Skip to main content

Intervention Strategies for Degeneration of Dopamine Neurons in Parkinsonism

Optimizing Behavioral Assessment of Outcome

  • Chapter

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Parkinsonism has a complex and variable neuropathology and etiology (1,2), but the major common feature is progressive loss of dopamine (DA) neurons in the substantia nigra leading to motor impairment. Although understanding the initial causes and molecular mechanisms for degeneration of the nigrostriatal system would be invaluable for eventual treatment, in the meantime effective approaches to preventing the pathological and disabling clinical signs of the disorder may come from early detection and interventions that have quite general neuroprotective properties. Behavior-based diagnostic assessment aimed at detecting threshold level neuropathology would be critical, both in clinical practice and preclinically.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Conford, M. E., Chang, L., and Miller, B. L. (1995) The neuropathology of Parkinsonism: an overview. Brain Cognit. 28, 321–341.

    Article  Google Scholar 

  2. Hornykiewicz, O. (1975) Parkinson’s disease and its chemotherapy. Biochem. Pharmacol. 24, 1061–1065.

    Article  PubMed  CAS  Google Scholar 

  3. Schallert, T. (1995) Models of neurological defects and defects in neurological models. Brain Behay. Sci. 18, 68–69.

    Article  Google Scholar 

  4. Schallert, T. and Lindner, M. D. (1990) Rescuing neurons from trans-synaptic degeneration after brain damage: helpful, harmful or neutral in recovery of function? Canad. J. Psychol. 44, 276–292.

    Article  PubMed  CAS  Google Scholar 

  5. Schallert, T. and Wilcox, R. E. (1985) Neurotransmitter-selective brain lesions, in Neuromethods (Series 1: Neurochemistry), General Neurochemical Techniques (Boulton, A. A. and Baker, G. B. eds.), Humana Press, Totowa, NJ, pp. 343–387.

    Google Scholar 

  6. Anden, N. E., Dahlstrom, A., Fuxe, K., and Larsson, K. (1966) Functional role of the nigro-neostriatal dopamine neurons. Acta Pharmacol. Toxicol. 24, 263–274.

    Article  CAS  Google Scholar 

  7. Ungerstedt U. (1968) , 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 5, 107–110.

    Article  PubMed  CAS  Google Scholar 

  8. Zigmond, J. M. J., Abercrombie, E. D., Berger, T. W., Grace, A. A., and Stricker, E. M. (1993) Compensatory responses to partial loss of dopaminergic neurons: studies with 6-hydroxydopamine, in Current Concepts in Parkinson’s Disease Research edited by (Schneider, J. and Gupta, M., eds.), Hogrefe & Huber.

    Google Scholar 

  9. Marshall, J. F. (1979) Somatosensory inattention after dopamine-depleting intracerebral 6-OHDA injections: spontaneous recovery and pharmacological control. Brain Res. 177, 311–324.

    Article  PubMed  CAS  Google Scholar 

  10. Schwarting, R. K. and Huston, J. P. (1996) The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery, and treatments. Prog. Neurobiol. 50, 275–331.

    Article  PubMed  CAS  Google Scholar 

  11. Schallert, T., Whishaw, I. Q., Ramirez, V. D., and Teitelbaum, P. (1978) Compulsive, abnormal walking caused by anticholinergics in akinetic, 6-hydroxydopamine-treated rats. Science 199, 1461–1463.

    Article  PubMed  CAS  Google Scholar 

  12. Schallert, T., De Ryck, M., Whishaw, I. Q., Ramirez, V. D., and Teitelbaum, P. (1979) Excessive bracing reactions and their control by atropine and L-DOPA in an animal analog of Parkinsonism. Exp. Neurol. 64, 33–43.

    Article  PubMed  CAS  Google Scholar 

  13. Ichitani, Y., Okamura, H., Masamoto, Y., Nagatsu, I., and Abata, Y. (1991) Degeneration of nigral dopamine neurons after 6-hydroxydopamine injection to the rat striatum. Brain Res. 549, 350–353.

    Article  PubMed  CAS  Google Scholar 

  14. Dunnett, S. B., Bjorklund, A., Stenevi, U., and Iversen, S. D. (1981) Behavioral recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. I. Unilateral lesions. Brain Res. 215, 147–161.

    Article  PubMed  CAS  Google Scholar 

  15. Lee, C. S., Sauer, H., and Björklund, A. (1996) Dopaminergic neuronal degeneration and motor impairments following lesion by intrastriatal 6-hydroxydopamine in the rat. Neuroscience 72, 641–653.

    Article  PubMed  CAS  Google Scholar 

  16. Liu, Y., Kim, D., Himes, B. T., Chow, S. Y., Schallert, T., Murray, M., Tessler, A., and Fischer, I. (1999) Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J. Neurosci. 19, 4370–4387.

    PubMed  CAS  Google Scholar 

  17. Jones, T. A. and Schallert, T. (1992) Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage. Brain Res. 581, 156–160.18.

    Article  PubMed  CAS  Google Scholar 

  18. Jones, T. A. and Schallert, T. (1994) Use-dependent growth of pyramidal neurons after neocortical damage. J. Neurosci. 14, 2140–2152.

    PubMed  CAS  Google Scholar 

  19. Dunnett, S. B. and Iversen, S. D. (1992) The functional role of mesotelencephalic dopamine systems. Biol. Rev. 67, 491–518.

    Article  PubMed  CAS  Google Scholar 

  20. Langston, J. W. (1990) Predicting Parkinson’s disease. Neurology 40, 70–74.

    Article  PubMed  Google Scholar 

  21. Choi-Lundberg, D. L., Lin, Q., Schallert, T., Crippens, D., Davidson, B. L., Chang, Y. N., Chiang, Y. L., Qian, J., Bardwaj, L., and Bohn, M. C. (1998) Behavioral and cellular protection of rat dopaminergic neurons by an adenoviral vector encoding glial cell linederived neurotrophic factor. Exp. Neurol. 154, 261–275.

    Article  PubMed  CAS  Google Scholar 

  22. Conner, B., Kozlowski, D. A., Schallert, T., Tillerson, J. L., Davidson, B. L., and Bohn, M. C. (1999) The differential effects of adenoviral vector mediated glial cell line-derived neurotgrophic factor (GDNF) in the striatum vs substantia nigra of the aged parkinsonian rat. J. Neurosci., submitted.

    Google Scholar 

  23. Tillerson, J. L., Castro, S., Zigmond, M. J., and Schallert, T. (1998) Motor rehabilitation of forelimb use in unilateral 6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease. Neurosci. Abstr. 672.18 1720.

    Google Scholar 

  24. Johnston, R. E. and Becker, J. B. (1997) Intranigral grafts of fetal ventral mesencephalic tissue in adult 6-hydroxydopamine-lesioned rats can induce behavioral recovery. Cell Transplant. 6, 267–276.

    Article  PubMed  CAS  Google Scholar 

  25. Schallert, T. and Jones, T. A. (1993) “Exuberant” neuronal growth after brain damage in adult rats: The essential role of behavioral experience. J. Neural Transplant. Plast. 4, 193–198.

    Article  PubMed  CAS  Google Scholar 

  26. Lindner, M. D., Winn, S. R., Baetge, E. E., Hammang, J. P., Gentile, F. T., Doherty, E., McDermott, P. E., Frydel, B., Ullman, M. D., Schallert, T., and Emerich, D. F. (1995) Implantation of encapsulated catecholamine and GDNF-producing cells in rats with unilateral dopamine depletions and Parkinsonian symptoms. Exp. Neurol. 132, 62–76.

    Article  PubMed  CAS  Google Scholar 

  27. Schallert, T., Kozlowski, D. A., Humm, J. L., and Cocke, R. R. (1997) Use-dependent events in recovery of function, in Advances in Neurology: Brain Plasticity (Freund, H.-J., Sabel. B. A., and Witte. O. W., eds.). vol. 70. Lippincott-Raven. Philadelphia.

    Google Scholar 

  28. Kozlowski, D. A., James D. C., and Schallert, T. (1996) Use-dependent exaggeration of neuronal injury following unilateral sensorimotor cortex lesions. J. Neurosci. 16, 4776–4786.

    PubMed  CAS  Google Scholar 

  29. Kawamata, T., Dietrich, W. D., Schallert, T., Gotts, J. E., Cocke, R. R., Benowitz, L. I., and Finklestein, S. P. (1997) Intracisternal basic fibroblast growth factor (bFGF) enhances functional recovery and upregulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc. Nat. Acad. Sci. USA 94, 8179–8184.

    Article  PubMed  CAS  Google Scholar 

  30. Humm, J. L., Kozlowski, D. A., James, D. C., Gotts, J. E., and Schallert, T. (1998) Usedependent exacerbation of brain damage occurs during an early post-lesion vulnerable period. Brain Res. 783, 286–292.

    Article  PubMed  CAS  Google Scholar 

  31. Humm, J. L., Kozlowski, D. A., Bland, S. T., James, D. C., and Schallert, T. (1999) Progressive expansion of brain injury by extreme behavioral pressure: is glutamate involved? Exp. Neurol. 157, 349–358.

    Article  PubMed  CAS  Google Scholar 

  32. Schallert, T. and Kozlowski, D. A. (1998) Brain damage and plasticity: use-related enhanced neural growth and overuse-related exaggeration of injury, in Cerebrovascular Disease (Ginsberg, M. D. and Bogousslaysky, J., eds.), Blackwell Science, New York, pp. 611–619.

    Google Scholar 

  33. Schallert, T., Norton, D., and Jones, T. A. (1992) A clinically relevant unilateral rat model of parkinsonian akinesia. J. Neural Transplant. Plast. 3, 332–333.

    Article  Google Scholar 

  34. Schallert, T., Upchurch, M., Lobaugh, N., Farrar, S. B., Spiruso, W. W., Gilliam, P., Vaughn, D., and Wilcox, R. E. (1982) Tactile extinction: distinguishing between sensorimotor and motor symmetries in rats with unilateral nigrostriatal damage. Pharmacol. Biochem. Behay. 1, 455–462.

    Article  Google Scholar 

  35. Schallert, T., Upchurch, M., Wilcox, R. E., and Vaughn, D. M. (1983) Posture-independent sensorimotor analysis of inter-hemispheric receptor asymmetries in neostriatum. Pharmacol. Biochem. Behay. 18, 753–759.

    Article  CAS  Google Scholar 

  36. Schallert, T., Hernandez, T. D., and Barth, T. M. (1986) Recovery of function after brain damage: severe and chronic disruption by diazepam. Brain Res. 379, 104–111.

    Article  PubMed  CAS  Google Scholar 

  37. Schallert, T. (1988) Aging-dependent emergence of sensorimotor dysfunction in rats recovered from dopamine depletion sustained early in life, in Annals of the New York Academy of Science: Central Determinants of Age-Related Decline in Motor Function (Joseph, J. A., ed.), New York Academy of Sciences, New York, pp. 108–120.

    Google Scholar 

  38. Schallert, T. and Whishaw, I. Q. (1984) Bilateral cutaneous stimulation of the somatosensory system in hemidecorticate rats. Behay. Neurosci. 98, 518–540.

    Article  CAS  Google Scholar 

  39. Schallert, T. and Whishaw, I. Q. (1985) Neonatal hemidecortication and bilateral cutaneous stimulation in rats. Dev. Psychobiol. 18, 501–514.

    Article  PubMed  CAS  Google Scholar 

  40. Hernandez, T. D. and Schallert, T. (1988) Seizures and recovery from experimental brain damage. Exp. Neurol. 102, 318–324.

    Article  PubMed  CAS  Google Scholar 

  41. Barth, T. M., Jones, T., and Schallert, T. (1990) Functional subdivisions of the rat sensorimotor cortex. Behav Brain Res. 39, 73–95.

    Article  PubMed  CAS  Google Scholar 

  42. Whishaw, I. G., O’Connor, W. T., and Dunnett, S. B. (1986) The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain 199, 805–843.

    Article  Google Scholar 

  43. Markgraf, C. G., Green, E., Hurwitz, B. E., Morikawa, E., Dietrich, W. D., McCabe, P. M., Ginsberg, M. D., and Schneiderman, N. (1992) Sensorimotor and cognitive consequences of middle cerebral artery occlusion in rats. Brain Res. 575, 238–246.

    Article  PubMed  CAS  Google Scholar 

  44. Dunnett, S. B., Hernandez, T. D., Summerfield, A., Jones, G. H., and Arbuthnott, G. (1988) Graft-derived recovery from 6-OHDA lesions: specificity of ventral mesencephalic graft tissues. Exp. Brain. Res. 71, 411–424.

    Article  PubMed  CAS  Google Scholar 

  45. Olsson, M., Nikkhah, G., Bentlage, C., and Bjorklund, A. (1995) Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J. Neurosci. 15, 3863–3875.

    PubMed  CAS  Google Scholar 

  46. Ungerstedt, U. and Arbuthnott, G. (1970) Quantitative recording of rotational behavior in rats after 6-OHDA lesions of the nigrostriatal dopamine system. Brain Res. 24, 485–493.

    Article  PubMed  CAS  Google Scholar 

  47. Schallert, T. and Hall, S. (1988) ‘Disengage’ sensorimotor deficit following apparent recovery from unilateral dopamine depletion. Behay. Brain Res. 30, 15–24.

    Article  CAS  Google Scholar 

  48. Hall, S. and Schallert, T. (1988) Striatal dopamine and the interface between orienting and ingestive functions. Physio. Behay. 44, 469–471.

    Article  CAS  Google Scholar 

  49. Schallert, T., Petrie, B. F., and Whishaw, I. Q. (1989) Neonatal dopamine depletion: spared and unspared sensorimotor and attentional disorders and effects of further depletion in adulthood. Psychobiology 17, 386–396.

    CAS  Google Scholar 

  50. Hall, S., Rutledge, J. N., and Schallert, T. (1992) MRI, brain iron and experimental Parkinson’s disease. J. Neurol. Sci. 113, 1–11.

    Article  Google Scholar 

  51. Mandel, R. J., Yurek, D. M., and Randall, P. K. (1990) Behavioral demonstration of a reciprocal interaction between dopamine receptor subtypes in the mouse striatum: possible involvement of the striato-nigral pathway. Brain Res. Bull. 25, 285–292.

    Article  PubMed  CAS  Google Scholar 

  52. Nikkhah, G., Duan, W.-M., Knappe, U., Jodicke, A., and Bjorklund, A. (1993) Restoration of complex sensorimotor behavior and skilled forelimb use by a modified nigral cell suspension transplantation approach in the rat Parkinson model. Neuroscience 56, 33–43.

    Article  PubMed  CAS  Google Scholar 

  53. Miklyaeva, E. I. and Whishaw, I. Q. (1996) Hemiparkinson analogue rats display active support in good limbs versus passive support in bad limbs on a skilled reaching task of variable height. Behay. Neurosci. 110, 117–125.

    Article  CAS  Google Scholar 

  54. Montoya, C. P., Campbell, H. L., Pemberton, K. D., Dunnett, S. B. (1991) The ‘staircase test’: a measure of independent forelimb reaching and grasping abilities in rats. J. Neurosci. Methods 36, 2–3.

    Article  Google Scholar 

  55. Barneoud, P., Parmentier, S., Mazadier, M., Miquet, J. M., Boireau, A., Dubedat, P., and Blanchard, J. D. (1995) Effects of complete and partial lesions of the dopaminergic mesotelencephalic system on skilled forelimb use in the rat. Neuroscience 67, 837–848.

    Article  PubMed  CAS  Google Scholar 

  56. Sabol, K. E., Neill, D. B., Wages, S. A., Church, W. H., and Justice, J. B. (1985) Dopamine depletion in a striatal subregion dirupts performance of a skilled motor task in the rat. Brain Res. 335, 33–43.

    Article  PubMed  CAS  Google Scholar 

  57. Spirduso, W. W., Gilliam, P. E., Schallert, T., Upchurch, M., Vaughn, D. M., and Wilcox, R. E. (1985) Reactive capacity: a sensitive behavioral marker of movement initiation and nigro-striatal dopamine function. Brain Res. 335, 45–54.

    Article  PubMed  CAS  Google Scholar 

  58. Amalric, M. and Koob, G. F. (1987) Depletion of dopamine in the caudate nucleus but not in nucleus accumbens impairs reaction-time performance in rats. J. Neurosci. 7, 2129–2134.

    PubMed  CAS  Google Scholar 

  59. Hoyman, L., Weese, G. D., and Frommer, G. P. (1978) Tactile discrimination performance deficits following neglect-producing unilateral lateral hypothalamic lesions in the rat. Physiol. Behay. 22, 139–147.

    Article  Google Scholar 

  60. Marshall, J. F. (1980) Basal ganglia dopaminergic control of sensorimotor functions related to motivated behavior, in Neural Mechanisms of Goal-Directed Behavior and Learning (Thompson, R. F., Hicks, L. H., and Shvyrkov, V. B., eds.), Academic Press, New York.

    Google Scholar 

  61. Borlongan, C. V. and Sanberg, P. R. (1996) Asymmetrical motor behavior in animal models of human diseases: the elevated body swing test, in Motor Activity and Movement Disorders. (Sanberg, P. R., Ossenkopp, K. P., and Kavaliers, M., eds.), Humana Press, Totowa, NJ.

    Google Scholar 

  62. Fornaguera, J., Carey, R. J., Huston, J. P., and Schwarting, R. K. W. (1994) Behavioral asymmetries and recovery in rats with different degrees of unilateral striatal dopamine depletion. Brain Res. 664, 178–188.

    Article  PubMed  CAS  Google Scholar 

  63. Huston, J. P., Steiner, H., Weiler, H.-T., Morgan, S., and Schwarting, R. K. W. (1990) The basal ganglia-orofacial system: studies on neurobehavioral plasticity and sensory-motor turning. Neurosci. Biobehay. Rev. 14, 433–446.

    Article  CAS  Google Scholar 

  64. Rutledge, J. N., Hilal, S. K., Schallert, T., Silver, A. J., Defendini, R. D., and Fahn, S. (1987) Magnetic resonance imaging of Parkinsonisms, in Recent Developments in Parkinson’s Disease, Vol. II. (Fahn, S., Marsden, C. D., Goldstein, M., and Calne, D. B., eds.), S. Macmillan Healthcare Information, Florham Park, NJ.

    Google Scholar 

  65. Marshall, J. F., Richardson, J. S., and Teitelbaum, P. (1974) Nigrostriatal bundle damage and the lateral hypothalamic syndrome. J. Comp. Physiol. Psychol. 87, 808–830.

    Article  PubMed  CAS  Google Scholar 

  66. Lindner, M. D., Plone, M. A., Jonathan, F. M., Blaney, T. J., Salamone, J. D., and Emerich, D. F. (1997) Rats with partial striatal dopamine depletions exhibit robust and long-lasting behavioral deficits in a simple fixed-ratio bar-pressing. Behay. Brain Res. 85, 25–40.

    Article  Google Scholar 

  67. Fearnley, J. M. and Lees, A. J. 1991. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114, 2283–2301.

    Article  PubMed  Google Scholar 

  68. Schallert, T. (1989) Preoperative intermittent feeding or drinking regimens enhance postlesion sensorimotor function, in Preoperative Events: Their Events on Behavior Following Brain Damage (Schulkin, J. ed.), Lawrence Erlbaum Associates, Mahwah, NJ, pp. 1–20.

    Google Scholar 

  69. Schallert, T., Humm, J. L., Bland, S., Kolb, B., Aronowski, J., and Grotta, J. (1999) Activity-dependent growth factor expression and related neuronal events in recovery of function after brain injury. Proceedings of the Princeton Conference on Cerebraovascular Disorders, in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schallert, T., Tillerson, J.L. (2000). Intervention Strategies for Degeneration of Dopamine Neurons in Parkinsonism. In: Emerich, D.F., Dean, R.L., Sanberg, P.R. (eds) Central Nervous System Diseases. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-691-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-691-1_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-152-3

  • Online ISBN: 978-1-59259-691-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics