Skip to main content

Normal Mechanisms for Self-Tolerance

  • Chapter
Autoimmune Endocrinopathies

Part of the book series: Contemporary Endocrinology ((COE,volume 15))

Abstract

The immune system is confronted with a variety of molecules, and it recognizes them as either self or nonself (foreign), taking action against the latter only. The repertoire of receptors on immune cells that recognize at least more than 108 foreign antigens is not destined by the genetic information encoded in the genome. This repertoire is randomly formed by gene rearrangement and so on during the development of immune cells. As a result, an enormously wide repertoire (about 1015 diversity) of receptors is acquired (1,2). This random mechanism of gene rearrangement, however, produces many receptors that react with self-antigens. Self-reactive immune cells are eliminated (negatively selected) during the development of T lymphocytes in the thymus and of B lymphocytes in the bone marrow (3–11). Only immune cells that react with foreign antigen strongly, but with self-antigen very weakly are positively selected and compose the repertoire of peripheral immune cells. This is the reason why immune cells do not react with self and only attack nonself. This selection mechanism of immune cells in thymus or bone marrow is termed “central tolerance.” The mechanism of central immunological tolerance that deletes self-reactive immune cells is not complete, and a part of self-reactive immune cells escape to the periphery. However, such self-reactive immune cells do not function in the periphery of normal subjects. They are positively managed in the periphery by the fail-safe mechanism against autoimmunity (12–15),and are eliminated (16–21),rendered unresponsive (22–25),or suppressed (26–35). This mechanism is termed “peripheral tolerance.” The failure in these mechanisms of immunological self-tolerance may involve the induction of autoimmune disease (12,14,15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tonegawa S. Somatic generation of antibody diversity. Nature 1983;302:575–581.

    PubMed  CAS  Google Scholar 

  2. Davis MM, Bjorkman PJ. T-cell antigen receptor genes and T-cell recognition. Nature 1988;334: 395–402.

    PubMed  CAS  Google Scholar 

  3. Kappler JW, Roehm N, Marrack, P. T cell tolerance by clonal elimination in the thymus. Cell 1987; 49:273–280.

    PubMed  CAS  Google Scholar 

  4. Kisielow P, Bluthmann H, Staerz UD, Steinmetz M, von-Boehmer H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 1988;333:742–746.

    PubMed  CAS  Google Scholar 

  5. MacDonald HR, Schneider R, Lees RK, Howe RC, Acha-Orbea H, Festenstein H, et al. T-cell receptor Vβ use predicts reactivity and tolerance to Mlsa-encoded antigens. Nature 1988;332:40–45.

    PubMed  CAS  Google Scholar 

  6. Sha WC, Nelson CA, Newberry RD, Kranz DM, Russell JH, Loh DY. Positive and negative selection of an antigen receptor on T cells in transgenic mice. Nature 1988;336:73–76.

    PubMed  CAS  Google Scholar 

  7. Murphy KM, Heimberger AB, Loh DY. Induction by antigen of intrathymic apoptosis of CD4+CD8+Tcr 10 thymocytes in vivo. Science 1990;250:1720–1723.

    PubMed  CAS  Google Scholar 

  8. Nemazee DA, Burki K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-Mhc class I antibody genes. Nature 1989;337:562–566.

    PubMed  CAS  Google Scholar 

  9. Erikson J, Radic MZ, Camper SA, Hardy RR, Carmack C, Weigert M. Expression of anti-Dna immunoglobulin transgenes in non-autoimmune mice. Nature 1991;349:331–334.

    PubMed  CAS  Google Scholar 

  10. Goodnow CC. Transgenic mice and analysis of B-cell tolerance. Annu Rev Immunol 1992;10:489–518.

    PubMed  CAS  Google Scholar 

  11. Okamoto M, Murakami M, Shimizu A, Ozaki S, Tsubata T, Kumagai S, et al. A transgenic model of autoimmune hemolytic anemia. J Exp Med 1992;175:71–79.

    PubMed  CAS  Google Scholar 

  12. Iwatani Y, Row VV, Volpe R. What prevents autoimmunity? Lancet 1985;2:839–840.

    PubMed  CAS  Google Scholar 

  13. Iwatani Y, Iitaka M, Row VV, Volpe R. Effect of Hla-DR positive thyrocytes on in vitro thyroid autoantibody production. Clin Invest Med 1988;11:279–285.

    PubMed  CAS  Google Scholar 

  14. Iwatani, Y, Amino, N, Miyai, K. Fail-safe mechanism against autoimmunity. Lancet 1989;1:1141.

    PubMed  CAS  Google Scholar 

  15. Iwatani Y, Amino N, Miyai K. Peripheral self-tolerance and autoimmunity: the protective role of expression of class II major histocompatibility antigens on non-lymphoid cells. Biomed Pharmacother 1989;43:593–605.

    PubMed  CAS  Google Scholar 

  16. Jones LA, Chin LT, Longo DL, Kruisbeek AM. Peripheral clonal elimination of functional T cells. Science 1990;250:1726–1729.

    PubMed  CAS  Google Scholar 

  17. Webb S, Morris C, Sprent J. Extrathymic tolerance of mature T cells: clonal elimination as a consequence of immunity. Cell 1990;63:1249–1256.

    PubMed  CAS  Google Scholar 

  18. Rocha B, von-Boehmer H. Peripheral selection of the T cell repertoire. Science 1991;251:1225–1228.

    PubMed  CAS  Google Scholar 

  19. Moskophidis D, Lechner F, Pircher H, Zinkernagel RM. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 1993;362:758–761.

    PubMed  CAS  Google Scholar 

  20. Huang L, Soldevila G, Leeker M, Flavell R, Crispe IN. The liver eliminates T cells undergoing antigentriggered apoptosis in vivo. Immunity 1994;1:741–749.

    PubMed  CAS  Google Scholar 

  21. Sprent J, Webb SR. Intrathymic and extrathymic clonal deletion of T cells. Curr Opinion Immunol 1995;7:196–205.

    CAS  Google Scholar 

  22. Gaspari AA, Jenkins MK, Katz SI. Class II Mhc-bearing keratinocytes induce antigen-specific unresponsiveness in hapten-specific Thl clones. J Immunol 1988;141:2216–2220.

    PubMed  CAS  Google Scholar 

  23. Markmann J, Lo D, Naji A, Palmiter RD, Brinster RL, Heber-Katz E. Antigen presenting function of class II Mhc expressing pancreatic β cells. Nature 1988;336:476–479.

    PubMed  CAS  Google Scholar 

  24. Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 1989;7:445–480.

    PubMed  CAS  Google Scholar 

  25. Schwartz RH. Models of T cell anergy: is there a common molecular mechanism? J Exp Med 1996; 184:1–8.

    PubMed  CAS  Google Scholar 

  26. Tada T, Taniguchi M, Takemori T. Properties of primed suppressor T cells and their products. Transplant Rev 1975;26:106–129.

    PubMed  CAS  Google Scholar 

  27. Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural selftolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 1985;161: 72–87.

    PubMed  CAS  Google Scholar 

  28. Morimoto C, Letvin NL, Distaso JA, Aldrich WR, Schlossman SF. The isolation and characterization of the human suppressor inducer T cell subset. J Immunol 1985;134:1508–1515.

    PubMed  CAS  Google Scholar 

  29. Taguchi O, Nishizuka Y. Self tolerance and localized autoimmunity. Mouse models of autoimmune disease that suggest tissue-specific suppressor T cells are involved in self tolerance. J Exp Med 1987; 165:146–156.

    PubMed  CAS  Google Scholar 

  30. Sugihara S, Maruo S, Tsujimura T, Tarutani O, Kohno Y, Hamaoka T, et al. Autoimmune thyroiditis induced in mice depleted of particular T cell subsets. Iii. Analysis of regulatory cells suppressing the induction of thyroiditis. Int Immunol 1990;2:343–351.

    PubMed  CAS  Google Scholar 

  31. Chen Y, Inobe J, Weiner HL. Induction of oral tolerance to myelin basic protein in CD8-depleted mice: both CD4+ and CD8+ cells mediate active suppression. J Immunol 1995;155:910–916.

    PubMed  CAS  Google Scholar 

  32. Nakano T, Ishii Y, Ishizaka K. Biochemical characterization of antigen-specific glycosylation-inhibiting factor from antigen-specific suppressor T cells. I. Identification of a 55-kilodalton glycosylationinhibiting factor peptide with Tcr α-chain determinant. J Immunol 1996;156:1728–1734.

    PubMed  CAS  Google Scholar 

  33. Ishizaka K, Nakano T, Ishii Y, Liu YC, Mikayama T, Mori A. Controversial issues and possible answers on the antigen-specific regulation of the IgE antibody response. Adv Exp Med Biol 1996; 409:317–325.

    PubMed  CAS  Google Scholar 

  34. Kong YY, Eto M, Omoto K, Umesue M, Hashimoto A, Nomoto K. Regulatory T cells in maintenance and reversal of peripheral tolerance in vivo. J Immunol 1996;157:5284–5289.

    PubMed  CAS  Google Scholar 

  35. Kumar V, Coulsell E, Ober B, Hubbard G, Sercarz E, Ward ES. Recombinant T cell receptor molecules can prevent and reverse experimental autoimmune encephalomyelitis: dose effects and involvement of both CD4 and CD8 T cells. J Immunol 1997;159:5150–5156.

    PubMed  CAS  Google Scholar 

  36. Galy A, Travis M, Cen D, Chen B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 1995;3:459–473.

    PubMed  CAS  Google Scholar 

  37. von-Boehmer H. The developmental biology of T lymphocytes. Annu Rev Immunol 1988;6:309–326.

    PubMed  CAS  Google Scholar 

  38. Anderson G, Moore NC, Owen JJ, Jenkinson EJ. Cellular interactions in thymocyte development. Annu Rev Immunol 1996;14:73–99.

    PubMed  CAS  Google Scholar 

  39. Havran WL, Boismenu R. Activation and function of γδT cells. Curr Opinion Immuno11994;6:442–446.

    Google Scholar 

  40. Burrows PD, Cooper MD. B cell development and differentiation. Curr Opinion Immunol 1997;9: 239–244.

    CAS  Google Scholar 

  41. Parker DC. T cell-dependent B cell activation. Annu Rev Immunol 1993;11:331–360.

    PubMed  CAS  Google Scholar 

  42. Arpin C, Dechanet J, Van-Kooten C, Merville P, Grouard G, Briere F, et al. Generation of memory B cells and plasma cells in vitro. Science 1995;268:720–722.

    PubMed  CAS  Google Scholar 

  43. Berke G. The binding and lysis of target cells by cytotoxic lymphocytes: molecular and cellular aspects. Annu Rev Immunol 1994;12:735–773.

    PubMed  CAS  Google Scholar 

  44. Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science 1996;272:50–53.

    PubMed  CAS  Google Scholar 

  45. Tschopp J, Nabholz M. Perforin-mediated target cell lysis by cytolytic T lymphocytes. Annu Rev Immunoll 1 990; 8:279–302.

    Google Scholar 

  46. Takayama H, Kojima H, Shinohara N. Cytotoxic T lymphocytes: the newly identified Fas (CD95)mediated killing mechanism and a novel aspect of their biological functions. Adv Immunol 1995; 60:289–321.

    PubMed  CAS  Google Scholar 

  47. Cresswell P. Assembly, transport, and function of Mhc class II molecules. Annu Rev Immunol 1994; 12:259–93.

    PubMed  CAS  Google Scholar 

  48. York IA, Rock KL. Antigen processing and presentation by the class I major histocompatibility complex. Annu Rev Immunol 1996;14:369–396.

    PubMed  CAS  Google Scholar 

  49. Watts C. Capture and processing of exogenous antigens for presentation on Mhc molecules. Annu Rev Immunol 1997;15:821–850. 50. Zinkernagel RM, Doherty PC. The discovery of Mhc restriction. Immunol Today 1997;18:14–17.

    Google Scholar 

  50. Chen X, Shelton J, McCullagh P. Suppression of anti-thyrocyte authoreactivity by the lymphocytes of normal fetal lambs. J Autoimmunity 1995;8539–559.

    Google Scholar 

  51. Parham P. Pictures of Mhc restriction. Nature 1996;384:109,110.

    Google Scholar 

  52. Bodmer JG, Marsh SG, Albert ED, Bodmer WF, Dupont B, Erlich HA, et al. Nomenclature for factors of the Hla system, 1994. Hum Immunol 1994;41:1–20.

    PubMed  CAS  Google Scholar 

  53. Trowsdale J. “Both man & bird & beast”: comparative organization of Mhc genes. Immunogenetics 1995;41:1–17.

    Google Scholar 

  54. Campbell RD, Trowsdale J. Map of the human Mhc. Immunol Today 1993;14:349–352.

    PubMed  CAS  Google Scholar 

  55. Shawar SM, Vyas JM, Rodgers JR, Rich RR. Antigen presentation by major histocompatibility complex class I-B molecules. Annu Rev Immunol 1994;12:839–880.

    PubMed  CAS  Google Scholar 

  56. Stroynowski I, Forman J. Novel molecules related to Mhc antigens. Curr Opinion Immunol 1995;7:97–102.

    CAS  Google Scholar 

  57. Pober JS, Collins T, Gimbrone M, Jr, Cotran RS, Gitlin JD, Fiers W, et al. Lymphocytes recognize human vascular endothelial and dermal fibroblast Ia antigens induced by recombinant immune interferon. Nature 1983;305:726–729.

    PubMed  CAS  Google Scholar 

  58. Iwatani Y, Gerstein HC, Iitaka M, Row VV, Volpe R. Thyrocyte Hla-DR expression and interferonγ production in autoimmune thyroid disease. J Clin Endocrinol Metab 1986;63:695–708.

    PubMed  CAS  Google Scholar 

  59. Hanafusa T, Pujol Borrell R, Chiovato L, Russell RC, Doniach D, Bottazzo GF. Aberrant expression of Hla-DR antigen on thyrocytes in Graves’ disease: relevance for autoimmunity. Lancet 1983;2: 1111–1115.

    PubMed  CAS  Google Scholar 

  60. Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 1996;65:801–847.

    PubMed  CAS  Google Scholar 

  61. Koopmann JO, Hammerling GJ, Momburg F. Generation, intracellular transport and loading of peptides associated with Mhc class I molecules. Curr Opinion Immunol 1997;9:80–88.

    CAS  Google Scholar 

  62. Tanaka K, Tanahashi N, Tsurumi C, Yokota KY, Shimbara N. Proteasomes and antigen processing. Adv Immunol 1997;64:1–38.

    PubMed  CAS  Google Scholar 

  63. Groettrup M, Soza A, Eggers M, Kuehn L, Dick TP, Schild H, et al. A role for the proteasome regulator PA28a in antigen presentation. Nature 1996;381:166–168.

    PubMed  CAS  Google Scholar 

  64. Hisamatsu H, Shimbara N, Saito Y, Kristensen P, Hendil KB, Fujiwara T, et al. Newly identified pair of proteasomal subunits regulated reciprocally by interferon y. J Exp Med 1996;183:1807–1816.

    PubMed  CAS  Google Scholar 

  65. Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, et al. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 1997;386:463–471.

    PubMed  CAS  Google Scholar 

  66. Grandea AG 3rd, Androlewicz MJ, Athwal RS, Geraghty DE, Spies T. Dependence of peptide binding by Mhc class I molecules on their interaction with Tap. Science 1995;270:105–108.

    PubMed  CAS  Google Scholar 

  67. Androlewicz MJ, Cresswell P. How selective is the transporter associated with antigen processing? Immunity 1996;5:1–5 issn: 1074–7613.

    Google Scholar 

  68. Germain RN. Mhc-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 1994;76:287–299.

    PubMed  CAS  Google Scholar 

  69. Rammensee HG, Friede T, Stevanoviic S. Mhc ligands and peptide motifs: first listing. Immunogenetics 1995;41:178–228.

    PubMed  CAS  Google Scholar 

  70. Smith KJ, Reid SW, Harlos K, McMichael AJ, Stuart DI, Bell JI, et al. Bound water structure and polymorphic amino acids act together to allow the binding of different peptides to Mhc class I Hlab53. Immunity 1996;4:215–228.

    PubMed  CAS  Google Scholar 

  71. Jones EY. Mhc class I and class II structures. Curr Opinion Immunol 1997;9:75–79.

    CAS  Google Scholar 

  72. Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC. Structure of the complex between human T-cell receptor, viral peptide and Hla-A2. Nature 1996;384:134–141.

    PubMed  CAS  Google Scholar 

  73. Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR, Peterson PA, et al. An alphabeta T cell receptor structure at 2.5 A and its orientation in the Tcrmhc complex. Science 1996;274:209–219.

    PubMed  CAS  Google Scholar 

  74. Rammensee HG. Chemistry of peptides associated with Mhc class I and class II molecules. Curr Opinion Immunol 1995;7:85–96.

    CAS  Google Scholar 

  75. Pieters J. Mhc class II restricted antigen presentation. Curr Opinion Immunol 1997;9:89–96.

    CAS  Google Scholar 

  76. Sanderson F, Kleijmeer MJ, Kelly A, Verwoerd D, Tulp A, Neefjes JJ, et al. Accumulation of Hladm, a regulator of antigen presentation, in Mhc class II compartments. Science 1994;266:1566–1569.

    PubMed  CAS  Google Scholar 

  77. Weber DA, Evavold BD, Jensen PE. Enhanced dissociation of Hla-DR-bound peptides in the presence of Hla-DM. Science 1996;274:618–620.

    PubMed  CAS  Google Scholar 

  78. Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, et al. Crystal structure of the human class II Mhc protein Hla-DR1 complexed with an influenza virus peptide. Nature 1994; 368:215–221.

    PubMed  CAS  Google Scholar 

  79. Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Strominger JL, et al. Crystallographic analysis of endogenous peptides associated with Hla-DR1 suggests a common, polyproline II-like conformation for bound peptides. Proc Natl Acad Sci Usa 1996;93:734–738.

    PubMed  CAS  Google Scholar 

  80. Kurts C, Heath WR, Carbone FR, Allison J, Miller JF, Kosaka H. Constitutive class I-restricted exogenous presentation of self antigens in vivo. J Exp Med 1996;184:923–930.

    PubMed  CAS  Google Scholar 

  81. Schirmbeck R, Bohm W, Melber K, Reimann J. Processing of exogenous heat-aggregated (denatured) and particulate (native) hepatitis B surface antigen for class I-restricted epitope presentation. J Immunol 1995;155:4676–4684.

    PubMed  CAS  Google Scholar 

  82. Reis-e-Sousa C, Germain RN. Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis. J Exp Med 1995;182:841–851.

    PubMed  CAS  Google Scholar 

  83. Pfeifer JD, Wick MJ, Roberts RL, Findlay K, Normark SJ, Harding CV. Phagocytic processing of bacterial antigens for class I Mhc presentation to T cells. Nature 1993;361:359–362.

    PubMed  CAS  Google Scholar 

  84. Rudensky AY, Maric M, Eastman S, Shoemaker L, DeRoos PC, Blum JS. Intracellular assembly and transport of endogenous peptide-Mhc class II complexes. Immunity 1994;1:585–594.

    PubMed  CAS  Google Scholar 

  85. Bretscher P, Cohn M. A theory of self-nonself discrimination. Science 1970;169:1042–1049.

    PubMed  CAS  Google Scholar 

  86. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996;14:233–258.

    PubMed  CAS  Google Scholar 

  87. Chambers CA, Allison JP. Co-stimulation in T cell responses. Curr Opinion Immunol 1997;9:396–404.

    CAS  Google Scholar 

  88. June CH, Ledbetter JA, Linsley PS, Thompson CB. Role of the CD28 receptor in T-cell activation. Immunol Today 1990;11:211–216.

    PubMed  CAS  Google Scholar 

  89. Yokochi T, Holly RD, Clark EA. B lymphoblast antigen (BB-1) expressed on Epstein-Barr virusactivated B cell blasts, B lymphoblastoid cell lines, and Burkitt’s lymphomas. J Immunol 1982; 128:823–827.

    PubMed  CAS  Google Scholar 

  90. Freeman GJ, Gray GS, Gimmi CD, Lombard DB, Zhou LJ, White M, et al. Structure, expression, and T cell costimulatory activity of the murine homologue of the human B lymphocyte activation antigen B7. J Exp Med 1991;174:625–631.

    PubMed  CAS  Google Scholar 

  91. Azuma M, Ito D, Yagita H, Okumura K, Phillips JH, Lanier LL, et al. B70 antigen is a second ligand for Ctla-4 and CD28. Nature 1993;366:76–79.

    PubMed  CAS  Google Scholar 

  92. Boise LH, Minn AJ, Noel PJ, June CH, Accavitti MA, Lindsten T, et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 1995;3:87–98.

    PubMed  CAS  Google Scholar 

  93. June CH, Bluestone JA, Nadler LM, Thompson CB. The B7 and CD28 receptor families. Immunol Today 1994;15:321–331.

    PubMed  CAS  Google Scholar 

  94. Hathcock KS, Laszlo G, Pucillo C, Linsley P, Hodes RJ. Comparative analysis of B7–1 and B7–2 costimulatory ligands: expression and function. J Exp Med 1994;180:631–640.

    PubMed  CAS  Google Scholar 

  95. Inaba K, Witmer-Pack M, Inaba M, Hathcock KS, Sakuta H, Azuma M, et al. The tissue distribution of the B7–2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro. J Exp Med 1994;180:1849–1860.

    PubMed  CAS  Google Scholar 

  96. Lenschow DJ, Sperling AI, Cooke MP, Freeman G, Rhee L, Decker DC, et al. Differential up-regulation of the B7–1 and B7–2 costimulatory molecules after Ig receptor engagement by antigen. J Immunol 1994;153:1990–1997.

    PubMed  CAS  Google Scholar 

  97. Griggs ND, Agersborg SS, Noelle RJ, Ledbetter JA, Linsley PS, Tung KS. The relative contribution of the CD28 and gp39 costimulatory pathways in the clonal expansion and pathogenic acquisition of self-reactive T cells. J Exp Med 1996;183:801–810.

    PubMed  CAS  Google Scholar 

  98. Foy TM, Aruffo A, Bajorath J, Buhlmann JE, Noelle RJ. Immune regulation by CD40 and its ligand GP39. Annu Rev Immunol 1996;14:591–617.

    PubMed  CAS  Google Scholar 

  99. Yang Y, Wilson JM. CD40 ligand-dependent T cell activation: requirement of B7–CD28 signaling through CD40. Science 1996;273:1862–1864.

    PubMed  CAS  Google Scholar 

  100. Grewal IS, Foellmer HG, Grewal KD, Xu J, Hardardottir F, Baron JL, et al. Requirement for CD40 ligand in costimulation induction, T cell activation, and experimental allergic encephalomyelitis. Science 1996;273:1864–1867.

    PubMed  CAS  Google Scholar 

  101. Stout RD, Suttles J. The many roles of CD40 in cell-mediated inflammatory responses. Immunol Today 1996;17:487–492.

    PubMed  CAS  Google Scholar 

  102. de-Boer M, Kasran A, Kwekkeboom J, Walter H, Vandenberghe P, Ceuppens JL. Ligation of B7 with CD28/Ctla-4 on T cells results in CD401igand expression, interleukin-4 secretion and efficient help for antibody production by B cells. Eur J Immunol 1993;23:3120–3125.

    PubMed  CAS  Google Scholar 

  103. Klaus SJ, Pinchuk LM, Ochs HD, Law CL, Fanslow WC, Armitage RJ, et al. Costimulation through CD28 enhances T cell-dependent B cell activation via CD40–CD40L interaction. J Immunol 1994;152:5643–5652.

    PubMed  CAS  Google Scholar 

  104. van-Kooten C, Banchereau J. Functions of CD40 on B cells, dendritic cells and other cells. Curr Opinion Immunol 1997;9:330–337.

    CAS  Google Scholar 

  105. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, et al. Ctla-4 can function as a negative regulator of T cell activation. Immunity 1994;1:405–413.

    PubMed  CAS  Google Scholar 

  106. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of Ctla-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of Ctla-4. Immunity 1995;3:541–547.

    PubMed  CAS  Google Scholar 

  107. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 1995;270:985–988.

    PubMed  CAS  Google Scholar 

  108. Walunas TL, Bakker CY, Bluestone JA. Ctla-4 ligation blocks CD28-dependent T cell activation. J Exp Med 1996;183:2541–2550.

    PubMed  CAS  Google Scholar 

  109. Krummel MF, Allison JP. Ctla-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 1996;183:2533–2540.

    PubMed  CAS  Google Scholar 

  110. Linsley PS, Greene JL, Tan P, Bradshaw J, Ledbetter JA, Anasetti C, et al. Coexpression and functional cooperation of Ctla-4 and CD28 on activated T lymphocytes. J Exp Med 1992;176:1595–1604.

    PubMed  CAS  Google Scholar 

  111. Krummel MF, Allison JP. CD28 and Ctla-4 have opposing effects on the response of T cells to stimulation [see comments]. J Exp Med 1995;182:459–465.

    PubMed  CAS  Google Scholar 

  112. van-der-Merwe PA, Bodian DL, Daenke S, Linsley P, Davis SJ. CD80 (B7–1) binds both CD28 and Ctla-4 with a low affinity and very fast kinetics. J Exp Med 1997;185:393–403.

    PubMed  CAS  Google Scholar 

  113. Greene JL, Leytze GM, Emswiler J, Peach R, Bajorath J, Cosand W, et al. Covalent dimerization of CD28/Ctla-4 and oligomerization of CD80/CD86 regulate T cell costimulatory interactions. J Biol Chem 1996;271:26,762–26,771.

    Google Scholar 

  114. Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. Human B7–1 (CD80) and B7–2 (CD86) bind with similar avidities but distinct kinetics to CD28 and Ctla-4 receptors [published erratum appears in Immunity 1995;Feb;2(2):following 203]. Immunity 1994;1:793–801.

    PubMed  CAS  Google Scholar 

  115. Mond JJ, Lees A, Snapper CM. T cell-independent antigens type 2. Annu Rev Immunol 1995;13: 655–692.

    PubMed  CAS  Google Scholar 

  116. Harriman W, Volk H, Defranoux N, Wabl M. Immunoglobulin class switch recombination. Annu Rev Immunol 1993;11:361–384.

    PubMed  CAS  Google Scholar 

  117. Wagner SD, Neuberger MS. Somatic hypermutation of immunoglobulin genes. Annu Rev Immunol 1996;14:441–457.

    PubMed  CAS  Google Scholar 

  118. Banchereau J, Bazan F, Blanchard D, Briere F, Galizzi JP, van-Kooten C, et al. The CD40 antigen and its ligand. Annu Rev Immunol 1994;12:881–922.

    PubMed  CAS  Google Scholar 

  119. Malisan F, Briere F, Bridon JM, Harindranath N, Mills FC, Max EE, et al. Interleukin-10 induces immunoglobulin G isotype switch recombination in human CD40-activated naive B lymphocytes. J Exp Med 1996;183:937–947.

    PubMed  CAS  Google Scholar 

  120. Shortman K, Wu L. Early T lymphocyte progenitors. Annu Rev Immunol 1996;14:29–47.

    PubMed  CAS  Google Scholar 

  121. Levelt CN, Eichmann K. Receptors and signals in early thymic selection. Immunity 1995;3:667–672.

    PubMed  CAS  Google Scholar 

  122. Fehling HJ, Krotkova A, Saint-Ruf C, von-Boehmer H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδ T cells. Nature 1995;375:795–798.

    PubMed  CAS  Google Scholar 

  123. Penit C, Lucas B, Vasseur F. Cell expansion and growth arrest phases during the transition from precursor (CD4-8-) to immature (CD4+8+) thymocytes in normal and genetically modified mice. J Immunol 1995;154:5103–5113.

    PubMed  CAS  Google Scholar 

  124. von-Boehmer H. Positive selection of lymphocytes. Cell 1994;76:219–228.

    PubMed  CAS  Google Scholar 

  125. Nossal GJ. Negative selection of lymphocytes. Cell 1994;76:229–239.

    PubMed  CAS  Google Scholar 

  126. Bevan MJ. In a radiation chimaera, host H-2 antigens determine immune responsiveness of donor cytotoxic cells. Nature 1977;269:417–418.

    PubMed  CAS  Google Scholar 

  127. Zinkernagel RM, Callahan GN, Althage A, Cooper S, Klein PA, Klein J. On the thymus in the differentiation of “H-2 self-recognition“ by T cells: evidence for dual recognition? J Exp Med 1978;147:882–896.

    PubMed  CAS  Google Scholar 

  128. Kisielow P, Teh HS, Bluthmann H, von-Boehmer H. Positive selection of antigen-specific T cells in thymus by restricting Mhc molecules. Nature 1988;335:730–733.

    PubMed  CAS  Google Scholar 

  129. Sha WC, Nelson CA, Newberry RD, Kranz DM, Russell JH, Loh DY. Selective expression of an antigen receptor on CD8-bearing T lymphocytes in transgenic mice. Nature 1988;335:271–274.

    PubMed  CAS  Google Scholar 

  130. Teh HS, Kisielow P, Scott B, Kishi H, Uematsu Y, Bluthmann H, et al. Thymic major histocompatibility complex antigens and the alpha beta T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature 1988;335:229–233.

    PubMed  CAS  Google Scholar 

  131. Benoist C, Mathis D. Positive selection of the T cell repertoire: where and when does it occur? Cell 1989;58:1027–1033.

    PubMed  CAS  Google Scholar 

  132. Berg LJ, Pullen AM, Fazekas de St Groth B, Mathis D, Benoist C, Davis MM. Antigen/Mhc-specific T cells are preferentially exported from the thymus in the presence of their Mhc ligand. Cell 1989;58: 1035–1046.

    PubMed  CAS  Google Scholar 

  133. Marrack P, Lo D, Brinster R, Palmiter R, Burkly L, Flavell RH, et al. The effect of thymus environment on T cell development and tolerance. Cell 1988;53:627–634.

    PubMed  CAS  Google Scholar 

  134. Laufer TM, DeKoning J, Markowitz JS, Lo D, Glimcher LH. Unopposed positive selection and autoreactivity in mice expressing class II Mhc only on thymic cortex. Nature 1996;383:81–85.

    PubMed  CAS  Google Scholar 

  135. Janeway C, Jr. Thymic selection: two pathways to life and two to death. Immunity 1994;1:3–6.

    PubMed  CAS  Google Scholar 

  136. Ashton-Rickardt PG, Bandeira A, Delaney JR, Van-Kaer L, Pircher HP, Zinkernagel RM, et al. Evidence for a differential avidity model of T cell selection in the thymus. Cell 1994;76:651–663.

    PubMed  CAS  Google Scholar 

  137. Kawai K, Ohashi PS. Immunological function of a defined T-cell population tolerized to low-affinity self antigens. Nature 1995;374:68–69.

    PubMed  CAS  Google Scholar 

  138. Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR. T cell receptor antagonist peptides induce positive selection. Cell 1994;76:17–27.

    PubMed  CAS  Google Scholar 

  139. Fukui Y, Ishimoto T, Utsuyama M, Gyotoku T, Koga T, Nakao K, et al. Positive and negative CD4+ thymocyte selection by a single Mhc class II/peptide ligand affected by its expression level in the thymus. Immunity 1997;6:401–410.

    PubMed  CAS  Google Scholar 

  140. Davis CB, Littman DR. Thymocyte lineage commitment: is it instructed or stochastic? Curr Opinion Immunol 1994;6:266–272.

    CAS  Google Scholar 

  141. Punt JA, Osborne BA, Takahama Y, Sharrow SO, Singer A. Negative selection of CD4+CD8+ thymocytes by T cell receptor-induced apoptosis requires a costimulatory signal that can be provided by CD28. J Exp Med 1994;179:709–713.

    PubMed  CAS  Google Scholar 

  142. Foy TM, Page DM, Waldschmidt TJ, Schoneveld A, Laman JD, Masters SR, et al. An essential role for gp39, the ligand for CD40, in thymic selection. J Exp Med 1995;182:1377–1388.

    PubMed  CAS  Google Scholar 

  143. Carlow DA, van-Oers NS, Teh SJ, Teh HS. Deletion of antigen-specific immature thymocytes by dendritic cells requires Lfa-1/Icam interactions. J Immunol 1992;148:1595–1603.

    PubMed  CAS  Google Scholar 

  144. Akkaraju S, Ho WY, Leong D, Canaan K, Davis MM, Goodnow CC. A range of CD4 T cell tolerance: partial inactivation to organ-specific antigen allows nondestructive thyroiditis or insulitis. Immunity 1997;7:255–271.

    PubMed  CAS  Google Scholar 

  145. Ohashi PS, Oehen S, Buerki K, Pircher H, Ohashi CT, Odermatt B, et al. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 1991;65:305–317.

    PubMed  CAS  Google Scholar 

  146. Miller JF, Heath WR. Self-ignorance in the peripheral T-cell pool. Immunol Rev 1993;133:131–150.

    PubMed  CAS  Google Scholar 

  147. Renno T, Hahne M, MacDonald HR. Proliferation is a prerequisite for bacterial superantigen-induced T cell apoptosis in vivo. J Exp Med 1995;181:2283–2287.

    PubMed  CAS  Google Scholar 

  148. Forster I, Hirose R, Arbeit JM, Clausen BE, Hanahan D. Limited capacity for tolerization of CD4+ T cells specific for a pancreatic β cell neo-antigen. Immunity 1995;2:573–585.

    PubMed  CAS  Google Scholar 

  149. Lynch DH, Watson ML, Alderson MR, Baum PR, Miller RE, Tough T, et al. The mouse Fas-ligand gene is mutated in gld mice and is part of a Tnf family gene cluster. Immunity 1994;1:131–136.

    PubMed  CAS  Google Scholar 

  150. Lynch DH, Ramsdell F, Alderson MR. Fas and FasL in the homeostatic regulation of immune responses. Immunol Today 1995;16:569–574.

    PubMed  CAS  Google Scholar 

  151. Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 1995;377:348–351.

    PubMed  CAS  Google Scholar 

  152. Dillon SR, MacKay VL, Fink PJ. A functionally compromised intermediate in extrathymic CD8+ T cell deletion. Immunity 1995;3:321–333.

    PubMed  CAS  Google Scholar 

  153. Perez VL, Van-Parijs L, Biuckians A, Zheng XX, Strom TB, Abbas AK. Induction of peripheral T cell tolerance in vivo requires Ctla-4 engagement. Immunity 1997;6:411–417.

    PubMed  CAS  Google Scholar 

  154. Schonrich G, Kalinke U, Momburg F, Malissen M, Schmitt-Verhulst AM, Malissen B, et al. Downregulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell 1991:65:293–304.

    PubMed  CAS  Google Scholar 

  155. Nakano T, Liu YC, Mikayama T, Watarai H, Taniguchi M, Ishizaka K. Association of the “major histocompatibility complex subregion” I-J determinant with bioactive glycosylation-inhibiting factor. Proc Natl Acad Sci Usa 1995;92:9196–9200.

    PubMed  CAS  Google Scholar 

  156. Ishii Y, Nakano T, Ishizaka K. Biochemical characterization of antigen-specific glycosylation-inhibiting factor from antigen-specific suppressor T cells. II. The 55-kDa glycosylation-inhibiting factor peptide is a derivative of Tcr a-chain and a subunit of antigen-specific glycosylation-inhibiting factor. J Immunol 1996;156:1735–1742.

    PubMed  CAS  Google Scholar 

  157. Ishii Y, Nakano T, Ishizaka K. Cellular mechanisms for the formation of a soluble form derivative of T-cell receptor a chain by suppressor T cells. Proc Natl Acad Sci Usa 1996;93:7207–7212.

    PubMed  CAS  Google Scholar 

  158. Nakano T, Watarai H, Liu YC, Oyama Y, Mikayama T, Ishizaka K. Conversion of inactive glycosylation inhibiting factor to bioactive derivatives by modification of a SH group. Proc Natl Acad Sci Usa 1997;94:202–207.

    PubMed  CAS  Google Scholar 

  159. Taguchi O, Takahashi T, Nishizuka Y. Self-tolerance and localized autoimmunity. Curr Opinion Immunol 1989;2:576–581.

    CAS  Google Scholar 

  160. Salgame P, Convit J, Bloom BR. Immunological suppression by human CD8+ T cells is receptor dependent and Hla-DQ restricted. Proc Natl Acad Sci Usa 1991;88:2598–2602.

    PubMed  CAS  Google Scholar 

  161. Nabozny GH, Cobbold SP, Waldmann H, Kong YC. Suppression in murine experimental autoimmune thyroiditis: in vivo inhibition of CD4+ T cell-mediated resistance by a nondepleting rat CD4 monoclonal antibody. Cell Immunol 1991;138:185–196.

    PubMed  CAS  Google Scholar 

  162. Bloom BR, Salgame P, Diamond B. Revisiting and revising suppressor T cells. Immunol Today 1992;13:131–136.

    PubMed  CAS  Google Scholar 

  163. Dorf ME, Kuchroo VK, Collins M. Suppressor T cells: some answers but more questions. Immunol Today 1992;13:241–243.

    PubMed  CAS  Google Scholar 

  164. Koide J, Engleman EG. Differences in surface phenotype and mechanism of action between alloantigen-specific CD8+ cytotoxic and suppressor T cell clones. J Immunol 1990;144:32–40.

    PubMed  CAS  Google Scholar 

  165. Oliveira DB, Mitchison NA. Immune suppression genes. Clin Exp Immunol 1989;75:167–177.

    PubMed  CAS  Google Scholar 

  166. Mayer L, Shlien R. Evidence for function of Ia molecules on gut epithelial cells in man. J Exp Med 1987;166:1471–1483.

    PubMed  CAS  Google Scholar 

  167. Taguchi O, Kontani K, Ikeda H, Kezuka T, Takeuchi M, Takahashi T, et al. Tissue-specific suppressor T cells involved in self-tolerance are activated extrathymically by self-antigens. Immunology 1994;82:365–369.

    PubMed  CAS  Google Scholar 

  168. Taguchi O, Takahashi T. Mouse models of autoimmune disease suggest that self-tolerance is maintained by unresponsive autoreactive T cells. Immunology 1996;89:13–19.

    PubMed  CAS  Google Scholar 

  169. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986;136:2348–2357.

    PubMed  CAS  Google Scholar 

  170. Mosmann TR, Sad S. The expanding universe of T-cell subsets: Thl, Th2 and more. Immunol Today 1996;17:138–146.

    PubMed  CAS  Google Scholar 

  171. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 1996;383: 787–793.

    PubMed  CAS  Google Scholar 

  172. Yoshimoto T, Paul WE. CD4+, NK1.1+ T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J Exp Med 1994;179:1285–1295.

    PubMed  CAS  Google Scholar 

  173. Yoshimoto T, Bendelac A, Watson C, Hu-Li J, Paul WE. Role of NK1.1+ T cells in a TH2 response and in immunoglobulin E production. Science 1995;270:1845–1847.

    CAS  Google Scholar 

  174. Sabin EA, Kopf MA, Pearce EJ. Schistosoma mansoni egg-induced early IL-4 production is dependent upon IL-5 and eosinophils. J Exp Med 1996;184:1871–1878.

    PubMed  CAS  Google Scholar 

  175. Brown DR, Fowell DJ, Corry DB, Wynn TA, Moskowitz NH, Cheever AW, et al. β2-microglobulindependent NK1.1+ T cells are not essential for T helper cell 2 immune responses. J Exp Med 1996; 184:1295–1304.

    PubMed  CAS  Google Scholar 

  176. Szabo SJ, Dighe AS, Gubler U, Murphy KM. Regulation of the interleukin (IL)-12R β2 subunit expression in developing T helper 1 (Thl) and Th2 cells. J Exp Med 1997;185:817–824.

    PubMed  CAS  Google Scholar 

  177. Katz JD, Benoist C, Mathis D. T helper cell subsets in insulin-dependent diabetes. Science 1995; 268:1185–1188.

    PubMed  CAS  Google Scholar 

  178. Sad S, Marcotte R, Mosmann TR. Cytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting Thl or Th2 cytokines. Immunity 1995;2:271–279.

    PubMed  CAS  Google Scholar 

  179. Li L, Sad S, Kagi D, Mosmann TR. CD8Tc1 and Tc2 cells secrete distinct cytokine patterns in vitro and in vivo but induce similar inflammatory reactions. J Immunol 1997;158:4152–4161.

    PubMed  CAS  Google Scholar 

  180. Rajewsky K. Clonal selection and learning in the antibody system. Nature 1996;381:751–758.

    PubMed  CAS  Google Scholar 

  181. Papavasiliou F, Jankovic M, Gong S, Nussenzweig MC. Control of immunoglobulin gene rearrangements in developing B cells. Curr Opinion Immunol 1997;9:233–238.

    CAS  Google Scholar 

  182. Osmond DG, Rico-Vargas S, Valenzona H, Fauteux L, Liu L, Janani R, et al. Apoptosis and macrophage-mediated cell deletion in the regulation of B lymphopoiesis in mouse bone marrow. Immunol Rev 1994;142:209–230.

    PubMed  CAS  Google Scholar 

  183. Melchers F, Rolink A, Grawunder U, Winkler TH, Karasuyama H, Ghia P, et al. Positive and negative selection events during B lymphopoiesis. Curr Opinion Immunol 1995;7:214–227.

    CAS  Google Scholar 

  184. Cornall RJ, Goodnow CC, Cyster JG. The regulation of self-reactive B cells. Curr Opinion Immunol 1995;7:804–811.

    CAS  Google Scholar 

  185. Nemazee D, Buerki K. Clonal deletion of autoreactive B lymphocytes in bone marrow chimeras. Proc Natl Acad Sci Usa 1989;86:8039–8043.

    PubMed  CAS  Google Scholar 

  186. Hartley SB, Cooke MP, Fulcher DA, Harris AW, Cory S, Basten A, et al. Elimination of self-reactive B lymphocytes proceeds in two stages: arrested development and cell death. Cell 1993;72:325–335.

    PubMed  CAS  Google Scholar 

  187. Nossal GJ, Pike BL. Clonal anergy: persistence in tolerant mice of antigen-binding B lymphocytes incapable of responding to antigen or mitogen. Proc Natl Acad Sci Usa 1980;77:1602–1606.

    PubMed  CAS  Google Scholar 

  188. Goodnow CC, Crosbie J, Adelstein S, Lavoie TB, Smith-Gill SJ, Brink RA, et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 1988;334:676–682.

    PubMed  CAS  Google Scholar 

  189. Gay D, Saunders T, Camper S, Weigert M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J Exp Med 1993;177:999–1008.

    PubMed  CAS  Google Scholar 

  190. Tiegs SL, Russell DM, Nemazee D. Receptor editing in self-reactive bone marrow B cells. J Exp Med 1993;177:1009–1020.

    PubMed  CAS  Google Scholar 

  191. Radic MZ, Zouali M. Receptor editing, immune diversification, and self-tolerance. Immunity 1996; 5:505–511.

    PubMed  CAS  Google Scholar 

  192. Garrone P, Neidhardt EM, Garcia E, Galibert L, van-Kooten C, Banchereau J. Fas ligation induces apoptosis of CD40-activated human B lymphocytes. J Exp Med 1995;182:1265–1273.

    PubMed  CAS  Google Scholar 

  193. Schattner EJ, Elkon KB, Yoo DH, Tumang J, Krammer PH, Crow MK, et al. CD40 ligation induces Apo-1/Fas expression on human B lymphocytes and facilitates apoptosis through the Apo-1/Fas pathway. J Exp Med 1995;182:1557–1565.

    PubMed  CAS  Google Scholar 

  194. Rathmell JC, Townsend SE, Xu JC, Flavell RA, Goodnow CC. Expansion or elimination of B cells in vivo: dual roles for CD40- and Fas (CD95)-ligands modulated by the B cell antigen receptor. Cell 1996;87:319–329.

    PubMed  CAS  Google Scholar 

  195. Tsubata T, Murakami M, Honjo T. Antigen-receptor cross-linking induces peritoneal B-cell apoptosis in normal but not autoimmunity-prone mice. Curr Biol 1994;4:8–17.

    PubMed  CAS  Google Scholar 

  196. Parry SL, Hasbold J, Holman M, Klaus GG. Hypercross-linking surface IgM or IgD receptors on mature B cells induces apoptosis that is reversed by costimulation with IL-4 and anti-CD40. J Immunol 1994;152:2821–2829.

    PubMed  CAS  Google Scholar 

  197. Parry SL, Holman MJ, Hasbold J, Klaus GG. Plastic-immobilized anti-µ or anti-δ antibodies induce apoptosis in mature murine B lymphocytes. Eur J Immunol 1994;24:974–979.

    PubMed  CAS  Google Scholar 

  198. Rathmell JC, Cooke MP, Ho WY, Grein J, Townsend SE, Davis MM, et al. CD95 (Fas)-dependent elimination of self-reactive B cells upon interaction with CD4+ T cells. Nature 1995;376:181–184.

    PubMed  CAS  Google Scholar 

  199. Kawabe T, Naka T, Yoshida K, Tanaka T, Fujiwara H, Suematsu S, et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1994;1:167–178.

    PubMed  CAS  Google Scholar 

  200. Renshaw BR, Fanslow WC 3rd, Armitage RJ, Campbell KA, Liggitt D, Wright B, et al. Humoral immune responses in CD40 ligand-deficient mice. J Exp Med 1994;180:1889–1900.

    PubMed  CAS  Google Scholar 

  201. Facchetti F, Appiani C, Salvi L, Levy J, Notarangelo LD. Immunohistologic analysis of ineffective CD40–CD401igand interaction in lymphoid tissues from patients with X-linked immunodeficiency with hyper-IgM. Abortive germinal center cell reaction and severe depletion of follicular dendritic cells. J Immunol 1995;154:6624–6633.

    PubMed  CAS  Google Scholar 

  202. Chu YW, Marin E, Fuleihan R, Ramesh N, Rosen FS, Geha RS, et al. Somatic mutation of human immunoglobulin V genes in the X-linked HyperIgM syndrome. J Clin Invest 1995;95:1389–1393.

    PubMed  CAS  Google Scholar 

  203. van-Essen D, Kikutani H, Gray D. CD401igand-transduced co-stimulation of T cells in the development of helper function. Nature 1995;378:620–623.

    PubMed  CAS  Google Scholar 

  204. Razanajaona D, van-Kooten C, Lebecque S, Bridon JM, Ho S, Smith S, et al. Somatic mutations in human Ig variable genes correlate with a partially functional CD40-ligand in the X-linked hyper-IgM syndrome. J Immunol 1996;157:1492–1498. 205. Kosco MH, Szakal AK, Tew JG. In vivo obtained antigen presented by germinal center B cells to

    Google Scholar 

  205. T cells in vitro. J Immunol 1988;140:354–360.

    Google Scholar 

  206. Silvy A, Lagresle C, Bella C, Defrance T. The differentiation of human memory B cells into specific antibody-secreting cells is CD40 independent. Eur J Immunol 1996;26:517–524.

    PubMed  CAS  Google Scholar 

  207. Bergman MC, Attrep JF, Grammer AC, Lipsky PE. Ligation of CD40 influences the function of human Ig-secreting B cell hybridomas both positively and negatively. J Immunol 1996;156:3118–3132.

    PubMed  CAS  Google Scholar 

  208. Herron LR, Eisenberg RA, Roper E, Kakkanaiah VN, Cohen PL, Kotzin BL. Selection of the T cell receptor repertoire in Lpr mice. J Immunol 1993;151:3450–3459.

    PubMed  CAS  Google Scholar 

  209. Singer GG, Abbas AK. The fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1994;1:365–371.

    PubMed  CAS  Google Scholar 

  210. Castro JE, Listman JA, Jacobson BA, Wang Y, Lopez PA, Ju S, et al. Fas modulation of apoptosis during negative selection of thymocytes. Immunity 1996;5:617–627.

    PubMed  CAS  Google Scholar 

  211. Cheng J, Zhou T, Liu C, Shapiro JP, Brauer MJ, Kiefer MC, et al. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 1994;263:1759–1762.

    PubMed  CAS  Google Scholar 

  212. Jodo S, Kobayashi S, Kayagaki N, Ogura N, Feng Y, Amasaki Y, et al. Serum levels of soluble Fas/ Apo-1 (CD95) and its molecular structure in patients with systemic lupus erythematosus (Sle) and other autoimmune diseases. Clin Exp Immunol 1997;107:89–95.

    PubMed  CAS  Google Scholar 

  213. Tandon N, Metcalfe RA, Barnett D, Weetman AP. Expression of the costimulatory molecule B7/BB 1 in autoimmune thyroid disease. Q J Med 1994;87:231–236.

    PubMed  CAS  Google Scholar 

  214. Sercarz EE, Lehmann PV, Ametani A, Benichou G, Miller A, Moudgil K. Dominance and crypticity of T cell antigenic determinants. Annu Rev Immunol 1993;11:729–766.

    PubMed  CAS  Google Scholar 

  215. Wekerle H, Bradl M, Linington C, Kaab G, Kojima K. The shaping of the brain-specific T lymphocyte repertoire in the thymus. Immunol Rev 1996;149:231–243.

    PubMed  CAS  Google Scholar 

  216. Warnock MG, Goodacre JA. Cryptic T-cell epitopes and their role in the pathogenesis of autoimmune diseases. Br J Rheumatol 1977:36:1144–1150.

    Google Scholar 

  217. Djaballah H. Antigen processing by proteasomes: insights into the molecular basis of crypticity. Mol Biol Rep 1997;24:63–67.

    PubMed  CAS  Google Scholar 

  218. Volpe R. Immunological aspects of autoimmune thyroid disease. Prog Clin Biol Res 1981;74: 1–27.

    PubMed  CAS  Google Scholar 

  219. Volpe R. Immunoregulation in autoimmune thyroid disease. N Engl J Med 1987;316:44–46.

    PubMed  CAS  Google Scholar 

  220. Volpe R. Suppressor T lymphocyte dysfunction is important in the pathogenesis of autoimmune thyroid disease: a perspective. Thyroid 1993;3:345–352.

    PubMed  CAS  Google Scholar 

  221. Arnon R, Sela M, Teitelbaum D. New insights into the mechanism of action of copolymer 1 in experimental allergic encephalomyelitis and multiple sclerosis. J Neurol 1996;243:S8–13.

    Google Scholar 

  222. Bergman B, Haskins K. Autoreactive T-cell clones from the nonobese diabetic mouse. Proc Soc Exp Biol Med 1997;214:41–48.

    PubMed  CAS  Google Scholar 

  223. Mieza MA, Itoh T, Cui JQ, Makino Y, Kawano T, Tsuchida K, et al. Selective reduction of V a l 4+ NK T cells associated with disease development in autoimmune-prone mice. J Immunol 1996;156: 4035–4040.

    PubMed  CAS  Google Scholar 

  224. Sakamoto A, Sumida T, Maeda T, Itoh M, Asai T, Takahashi H, et al. T cell receptor Vb repertoire of double-negative oβ T cells in patients with systemic sclerosis. Arthritis Rheum 1992;35:944–948.

    PubMed  CAS  Google Scholar 

  225. Baxter AG, Kinder SJ, Hammond KJ, Scollay R, Godfrey DI. Association between aβTcr +CD4CD8- T-cell deficiency and Iddm in Nod/Lt mice. Diabetes 1997;46:572–582.

    PubMed  CAS  Google Scholar 

  226. Iwatani Y, Hidaka Y, Matsuzuka F, Kuma K, Amino N. Intrathyroidal lymphocyte subsets, including unusual CD4+ CD8+ cells and CD310Tcrαβ10/-CD4-CD8- cells, in autoimmune thyroid disease. Clin Exp Immunol 1993;93:430–436.

    PubMed  CAS  Google Scholar 

  227. Kroemer G, Hirsch F, Gonzalez-Garcia A, Martinez C. Differential involvement of Th1 and Th2 cytokines in autoimmune diseases. Autoimmunity 1996;24:25–33.

    PubMed  CAS  Google Scholar 

  228. Nisitani S, Tsubata T, Murakami M, Okamoto M, Honjo T. The bc1–2 gene product inhibits clonal deletion of self-reactive B lymphocytes in the periphery but not in the bone marrow. J Exp Med 1993;178:1247–1254.

    PubMed  CAS  Google Scholar 

  229. Nomura T, Han H, Howard MC, Yagita H, Yakura H, Honjo T, et al. Antigen receptor-mediated B cell death is blocked by signaling via CD72 or treatment with dextran sulfate and is defective in autoimmunity-prone mice. Int Immunol 1996;8:867–875.

    PubMed  CAS  Google Scholar 

  230. Sobel ES, Katagiri T, Katagiri K, Morris SC, Cohen PL, Eisenberg RA. An intrinsic B cell defect is required for the production of autoantibodies in the lpr model of murine systemic autoimmunity. J Exp Med 1991;173:1441–1449.

    PubMed  CAS  Google Scholar 

  231. Ridgway WM, Fasso M, Lanctot A, Garvey C, Fathman CG. Breaking self-tolerance in nonobese diabetic mice. J Exp Med 1996;183:1657–1662.

    PubMed  CAS  Google Scholar 

  232. Flynn JC, Kong YC. In vivo evidence for CD4+ and CD8+ suppressor T cells in vaccination-induced suppression of murine experimental autoimmune thyroiditis. Clin Immunol Immunopathol 1991; 60:484–494.

    PubMed  CAS  Google Scholar 

  233. Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 1986;314: 1360–1368.

    PubMed  CAS  Google Scholar 

  234. Adams TE, Alpert S, Hanahan D. Non-tolerance and autoantibodies to a transgenic self antigen expressed in pancreatic beta cells. Nature 1987;325:223–228.

    PubMed  CAS  Google Scholar 

  235. Eishi Y, McCullagh P. Acquisition of immunological self-recognition by the fetal rat. Immunology 1988;64:319–323.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Iwatani, Y., Watanabe, M. (1999). Normal Mechanisms for Self-Tolerance. In: Volpé, R. (eds) Autoimmune Endocrinopathies. Contemporary Endocrinology, vol 15. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-704-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-704-8_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4572-6

  • Online ISBN: 978-1-59259-704-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics