Skip to main content

Oncogenes and Mammary Carcinogenesis

  • Chapter
Endocrinology of Breast Cancer

Part of the book series: Contemporary Endocrinology ((COE,volume 11))

Abstract

Breast cancer is the most common malignancy among women in the United States, accounting for nearly 32% ofall cancers and for nearly 20% ofall cancer deaths in women (1). Breast cancer is a multifactorial disease, and several factors are thought to influence the risk of breast cancer development, including geography, radiation exposure, and reproductive and family history. A family history of breast cancer constitutes the major risk factor, although familial breast cancer accounts for only 5% of all cases (1). Although breast cancer deaths declined by 5% between 1989 and 1992 (2), the incidence of breast cancer is expected to increase by 2–3% annually (1), and efforts to decrease mortality significantly, including new therapeutic approaches and early diagnosis, have been relatively unsuccessful. One of the critical factors in determining the therapeutic approach to breast cancer, along with the presence or absence of lymph node metastasis, is the estrogen and progesterone receptor (ER and PR) status of the tumor. Indeed, ER- and/or PR-positive tumors have been found to be more likely to respond to endocrine therapy and are associated with a better prognosis (1). An understanding of the genetic changes involved in breast cancer and of its biologic behavior, including possible interactions between hormones and oncogenes or tumor suppressor genes, will undoubtedly aid in the design of new therapies as well as in prevention and diagnosis of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tavassoli FA (1992) Pathology of the Breast, Elsevier Science Publishing, New York.

    Google Scholar 

  2. Abeloff MD (1995) Breast. Curr Opin Oncol 7: 489–494.

    Google Scholar 

  3. Bieche I, Lidereau R (1995) Genetic alterations in breast cancer. Genes Chromosomes Cancer 14: 227–251.

    PubMed  CAS  Google Scholar 

  4. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavitigian S, et al. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266: 66–71.

    PubMed  CAS  Google Scholar 

  5. Tavtigian SV, Simard J, Rommens J, Couch F, Shattuck-Eidens D, Neuhaunsen S, et al. (1996) The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nature Genet 12: 333–337.

    PubMed  CAS  Google Scholar 

  6. Devilee P, Schuuring E, van de Vijver MJ, Cornelisse CJ (1994) Recent developments in the molecular genetic understanding of breast cancer. Crit Rev Oncog 5: 247–270.

    PubMed  CAS  Google Scholar 

  7. Weiss R, Teich N, Varmus H, Coffin J (1982) RNA Tumor Viruses: Molecular Biology of tumor viruses, 2nd ed., Cold Spring Harbor Laboratory Cold Spring Harbor NY.

    Google Scholar 

  8. Weiss R, Teich N, Varmus H, Coffin J (1985) RNA Tumor Viruses: Molecular Biology of tumor viruses, Supplement to 2nd ed., Cold Spring Harbor Laboratory Cold Spring Harbor NY.

    Google Scholar 

  9. Bishop JM (1983) Cellular oncogenes and retroviruses. Annu Rev Biochem 52: 301–354.

    PubMed  CAS  Google Scholar 

  10. Levine AJ (1995) The genetic origins of neoplasia. JAMA 273: 592.

    PubMed  CAS  Google Scholar 

  11. Cross M, Dexter TM (1991) Growth factors in development, transformation, and tumorigenesis. Cell 64: 271–280.

    PubMed  CAS  Google Scholar 

  12. Simon MP, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre JM, et al. (1997) Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL 1 A 1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nature Genet 15: 95–98.

    PubMed  CAS  Google Scholar 

  13. Hoskins K, Weber BL (1995) Recent advances in breast cancer biology. Cuff Opin. Oncol 7: 495–500.

    CAS  Google Scholar 

  14. Yarden Y, Ullrich A (1988) Growth factors and receptor tyrosine kinases. Annu Rev Biochem 57: 443–478.

    PubMed  CAS  Google Scholar 

  15. Golub TR, Barker G, Lovett M, Gilliland DG (1994) Fusion of PDGF receptor l3 to a novel ets-like gene, tel, in chronic myalomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77: 307–316.

    PubMed  CAS  Google Scholar 

  16. Shtivelman E, Lifshitz B, Gale RP, Canaani E (1985) Fused transcript for abl and bcr genes in chronic myelogenous leukemia. Nature 315: 550–554.

    PubMed  CAS  Google Scholar 

  17. Bishop J Ms (1986) Amplification of Proto-Oncogenes in Tumorigenesis. ( Oldstone ALN, ed. ), Springer-Verlag New York, pp. 71–78

    Google Scholar 

  18. Bos JL, Fearon ER, Hamilton SR, Verlaan-de-Vries M, Van Boom JH, Van der Eb AJ, Vogelstein B (1987) Prevalence of ras mutations in human colorectal cancers. Nature 327: 293–297.

    PubMed  CAS  Google Scholar 

  19. Forrester K, Almonguera C, Han K, Grizzle WE, Perucho M (1987) Detection of high incidence of K-ras oncogenes during colon tumorigenesis. Nature 327: 298–303.

    PubMed  CAS  Google Scholar 

  20. Rabbitts TH (1994) Chromosomal translocations in human cancer. Nature 372: 143–149.

    PubMed  CAS  Google Scholar 

  21. Amati B, Land H (1994) Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation and death. Curr Opin Genet Devel 4: 102–108.

    CAS  Google Scholar 

  22. Croce CM, Nowell PC (1985) Molecular basis of human B-cell neoplasia. Blood 65: 1–7.

    PubMed  CAS  Google Scholar 

  23. Hollstein M, Sidransky D, Vogelstein B, Harris C (1991) p53 mutations in human cancers. Science 253: 49–53.

    Google Scholar 

  24. Ohta M, Nagai H, Shimizu M, Rasio D, Berd D, Mastrangelo M, et al. (1994) Rarity of Somatic and germline mutations of the cyclin-dependent kinase 4 inhibitor gene CDK4I, in melanoma. Cancer Res 54: 5269–5272.

    PubMed  CAS  Google Scholar 

  25. Rasool O, Heyman M, Borgonovo L, Liu Y, Grander D, Soderhall S, et al. (1995) p 1 5/ink4B and p 16/ ink4 gene inactivation in acute lymphocytic leukemia. Blood 85: 3431–3436.

    Google Scholar 

  26. Showe L, Croce C (1987) The role ofchromosomal translocations in B- and T-cell neoplasia. Annu Rev Immunol 5: 253–277.

    PubMed  CAS  Google Scholar 

  27. Rosenberg CL, Kim HG, Shows TB, Kronenberg HM, et al. (1991) Rearrangement and overexpression of D 11 S287E, a candidate oncogene on chromosome 11q23 in benign parathyroid tumors. Oncogene 6: 449–453.

    PubMed  CAS  Google Scholar 

  28. Motokura T, Bloom T, Kim HG, Juppner H, Ruderman JV, Kronenberg HM, Arnold A (1991) A novel cyclin encoded by a bc1–1 linked oncogene. Nature 350: 512–515.

    PubMed  CAS  Google Scholar 

  29. Nagata S, Golstein P (1995) The Fas death factor. Science 267, 1449–1456.

    PubMed  CAS  Google Scholar 

  30. Steller H (1995) Mechanisms and genes of cellular suicide. Science 267: 1445–1449.

    PubMed  CAS  Google Scholar 

  31. Whyte M, Evan G (1995) The last cut is the deepest. Nature 376: 17–18.

    PubMed  CAS  Google Scholar 

  32. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849.

    Google Scholar 

  33. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromossome translocation. Science 226: 1097–1099.

    PubMed  CAS  Google Scholar 

  34. Reed JC (1995) Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance. Curr Opin Oncol 7: 541–546.

    PubMed  CAS  Google Scholar 

  35. Vaux DL (1988) Bc1–2 gene promotes hematopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 335, 440–442.

    PubMed  CAS  Google Scholar 

  36. Konopka JB, Watanabe SM, Witte ON (1984) An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 37: 1035–1042.

    PubMed  CAS  Google Scholar 

  37. Pierotti MA, Santoro M, Jenkins RB, Sozzi G, Bongarzone I, Grieco M, et al. (1992) Characterization of an inversion on the long arm of chromosome 10 juxtaposing D l OS 170 and RET and creating the oncogenic sequence RET/PTC. Proc Natl Acad Sci USA 85: 1616–1620.

    Google Scholar 

  38. Lowy DR, Willumsen M (1993) Function and regulation of ras. Annu Rev Biochem 62: 851–891.

    PubMed  CAS  Google Scholar 

  39. Barbacid M (1987) Ras genes. Annu Rev.Biochem 56: 779–827.

    CAS  Google Scholar 

  40. Clark GJ, Der CJ (1995) Aberrant function of the ras signal transduction pathway in human breast cancer. Breast Cancer Res Treat 35: 133–134.

    PubMed  CAS  Google Scholar 

  41. Alitalo K, Schwab M (1986) Oncogene amplification in tumor cells. Adv Cancer Res 47: 235–281.

    PubMed  CAS  Google Scholar 

  42. Alt FW, Kellems RE, Bertino JR, Schimke RT (1978) Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem 253: 1357–1370.

    PubMed  CAS  Google Scholar 

  43. Schimke R, ed. (1982) GeneAmplification. Cold Spring Harbor Laboratory, Cold Spring Harbor New York.

    Google Scholar 

  44. Alitalo K, Schwab M, Lin CC, Varmus HE, Bishop JM (1983) Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci USA 80: 1707–1711.

    PubMed  CAS  Google Scholar 

  45. Nau MN, Brooks BJ, Battey J, Sausville E, Gazdar AF, Kirsch IR, et al. (1985) L-myc, a new mycrelated gene amplified and expressed in human small cell lung cancer. Nature 318: 69–73.

    PubMed  CAS  Google Scholar 

  46. Fong CT, Dracopoli NC, Write PS, Merril PT, Griffith RC, Housman DE, et al. (1989) Loss of heterozygosity for the short arm of chromosome 1 in human neuroblastomas: correlation with n-myc amplification. Proc Natl Acad Sci USA 86: 3753–3757.

    PubMed  CAS  Google Scholar 

  47. Caron H, van Sluis P, van Hoeve M, de Kraker J, Bras J, Slater R, et al. (1993) Allelic loss of chromosome 1p36 in neuroblastoma is of preferential maternal origin and correlates with n-myc amplification. Nature Genet 4: 187–190.

    PubMed  CAS  Google Scholar 

  48. Bieche I, Champeme MH, Lidereau R (1994) A tumor suppressor gene on chromosome 1p32 Ater controls the amplification of myc family genes in breast cancer. Cancer Res 54: 474–476.

    Google Scholar 

  49. Shih C, Padhy LC, Murray M, Weinberg RA (1981) Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290: 261–264.

    PubMed  CAS  Google Scholar 

  50. Padhy LC, Shih C, Cowing D, Finkelstein R, Weinberg RA (1982) Identification of a phosphoprotein specifically induced by the transforming DNA of rat neuroblastomas. Cell 28: 865–871.

    PubMed  CAS  Google Scholar 

  51. Schechter AL, Hung MC, Vaidyanathan L, Weinberg RA, Yang-Feng TL, Francke U, et al. (1985) The neu gene: an erbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science 229: 976–978.

    PubMed  CAS  Google Scholar 

  52. Coussens L, Yang-Feng TL, Liao YC, Chen E, Gray A, McGrath J, et al. (1985) Tyrosine kinase receptor with extensive homology with EGF receptor shares chromosomal location with neu oncogene. Science 230: 1132–1139.

    PubMed  CAS  Google Scholar 

  53. Semba K, Kamata N, Toyoshima K, Yamamoto T (1985) A v-erb related protooncogene, c-erbB2, is distinct from c-erbB 1 /epidermal growth factor receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc Natl Acad Sci USA 82: 6497–6501.

    PubMed  CAS  Google Scholar 

  54. Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212.

    PubMed  CAS  Google Scholar 

  55. van der Geer P, Hunter T, Lindberg RA (1994) Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 10: 251–337.

    PubMed  Google Scholar 

  56. Schlessinger J (1994) SH2/SH3 signaling proteins. Curr Opin Oncol 4: 25–30.

    CAS  Google Scholar 

  57. Chrysogelos S, Dickson RB (1994) EGF receptor expression, regulation, and function in breast cancer. Breast Cancer Res Treat 29: 29–40.

    PubMed  CAS  Google Scholar 

  58. Peles E, Bacus SS, Koski RA, Lu HS, Wen D, Ogden SG, et al. (1992) Isolation of the neu/HER-2 stimulatory ligand: a 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell 69: 205–216.

    PubMed  CAS  Google Scholar 

  59. Wen D, Peles E, Cupples R, Suggs SV, Bacus SS, Luo Y, et al. (1992) Neu differentiation factor: a transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell 69: 559–572.

    PubMed  CAS  Google Scholar 

  60. Holmes WE, Sliwkowski MX, Akita RW, Henzel WJ, Lee J, Park JW, Yansura D, Abadi N, Raab H, Lewis GD, et al. (1992) Identification of heregulin, a specific activator of p185erbB2. Science 256: 1205–1210.

    PubMed  CAS  Google Scholar 

  61. Plowman GD, Green JM, Culouscou JM, Carlton GW, Rothwell VM, Buckley S (1993) Heregulin induces tyrosine phosphorilation of HER4/p180erbB4. Nature 366: 473–475.

    PubMed  CAS  Google Scholar 

  62. Sliwkowski MX, Schaefer G, Akita RW, Lofgren JA, Fitzpatrick VD, Nuijens A, et al. (1994) Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin. J Biol Chem 269: 14661–14665.

    PubMed  CAS  Google Scholar 

  63. Carraway KL, Cantley LC (1994) A neu acquaintance for erbB3 and erbB4: a role for receptor heterodimerization in growth signaling. Cell 78: 5–8.

    PubMed  CAS  Google Scholar 

  64. Berns EMJJ, Klijn JGM, van Staveren IL, Portengen H, Noordegraaf E, Foekens JA (1992) Prevalence of amplification of the oncogenes c-myc, her2/neu, and int2 in one thousand human breast tumors: correlation with steroid receptors. Eur J Cancer 28: 697–700.

    PubMed  CAS  Google Scholar 

  65. Jarvinen AH, Kononen J, Pelto-Huikko M, Isola J (1996) Expression of topoisomerase IIa is associated with rapid cell proliferation, aneuploidy, and c-erbB2 overexpression in breast cancer. Am J Pathol 148: 2073–2082.

    PubMed  CAS  Google Scholar 

  66. Vojtek AB, Hollenberg SM, Cooper JA (1993) Mammalian Ras interacts directly with the serine/ threonine kinase raf. Cell 74: 205–214.

    PubMed  CAS  Google Scholar 

  67. Quilliam LA, Khosravi-Far R, Huff SY, Der CJ (1995) Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins. BioEssays 17: 395–404.

    CAS  Google Scholar 

  68. Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal p21 ras GTPase, but does not affect oncogenic mutants. Science 238: 542–545.

    PubMed  CAS  Google Scholar 

  69. Rodenhuis S (1992) ras and human tumors. Semin Cancer Biol 3:241–247.

    Google Scholar 

  70. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M (1988) Most human carcinomas of the exocrine pancreas contain mutant K-ras genes. Cell 53: 549–554.

    PubMed  CAS  Google Scholar 

  71. Gibbs BG, Sigal IS, Poe M, Scolnick EM (1984) Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc Natl Acad Sci USA 81: 5704–5708.

    PubMed  CAS  Google Scholar 

  72. Thor A, Ohuchi N, Hand PH, Callahan R, Weeks MO, Theillet C, et al. (1986) ras gene alterations and enhanced levels of ras p21 expression in a spectrum of benign and malignant human mammary tissues. Lab Invest 55: 603–615.

    Google Scholar 

  73. Spandidos DA, Yiagnisis M, Papadimitriou K, Field JK (1989) Ras, c-myc, and c-erb-2 oncoproteins in human breast cancer. Anticancer Res 9: 1385–1394.

    PubMed  CAS  Google Scholar 

  74. Bland KI, Konstadoulakis MM, Vezeridis MP, Wanebo HJ (1995) Oncogene protein co-expression. Value of Ha-ras, c-myc, c-fos, and p53 as prognostic discriminants for breast carcinoma. Ann Surg 221: 706–720.

    PubMed  CAS  Google Scholar 

  75. Archer SG, Eliopoulos A, Spandidos D, Barnes D, Ellis IO, Blarney RW, et al. (1995) Expression of ras p21, p53, and c-erbB-2 in advanced breast cancer and response to first line hormonal therapy. Adv. Breast Cancer. 1260–1266.

    Google Scholar 

  76. Croce CM, Thierfelder W, Erikson J, Nishikura K, Finan J, Lenoir GM, et al. (1983) Transcriptional activation of an unrearranged and untranslocated c-myc oncogene by translocation of a c?,. locus in Burkitt lymphoma cells. Proc Natl Acad Sci USA 80: 6922–6926.

    PubMed  CAS  Google Scholar 

  77. Erikson J, Nishikura K, ar-Rushdi A, Finan J, Emanuel B, Lenoir G, et al. (1983) Translocation of an immunoglobulin x locus to a region 3’ of an unrearranged c-myc oncogene enhances c-myc transcription. Proc Natl Acad Sci USA 80: 7581–7585.

    PubMed  CAS  Google Scholar 

  78. Blackwood EM, Eisenman RN (1991) Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with myc. Science 251: 1211–1217.

    PubMed  CAS  Google Scholar 

  79. Prendergast GC, Lawe D, Ziff EB (1991) Association of Myn, the murine homolog of Max, with c-Myc stimulates methylation-sensitive DNA binding and Ras cotransformation. Cell 65: 395–407.

    PubMed  CAS  Google Scholar 

  80. Blackwell TK, Kretzner EM, Blackwood EM, Eisenman RN, Weintraub H (1990) Sequence-specific DNA binding by the c-myc protein. Science 250: 1149–1151.

    PubMed  CAS  Google Scholar 

  81. Reisman D, Elkind NB, Roy B, Beamon J, Rotter V (1993) c-myc transactivates the p53 promoter through a required down-stream CACGTG motif. Cell Growth Differ 4: 57–65.

    Google Scholar 

  82. Marcu KB, Bossone SA, Patel AJ (1992) Myc function and regulation. Annu Rev Biochem 61: 809–860.

    PubMed  CAS  Google Scholar 

  83. Amati B, Brooks MW, Levy N, Littlewood TD, Evan GI, Land H (1993) Oncogenic activity of the c-myc protein requires dimerization with max. Cell 72: 233–245.

    PubMed  CAS  Google Scholar 

  84. Vastrik I, Makela TP, Koskinen Pi, Klefstrom J, Alitalo K (1994) Myc protein: partners and antagonists. Crit Rev Oncog 5: 59–68.

    PubMed  CAS  Google Scholar 

  85. Contegiacomo A, Pizzi C, De Marchis L, Alimandi M, Delrio P, Di Palma E, et al. (1995) High cell kinetics is associated with amplification of the int-2, bcl-1, myc and erbB-2 proto-oncogenes and loss of heterozygosity at the DF3 locus in primary breast cancers. Int. J Cancer 61: 1–6.

    PubMed  CAS  Google Scholar 

  86. Varley JM, Swallow JE, Brammar WJ, Whittaker JL, Walker RA (1987) Alterations to either c-erbB-2 (neu) or c-myc proto-oncogenes in breast carcinomas correlate with poor short-term prognosis. Oncogene 1: 423.

    PubMed  CAS  Google Scholar 

  87. Tavassoli M, Quirke P, Farzaneh F, Lock NJ, Mayne LV, Kirkham N (1989) c-erbB-2/c-erbA coamplification indicative of lymph node metastasis, and c-myc amplification of high tumor grade, in human breast carcinoma. Br. J Cancer 60:505-.

    Google Scholar 

  88. Escot C, Theillet C, Lidereau R, Spyratos F, Champeme MH, Gest J, et al. (1986) Genetic alterations of the c-myc protooncogene ( MYC) in human primary breast carcinomas. Proc Natl Acad Sci USA 83: 4834.

    PubMed  CAS  Google Scholar 

  89. Gauwerky CE, Haluska FG, Tsujimoto Y, Nowell PC, Croce CM (1988) Evolution of B-cell malignancy: pre-B-cell leukemia resulting from MYC activation in a B cell neoplasm with a rearranged BCL2 gene. Proc Natl Acad Sci USA 85: 8548–8552.

    PubMed  CAS  Google Scholar 

  90. Kerlseder J, Zeillinger R, Schneeberger C, Czerwenka K, Speiser P, Kubista E, et al. (1994) Patterns of DNA amplification at band q13 of chromosome 11 in human breast cancer. Genes Chromosom Cancer 9: 42–48.

    Google Scholar 

  91. Shackleford GM, MacArthur CA, Kwan HC, Varmus HE (1993) Mouse mammary tumor virus infection accelerates mammary carcinogenesis in wntl transgenic mice by insertional activation of int2/ FGF3 and Hst/FGF4. Proc Natl Acad Sci USA 90: 740–744.

    PubMed  CAS  Google Scholar 

  92. Schuuring E, Verhoeven E, Mooi WL, Michalides R (1992) Identification and cloning of two overexpressed genes U21B31/PRAD1 and EMS1, within the amplified chromosome 11g13 region in human carcinomas. Oncogene 7: 355–361.

    PubMed  CAS  Google Scholar 

  93. Tsujimoto Y, Yunis J, Onorato-Showe L, Erikson J, Nowell PC, Croce CM (1984) Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) translocation. Science 224: 1403–1406.

    PubMed  CAS  Google Scholar 

  94. Kamb A (1995) Cell-cycle regulators and cancer. Trends Genet 11: 136–140.

    PubMed  CAS  Google Scholar 

  95. Motokura T, Arnold A (1993) Cyclin D, oncogenesis. Curr Opin Genes Dev 3: 5–10.

    CAS  Google Scholar 

  96. Khatib ZA, Matsushime H, Valentine M, Shapiro DN, Sherr CJ, Look AT (1993) Coamplification of the CDK4 gene with MDM2 and GLI in human sarcomas. Cancer Res. 53, 5535–5541.

    PubMed  CAS  Google Scholar 

  97. Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV (1994) Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369: 669–671.

    PubMed  CAS  Google Scholar 

  98. Hinds PH, Dowdy SF, Eaton EN, Arnold A, Weinberg RA (1994) Function of a human cyclin gene as an oncogene. Proc Natl Acad Sci USA 91: 709–713.

    PubMed  CAS  Google Scholar 

  99. Musgrove EA, Sutherland RL (1994) Cell cycle control by steroid hormones. Cancer Biol 5: 381–389.

    CAS  Google Scholar 

  100. Sutherland RL, Hamilton JA, Sweeney KJE, Watts CKW, Musgrove EA (1995) Expression and regulation of cyclin genes in breast cancer. Acta Oncol 5: 651–656.

    Google Scholar 

  101. Wyllie AH (1987) Apoptosis: cell death in tissue regulation. J Pathol 153: 313–316.

    PubMed  CAS  Google Scholar 

  102. Tsujimoto Y, Cossman J, Jaffe E, Croce CM (1985) Involvement of the bcl-2 gene in human follicular lymphoma. Science 228: 140–144.

    Google Scholar 

  103. Nunez G, London L, Hockenbery D, Alexander M, McKearn JP, Korsmeyer SJ (1990) Deregulated bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. J Immunol 144: 3602–3610.

    PubMed  CAS  Google Scholar 

  104. Haldar S, Basu A, Croce CM (1997) Bc12 is the guardian of microtubule integrity. Cancer Res 57: 229–233.

    PubMed  CAS  Google Scholar 

  105. Boise LH, Gonzalez-Garcia M, Postema CF, Ding L, Lindstein T, Turka LA, et al. (1993) Bel-X, a bcl2 related gene that functions as a dominant regulator of apoptotic cell death. Cell 76: 597–608.

    Google Scholar 

  106. Oltvai ZN, Milliman CL, Korsmeyer S (1993) Bc1–2 heterodimerizes with a conserved homolog Bax, that accelerates programmed cell death. Cell 74: 609–619.

    PubMed  CAS  Google Scholar 

  107. Chittenden T, Harrington EA, O’Connor R, Flemington C, Lutz RJ, Evan GI, et al. (1995) Induction of apoptosis by the bcl-2 related gene that functions as a dominant regulator of apoptotic cell death. Nature 374: 733–736.

    PubMed  CAS  Google Scholar 

  108. Sato T, Hanada M, Bodnig S, Irie S, Iwana N, Boise LH, et al. (1994) Interactions among members of the bcl-2 protein family analyzed with a yest two-hybrid system. Proc Natl Acad. Sci USA 91: 9238–9242.

    PubMed  CAS  Google Scholar 

  109. Lu QL, Abel P, Foster CS, Lalani EN (1996) bcl-2: role in epithelial differentiation and oncogenesis. Hum Pathol 27: 102–110.

    Google Scholar 

  110. Teixeira C, Reed JC, Pratt MAC (1995) Estrogen promotes chemotherapeutic drug resistance by a mechanism involving bcl-2 proto-oncogene expression in human breast cancer cells. Cancer Res 55: 3902–3907.

    PubMed  CAS  Google Scholar 

  111. Leek RD, Kaklamanis L, Pezzella F, Gatter KC, Harris AL (1994) bc1–2 in normal human breast and carcinoma, association with oestrogen receptor-positive, epidermal growth factor receptor-negative tumors and in situ cancer. Br J Cancer 69: 135–139.

    Google Scholar 

  112. Hellemans PA, van Dam PA, Weyler J, van Oosterom AT, Buytaert P, Van Mark E (1995) Prognostic value of bc1–2 expression in invasive breast cancer. Br J Cancer 72: 354–360.

    PubMed  CAS  Google Scholar 

  113. van Slooten HJ, Clahsen PC, van Dierendonck JH, Duval C, Pallud C, Mandard AM, et al. (1996) Expression of bc1–2 in node-negative breast cancer is associated with various prognostic factors, but does not predict response to one course of perioperative chemotherapy. Br J Cancer 74: 78–85.

    PubMed  Google Scholar 

  114. Joensuu H, Pylkkanen L, Toikkanen S (1994) Bc1–2 protein expression and long-term survival in breast cancer. Am. J Pathol. 145, 1191–1198.

    Google Scholar 

  115. Silvestrini R, Veneroni S, Daidone MG, Benini E, Boracchi P, Mezzetti M, et al. (1994) The bc1–2 protein: a prognostic indicator strongly related to p53 protein in lymph node-negative breast cancer patients. J Natl Cancer I ns 86: 499–504.

    CAS  Google Scholar 

  116. Binder C, Marx D, Binder L, Schauer A, Hiddemann W (1996) Expression of Bax in relation to Bc1–2 and other predictive parameters in breast cancer. Ann Oncol 7: 129–133.

    PubMed  CAS  Google Scholar 

  117. Haldar S, Negrini M, Monne M, Sabbioni S, Croce CM (1994) Down-regulation of bc1–2 by p53 in breast cancer cells. Cancer Res 54: 2095–2097.

    PubMed  CAS  Google Scholar 

  118. Haldar S, Jena N, Croce CM (1995) Inactivation of bcl-2 by phosphorylation. Proc Natl Acad Sci USA 92: 4507–4511.

    PubMed  CAS  Google Scholar 

  119. Haldar S, Chintapalli J, Croce CM (1996) Taxol induces bc1–2 phosphorylation and death of prostate cancer cells. Cancer Res 56: 1253–1255.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Veronese, M.L., Bullrich, F., Croce, C.M. (1999). Oncogenes and Mammary Carcinogenesis. In: Manni, A. (eds) Endocrinology of Breast Cancer. Contemporary Endocrinology, vol 11. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-699-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-699-7_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5139-0

  • Online ISBN: 978-1-59259-699-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics