studies on the thymus in nonobese diabetic mouse. I. Changes in the microenvironmental compartments. Lab Invest 1991;64:405–417.

    PubMed  CAS  Google Scholar 

  175. Tullin S, Farris P, Petersen JS, Hornum L, Jackerott M, Markholst H. A pronounced thymic B cell deficiency in the spontaneously diabetic BB rat. J Immunol 1997;158:5554–5559.

    PubMed  CAS  Google Scholar 

  176. Gold D, Bellgrau D. Identification of a limited T-cell receptor b chain variable region repertoire associated with diabetes in the BB rat. Proc Natl Acad Sci USA 1991;88:9888–9891.

    PubMed  CAS  Google Scholar 

  177. Simone EA, Yu L, Wegmann DR, Eisenbarth GS. T cell receptor gene polymorphisms associated with anti-insulin, autoimmune T cells in diabetes-prone NOD mice. J Autoimmunity 1997;10:317–321.

    CAS  Google Scholar 

  178. Komagata Y, Masuko K, Tashiro F, Kato T, Ikuta K, Nishioka K, et al. Clonal prevalence of T cells infiltrating into the pancreas of prediabetic non-obese diabetic mice. Int Immunol 1996;8:807–814.

    PubMed  CAS  Google Scholar 

  179. Daniel D, Wegmann DR. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9–23). Proc Natl Acad Sci USA 1996;93:956–960.

    PubMed  CAS  Google Scholar 

  180. Fox CJ, Danska JS. IL-4 expression at the onset of islet inflammation predicts nondestructive insulitis in nonobese diabetic mice. J Immunol 1997;158:2414–2424.

    PubMed  CAS  Google Scholar 

  181. Gerling IC, Atkinson MA, Leiter EH. The thymus as a site for evaluating the potency of candidate beta cell autoantigens in NOD mice. J Autoimmu nity 1994;7:851–858.

    CAS  Google Scholar 

  182. Posselt AM, Barker CF, Friedman AL, Naji A. Prevention of autoimmune diabetes in the BB rat by intrathymic islet transplantation at birth. Science 1992;256:1321–1324.

    PubMed  CAS  Google Scholar 

  183. Herold KC, Montag AG, Buckingham F. Induction of tolerance to autoimmune diabetes with islet antigens. J Exp Med 1992;176:1107–1114.

    PubMed  CAS  Google Scholar 

  184. Cetkovic C-M, Gerling IC, Muir A, Atkinson MA, Elliot JF, Leiter EH. Retardation or acceleration of diabetes in NOD/Lt mice mediated by intrathymic administration of candidate beta-cell antigens. Diabetes 1997;46:1975–1982.

    Google Scholar 

  185. Charlton B, Taylor E-C, Tisch R, Fathman CG. Prevention of diabetes and insulitis by neonatal intrathymic islet administration in NOD mice. J Autoimmunity 1994;7:549–560.

    CAS  Google Scholar 

  186. Egwuagu CE, Charukamnoetkanok P, Gery I. Thymic expression of autoantigens correlates with resistance to autoimmune disease. J Immunol 1997;159:3109–3112.

    PubMed  CAS  Google Scholar 

  187. Akkaraju S, Ho WY, Leong D, Canaan K, Davis MM, Goodnow CC. A range of CD4 T cell tolerance: partial inactivation to organ-specific antigen allows nondestructive thyroiditis or insulitis. Immunity 1997;7:255–271.

    PubMed  CAS  Google Scholar 

  188. Greiner DL, Mordes JP, Handler ES, Angelillo M, Nakamura N, Rossini AA. Depletion of RT6.1+ T lymphocytes induces diabetes in resistant BioBreeding/Worcester (BB/W) rats. J Exp Med 1987; 166:461–475.

    PubMed  CAS  Google Scholar 

  189. Rossini AA, Faustman D, Woda BA, Like AA, Szymanski I, Mordes JP. Lymphocyte transfusions prevent diabetes in the Bio-Breeding/Worcester rat. J Clin Invest 1984;74:39–46.

    PubMed  CAS  Google Scholar 

  190. Lenschow DJ, Herold K. C, Rhee L, Patel B, Koons A, Qin HY, et al. CD28/B7 regulation of Thl and Th2 subsets in the development of autoimmune diabetes. Immunity 1996;5:285–293.

    PubMed  CAS  Google Scholar 

  191. Arreaza GA, Cameron MJ, Jaramillo A, Gill BM, Hardy D, Laupland KB, et al. Neonatal activation of CD28 signaling overcomes T cell anergy and preve:nts autoimmune diabetes by an IL-4-dependent mechanism. J Clin Invest 1997;100:2243–2253.

    PubMed  CAS  Google Scholar 

  192. Guerder S, Picarella DE, Linsley PS, Flavell RA. Costimulator B7–1 confers antigen-presenting-cell function to parenchymal tissue and in conjunction with tumor necrosis factor alpha leads to autoimmunity in transgenic mice. Proc Natl Acad Sci USA 1994;91:5138–5142.

    PubMed  CAS  Google Scholar 

  193. Kolb H, Worz P-U, Kleemann R, Rothe H, Rowsell P, Scott FW. Cytokine gene expression in the BB rat pancreas: natural course and impact of bacterial vaccines. Diabetologia 1996;39:1448–1454.

    PubMed  CAS  Google Scholar 

  194. Faulkner J-BE, Dempsey C-M, Mandel TE, Harrison LC. Both TH 1 and TH2 cytokine mRNAs are expressed in the NOD mouse pancreas in vivo. Autoimmunity 1996;23:99–110.

    Google Scholar 

  195. Sarvetnick N, Shizuru J, Liggitt D, Martin L, McIntyre B, Gregory A, et al. Loss of pancreatic islet tolerance induced by β3-cell expression of interferon-gamma. Nature 1990;346:844–847.

    PubMed  CAS  Google Scholar 

  196. Debray S-M, Carnaud C, Boitard C, Cohen H, Gresser I, Bedossa P, et al. Prevention of diabetes in NOD mice treated with antibody to murine IFN gamma. J Autoimmunity 1991;4:237–248.

    Google Scholar 

  197. Trembleau S, Germann T, Gately MK, Adorini L. The role of IL-12 in the induction of organ-specific autoimmune diseases. Immunol Today 1995;16:383–386.

    PubMed  CAS  Google Scholar 

  198. Rapoport MJ, Jaramillo A, Zipris D, Lazarus AH, Serreze DV, Leiter EH, et al. Interleukin 4 reverses T cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. J Exp Med 1993;178:87–99.

    PubMed  CAS  Google Scholar 

  199. Mueller R, Krahl T, Sarvetnick N. Pancreatic expression of interleukin-4 abrogates insulitis and autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 1996;184:1093–1099.

    PubMed  CAS  Google Scholar 

  200. Hancock WW, Polanski M, Zhang J, Blogg N, Weiner HL. Suppression of insulitis in non-obese diabetic (NOD) mice by oral insulin administration is associated with selective expression of interleukin-4 and -10, transforming growth factor-beta, and prostaglandin-E. Am J Patho11995;147:1193–1199.

    Google Scholar 

  201. Wogensen L, Lee MS, Sarvetnick N. Production of interleukin 10 by islet cells accelerates immunemediated destruction of beta cells in nonobese diabetic mice. J Exp Med 1994;94:1379–1384.

    Google Scholar 

  202. Pakala SV, Kurrer MO, Katz JD. T helper 2 (Th2) T cells induce acute pancreatitis and diabetes in immune-compromised nonobese diabetic (NOD) mice. J Exp Med 1997;186:299–306.

    PubMed  CAS  Google Scholar 

  203. Wegmann DR, Gill RG, Norbury G-M, Schloot N, Daniel D. Analysis of the spontaneous T cell response to insulin in NOD mice. J Autoimmunity 1994;7:833–843.

    CAS  Google Scholar 

  204. Haskins K, Wegmann D. Diabetogenic T-cell clones. Diabetes 1996;45, 1299–1305.

    PubMed  CAS  Google Scholar 

  205. Bergerot I, Arreaza G, Cameron M, Chou H, Delovitch TL. Role of T-cell anergy and suppression in susceptibility to IDDM. Res Immunol 148:348–358.

    Google Scholar 

  206. Bach, JF, Mathis, D. (1997) The NOD mouse. Res Immunol 1997;148:285,286.

    Google Scholar 

  207. Delovitch TL, Singh B. The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 1997;7:727–738.

    PubMed  CAS  Google Scholar 

  208. Pasparakis M, Alexopoulou L, Douni E, Kollias G. Tumour necrosis factors in immune regulation: everything that’s interesting is...new! Cytokine Growth Factor Rev 1996;7:223–229.

    PubMed  CAS  Google Scholar 

  209. Matsumoto M, Mariathasan S, Nahm MH, Baranyay F, Peschon JJ, Chaplin DD. Role of lymphotoxin and the type 1 TNF receptor in the formation of germinal centers. Science 1996;271:1289–1291.

    PubMed  CAS  Google Scholar 

  210. Cope A, Ettinger R, McDevitt H. The role of TNF alpha and related cytokines in the development and function of the autoreactive T-cell repertoire. Res Immunol 1997;148:307–312.

    PubMed  CAS  Google Scholar 

  211. Hou J, Said C, Franchi D, Dockstader P, Chatterjee NK. Antibodies to glutamic acid decarboxylase and P2-C peptides in sera from Coxsackie virus B4-infected mice and IDDM patients. Diabetes 1994; 43:1260–1266.

    PubMed  CAS  Google Scholar 

  212. Orchard TJ. From diagnosis and classification to complications and therapy. DCCT. Part II? Diabetes control and complications trial. Diabetes Care 1994;17:326–338.

    CAS  Google Scholar 

  213. Landgraf-Leurs MM, Drummer C, Froschl H, Steinhuber R, Von Schacky C, Landgraf R. Pilot study on omega-3 fatty acids in type I diabetes mellitus. Diabetes 1990;39:369–75.

    PubMed  CAS  Google Scholar 

  214. Richter W, Mertens T, Schoel B, Muir P, Ritzkowsky A, Scherbaum WA, et al. Sequence homology of the disease-associated autoantigen glutamate decarboxylase with Coxsackie B4–2C protein and heat shock protein 60 mediates no molecular mimicry of autoantibodies. J Exp Med 1994;180:721–726.

    PubMed  CAS  Google Scholar 

  215. Sturgess R, Day P, Ellis HJ, Lundin K. E, Gjertsen HA, Kontakou M, et al. Wheat peptide challenge in coeliac disease. Lancet 1994;343:758–761.

    PubMed  CAS  Google Scholar 

  216. Scott B, Liblau R, Degermann S, Marconi LA, Ogata L, Caton AJ, et al. A role for non-MHC genetic polymorphism in susceptibility to spontaneous autoimmunity. Immunity 1994;1:73–83.

    PubMed  CAS  Google Scholar 

  217. Hoorfar J, Scott FW, Cloutier HE. Dietary plant materials and development of diabetes in the BB rat. J Nutr 1991;121:908–916.

    PubMed  CAS  Google Scholar 

  218. Hutchings P, Tonks P, Cooke A. Effect of MHC transgene expression on spontaneous insulin autoantibody class switch in nonobese diabetic mice. Diabetes 1997;46:779–784.

    PubMed  CAS  Google Scholar 

  219. Hanson MS, Cetkovic C-M, Ramiya VK, Atkinson MA, Maclaren NK, Singh B, et al. Quantitative thresholds of MHC class II I-E expressed on hemopoietically derived antigen-presenting cells in transgenic NOD/lt mice determine level of diabetes resistance and indicate mechanism of protection. J Immunol 1996;157:1279–1287.

    PubMed  CAS  Google Scholar 

  220. Quartey-Papafio R, Lund T, Chandler P, Picard J, Ozegbe P, Day S, et al. Aspartate at position 57 of nonobese diabetic I-Ag7 beta-chain diminishes the spontaneous incidence of insulin-dependent diabetes mellitus. J Immunol 1995;154:5567–5575.

    PubMed  CAS  Google Scholar 

  221. Serjeantson S, Theophilus J, Zimmet P, Court J, Crossley JR, Elliott RB. Lymphocytotoxic antibodies and histocompatibility antigens in juvenile-onset diabetes mellitus. Diabetes 1981;30:26–29.

    PubMed  CAS  Google Scholar 

  222. Serreze DV, Leiter EH, Christianson GJ, Greiner D, Roopenian DC. Major histocompatibility complex class I-deficient NOD-B2mnull mice are diabetes and insulitis resistant. Diabetes 1994;43:505–509.

    PubMed  CAS  Google Scholar 

  223. Chervonsky AV, Wang Y, Wong FS, Visintin I, Flavell RA, Janeway CA Jr, et al. The role of Fas in autoimmune diabetes. Cell 1997; 89:17–24.

    PubMed  CAS  Google Scholar 

  224. Grewal IS, Grewal KD, Wong FS, Picarella DE, Janeway CA Jr, Flavell RA. Local expression of transgene encoded TNF alpha in islets prevents autoimmune diabetes in nonobese diabetic (NOD) mice by preventing the development of auto-reactive islet-specific T cells. J Exp Med 1996;184:1963–1974.

    PubMed  CAS  Google Scholar 

  225. Sarvetnick N. Mechanisms of cytokine-mediated localized immunoprotection. J Exp Med 1996;184: 1597–1600.

    PubMed  CAS  Google Scholar 

  226. Harada M, Makino S. Suppression of overt diabetes in NOD mice by anti-thymocyte serum or antiThy 1,2 antibody. Jikken Dobutsu 1986;35:501–504.

    PubMed  CAS  Google Scholar 

  227. Boitard C, Michie S, Serrurier P, Butcher GW, Larkins AP, McDevitt HO. In vitro prevention of thyroid and pancreatic autoimmunity in the BB rat by antibody to class II major histocompatibility complex gene products. Proc Natl Acad Sci USA 1985;82:6627–6631.

    PubMed  CAS  Google Scholar 

  228. Boitard C, Bendelac A, Richard MF, Carnaud C, Bach JF. Prevention of diabetes in nonobese diabetic mice by anti-I-A monoclonal antibodies: transfer of protection by splenic T cells. Proc Natl Acad Sci US A 198 8; 85 :9719–97 23.

    Google Scholar 

  229. Hahn HJ, Lucke S, Kloting I, Volk HD, Baehr RV, Diamantstein T. Curing BB rats of freshly manifested diabetes by short-term treatment with a combination of a monoclonal anti-interleukin 2 receptor antibody and a subtherapeutic dose of cyclosporin A. Eur J Immunol 1987;17:1075–1078.

    PubMed  CAS  Google Scholar 

  230. Satoh J, Seino H, Shintani S, Tanaka S-I, Ohteki T, Masuda T, et al. Inhibition of type 1 diabetes in BB rats with recombinant human tumor necrosis factor-α. J Immunol 1990;145:1395–1399.

    PubMed  CAS  Google Scholar 

  231. Satoh J, Seino H, Abo T, Tanaka S, Shintani S, Ohta S, et al. Recombinant human tumor necrosis factor alpha suppresses autoimmune diabetes in nonobese diabetic mice. J Clin Invest 1989;84:1345–1348.

    PubMed  CAS  Google Scholar 

  232. Zielasek J, Burkart V, Naylor P, Goldstein A, Kiesel U, Kolb H. Interleukin-2-dependent control of disease development in spontaneously diabetic BB rats. Immunology 1990;69:209–214.

    PubMed  CAS  Google Scholar 

  233. Burstein D, Handler ES, Schindler J, Seals J, Mordes JP, Rossini AA. Effect of interleukin-2 on diabetes in the BB/Wor rat. Diabetes Res 1987;5:163–167.

    PubMed  CAS  Google Scholar 

  234. Like AA, Dirodi V, Thomas S, Guberski DL, Rossini AA. Prevention of diabetes mellitus in the BB/W rat with Cyclosporin-A. Am J Pathol 1984;117:92–97.

    PubMed  CAS  Google Scholar 

  235. Mori Y, Suko M, Okudaira H, Matsuba I, Tsuruoka A, Sasaki A, et al. Preventive effects of cyclosporin on diabetes in NOD mice. Diabetologia 1986;29:244–247.

    PubMed  CAS  Google Scholar 

  236. Qin HY, Sadelain MW, Hitchon C, Lauzon J, Singh B. Complete Freund’s adjuvant-induced T cells prevent the development and adoptive transfer of diabetes in nonobese diabetic mice. J Immunol 1993; 150:2072–2080.

    PubMed  CAS  Google Scholar 

  237. Qin HY, Singh B. BCG vaccination prevents insulin-dependent diabetes mellitus (IDDM) in NOD mice after disease acceleration with cyclophosphamide. J Autoimmunity 1997;10:271–278.

    CAS  Google Scholar 

  238. Lakey JR, Singh B, Warnock GL, Rajotte RV. BCG immunotherapy prevents recurrence of diabetes in islet grafts transplanted into spontaneously diabetic NOD mice. Transplantation 1994;57:1213–1217.

    PubMed  CAS  Google Scholar 

  239. Kuttler B, Rosing K, Hahn HJ. Anti-CD4/CyA therapy causes prevention of autoimmune but not allogeneic destmction of grafted islets in BB rats. Transplant Proc 1997;29:2163–2165.

    PubMed  CAS  Google Scholar 

  240. Uchikoshi F, Ito T, Kamiike W, Moriguchi A, Nozaki S, Ito A, et al. Anti-ICAM-1/LFA-1 monoclonal antibody therapy prevents graft rejection and IDDM recurrence in BB rat pancreas transplantation. Transplant Proc 1995;27:1527–1528.

    PubMed  CAS  Google Scholar 

  241. Slavin S, Weiss L, Xia W, Gross DJ. Successful treatment of diabetes in NOD mice with advanced disease by islet isografts following immunoregulation with Linomide (quinoline-3-carboxamide). Cell Transplant 1996;5:627–630.

    PubMed  CAS  Google Scholar 

  242. Rivereau AS, Darquy S, Chaillous L, Maugendre S, Gouin E, Reach G, et al. Reversal of diabetes in non-obese diabetic mice by xenografts of porcine islets entrapped in hollow fibres composed of polyacrylonitrile-sodium methallylsulphonate copolymer. Diabetes Metab 1997;23:205–212.

    PubMed  CAS  Google Scholar 

  243. Mital D, Guo Z, Chong AS, Fu Z, Tian Y, Foster PF, et al. Successful xenotransplantation of adult porcine islets in NOD and BALB/c mice with leflunomide and cyclosporine. Transplant Proc 1997; 29:2166–2167.

    PubMed  CAS  Google Scholar 

  244. Lipes MA, Davalli AM, Cooper EM. Genetic engineering of insulin expression in nonislet cells: implications for beta-cell replacement therapy for insulin-dependent diabetes mellitus. Acta Diabetol 1997;34:2–5.

    PubMed  CAS  Google Scholar 

  245. Jaworski MA, Honore L, Jewell LD. Cyclosporin prophylaxis induces long-term prevention of diabetes, and inhibits lymphocytic infiltration in multiple target tissues in the high-risk BB rat. Diabetes Res 1986;3:1–6.

    PubMed  CAS  Google Scholar 

  246. Elliott RB, Crossley JR, Berryman CC, James AG. Partial preservation of pancreatic β cell function in children with diabetes. Lancet 1981;ii:119–123.

    Google Scholar 

  247. Feutren G, Papoz L, Assan R, Vialettes B, Karsenty G, Vexiau P, et al. Cyclosporin increases the rate and length of remission in insulin-dependent diabetes of recent onset. Results of a multicenter doubleblind trial. Lancet 1986;ii:119–123.

    Google Scholar 

  248. Bach JF. Cyclosporine in insulin-dependent diabetes mellitus. J Pediatr 1987;111:1073–1074.

    PubMed  CAS  Google Scholar 

  249. Feutren G, Mihatsch MJ. Risk factors for cyclosporine-induced nephropathy in patients with autoimmune diseases. N Engl J Med 1992;326:1654–1660.

    PubMed  CAS  Google Scholar 

  250. Sundkvist G, Hagopian WA, Landin-Olsson M, Lemmark Å, Ohlsson L, Ericsson C. et al. Islet cell antibodies (ICA) but not glutamic acid decarboxylase antibodies (GAD65-Ab) are decreased by plasmapheresis in patients with newly diagnosed insulin-dependent diabetes mellitus (IDDM). J Clin Endocrinol Metab 1994;78:1159–1165.

    PubMed  CAS  Google Scholar 

  251. Skyler JS, Marks JB. Immune intervention in type 1 diabetes mellitus. Diabetes Rev 1993;1:15–42.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bieg, S., Lernmark, Å. (1999). Animal Models for Insulin-Dependent Diabetes Mellitus. In: Volpé, R. (eds) Autoimmune Endocrinopathies. Contemporary Endocrinology, vol 15. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-704-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-704-8_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4572-6

  • Online ISBN: 978-1-59259-704-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics