Skip to main content

The Senescence-Accelerated Mouse as a Possible Animal Model of Senile Dementia

  • Chapter
Central Nervous System Diseases

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 238 Accesses

Abstract

Recent demographic trends toward a markedly aging population have led to concerns about more people developing age-associated diseases, in particular senile dementia. Therefore, it is important to clarify the basic mechanism of age-related changes in brain functions such as learning and cognitive deficiency and to develop safe and effective means of prevention and treatment of age-associated diseases. To do so, a useful animal model of age-associated diseases is essential. As one alternative model, Takeda et al. (1,2) developed the senescence-accelerated mouse (SAM) as a murine model of accelerated aging. SAM strains have a shortened life-span and develop early manifestations of senescence, including decreased activity, alopecia, lack of hair glossiness, skin coarseness, periophthalmic lesions, increased lordokyphosis, and systemic senile amyloidosis. The SAMP8 strain of senescence-related prone mice (SAMP) shows an age-related deterioration in learning ability compared with the control strain SAMR1, senescence-resistant mice (SAMR) (3–5). We studied neurochemical changes in the SAMP8 brain compared to the SAMR1 brain during aging (6,7) and the effectiveness of several drugs in preventing age-related changes in the SAMP8 brain. In this chapter, we report the neurochemical and pharmacological findings of a study of SAMP8 and SAMR1 mice and discuss the significance and limitations of SAMP8 in basic studies of the aging mechanism and the screening and development of novel cognitive enhancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Takeda, T., Hosokawa, M., Takeshita, S., Irino, M., Higuchi, K., Matsusita, T., Tomita, Y., Yasuhira, K., Hashimoto, H., Shimizu, K., Ishii, M., and Yamamura, T. (1981) A new murine model of accelerated senescence. Mech. Aging Dev. 17, 183–194.

    Article  PubMed  CAS  Google Scholar 

  2. Takeda, T., Hosokawa, M., and Higuchi, K. (1991) Senescence-accelerated mouse (SAM): novel murine model of accelerated senescence. J. Am. Geriatr. Soc. 39, 911–919.

    PubMed  CAS  Google Scholar 

  3. Miyamoto, M., Kiyota, Y., Yamazaki, N., Nagoaka, A., Matsuo, Y., and Takeda, T. (1986) Age related changes in learning and memory in the senescence-accelerated mouse (SAM). Physiol. Behay. 38, 399–406.

    Article  CAS  Google Scholar 

  4. Ohta, A., Hirano, T., Yagi, H., Tanaka, S., Hosokawa, M., and Takeda, T. (1989) Behavioral characteristics of the SAM-P/8 mice strain sidman active avoidance task. Brain Res. 498, 195–198.

    Article  PubMed  CAS  Google Scholar 

  5. Yagi, H., Katoh, S., Akiguchi, I., and Takeda, T. (1988) Age-related deterioration of ability of acquisition in memory and learning in senescence accelerated mouse: SAM-P/8 as an animal model of disturbances in recent memory. Brain Res. 474, 86–93.

    Article  PubMed  CAS  Google Scholar 

  6. Nomura, Y., Kitamura, Y., Zhao, X.-H., Ohnuki, T., Takei, M., Yamanaka, Y., and Nishiya, T. (1994) Neurochemical studies on aging in SAM brain, in The SAM Model of Senescence (Takeda, T., ed.), Excerpta Medica, Amsterdam/Tokyo, pp. 83–88.

    Google Scholar 

  7. Nomura, Y., Yamanaka, Y., Kitamura, Y., Arima, T., Ohnuki, T., Nagashima, K., Ihara, Y., Sasaki, K., and Oomura, Y. (1996) Senescence accelerated mouse: neurochemical studies on aging. Ann. NY Acad. Sci. 786, 410–418.

    Article  PubMed  CAS  Google Scholar 

  8. Plaitakis, A., Berl, S., and Yahr, M. D. (1984) Neurological disorders associated with deficiency of glutamate dehydrogenase. Ann. Neurol. 15, 144–153.

    Article  PubMed  CAS  Google Scholar 

  9. Kanazawa, I., Kwak, S., Sasaki, H., Mizusawa, H., Muramoto, O., Yoshizawa, K., Nukina, N., Kitamura, K., Kurisaki, H., and Sugita, K. (1985) Studies on neurotransmitter markers and neuronal cell density in the cerebellar system in olivopontocerebellar atrophy and cortical cerebellar atrophy. J. Neurol. Sci. 71, 193–208.

    Article  PubMed  CAS  Google Scholar 

  10. Olney, J. W. (1990) Excitotoxic amino acids and neuropsychiatric disorders. Annu. Rev. Pharmacol. Toxicol. 30, 47–71.

    Article  PubMed  CAS  Google Scholar 

  11. Sugiyama, H., Akiyama, H., Akiguchi, I., Kameyama, M., and Takeda, T. (1987) Loss of dendritic spines in hippocampal CA1 pyramidal cells in senescence accelerated mouse (SAM) —a quantitative Golgi study. Clin. Neurol. 27, 841–845.

    CAS  Google Scholar 

  12. Nomura, Y., Kitamura, Y., and Zhao, X.-H. (1991) Aging in glutamatergic system and NMDA receptor-ion channels in brain of senescence-accelerated mouse, in NMDA Receptor Related Agents: Biochemistry, Pharmacology and Behavior (Kameyama, T., Nabeshima, T., and Domino, E. F., eds.), NPP Books, Ann Arbor, pp. 287–298.

    Google Scholar 

  13. Kitamura, Y., Zhao, X.-H., Ohnuki, T., Takei, M., and Nomura, Y. (1992) Age-related changes in transmitter glutamate and NMDA receptor/channels in the brain of senescenceaccelerated mouse. Neurosci. Lett. 137, 169–172.

    Article  PubMed  CAS  Google Scholar 

  14. Zhao, X.-H., Kitamura, Y., and Nomura, Y. (1992) Age-related changes in NMDA-induced [3H]acetylcholine release from brain slices of senescence-accelerated mouse. Int. J. Dev. Neurosci. 10, 121–129.

    Article  PubMed  CAS  Google Scholar 

  15. Zhao, X.-H. and Nomura, Y. (1990) Age-related changes in uptake and release of L-[3H]noradrenaline in brain slices of senescence accelerated mouse. Int. J. Dev. Neurosci. 81, 267–272.

    Article  Google Scholar 

  16. Nomura, Y., Kitamura, Y., Ohnuki, T., Arima, T., Yamanaka, Y., Sasaki, K., and Oomura, Y. (1997) Alterations in acetylcholine, NMDA, benzodiazepine receptors and protein kinase C in the brain of the senescence-accelerated mouse: an animal model useful for studies on cognitive enhancers. Behay. Brain. Res. 83, 51–55.

    Article  CAS  Google Scholar 

  17. Snell, L. D. and Johnson, K. M. (1986) Characterization of the inhibition of excitatory amino acid-induced neurotransmitter release in the rat striatum by phencyclidine-like drugs. J. Pharmacol. Exp. Ther. 238, 938–946.

    PubMed  CAS  Google Scholar 

  18. Kitamura, Y., Zhao, X.-H., Ohnuki, T., and Nomura, Y. (1989) Ligand-binding characteristics of [3H]QNB, [3H]prazosin, [3H]rauwolscine, [3H]TCP and [3H]nitrendipine to cerebral cortical and hippocampal membranes of senescence accererlated mouse. Neurosci. Lett. 106, 334–338.

    Article  PubMed  CAS  Google Scholar 

  19. Abeliovich, A., Paylor, R., Chen, C., Kim, J. J., Wehner, J. M., and Tonegawa, S. (1993) PKC gamma mutant mice exhibit mild deficits in spatial and contextual learning. Cell 75, 1263–1271.

    Article  PubMed  CAS  Google Scholar 

  20. Silva, A. J., Paylor, R., Wehner, J. M., and Tonegawa, S. (1992) Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257, 206–211.

    Article  PubMed  CAS  Google Scholar 

  21. Urushihara, H., Tohda, M., and Nomura, Y. (1992) Selective potentiation of NMDA-induced currents by protein kinase C in Xenopus oocytes injected with rat brain RNA. J. Biol. Chem. 267, 11697–11700.

    PubMed  CAS  Google Scholar 

  22. Kitamura, Y., Miyazaki, A., Yamanaka, T., and Nomura, Y. (1993) Stimulatory effects of protein kinase C and calmodulin kinase II on NMDA receptor/channels in the postsynaptic density of rat brain. J. Neurochem. 61, 100–109.

    Article  PubMed  CAS  Google Scholar 

  23. Huang, P. L., Dawson, T. M., Bredt, D. S., Snyder, S. H., and Fishman M. C. (1993) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75, 1273–1286.

    Article  PubMed  CAS  Google Scholar 

  24. Miyamoto, M., Kiyota, Y., Nishiyama, M., and Nagaoka, A. (1992) Senescenceaccelerated mouse (SAM): age-related reduced anxiety-like behavior in the SAM-P/8 strain. Physiol. Behay. 51, 979–985.

    Article  CAS  Google Scholar 

  25. Diorio, D., Welner, S. A., Butterworth, R. F., Meaney, M. J., and Suranyi-Cadotte, B. E. (1991) Peripheral benzodiazepine binding sites in Alzheimer’s disease frontal and temporal cortex. Neurobiol. Aging 12, 255–258.

    Article  PubMed  CAS  Google Scholar 

  26. Benavides, J., Fage, D., Carter, C., and Scatton, B. (1987) Peripheral type benzodiazepine binding sites are a sensitive indirect index of neuronal damage. Brain. Res. 421, 167–172.

    Article  PubMed  CAS  Google Scholar 

  27. Kitamura, Y., Yamanaka, Y., Nagashima, K., and Nomura, Y. (1994) The age-related increase in markers of astrocytes and amyloid precussor proteins in the brain of senescence-accelerated mouse (SAM), in The SAM Model of Senescence (Takeda, T., ed.), Excerpta Medica, Amsterdam/Tokyo, pp. 359–362.

    Google Scholar 

  28. Dardenne, M., Pleau, J. M., Blouquit, J. Y., and Bach, J. F. (1980) Chracterization of facteur thymique séique (FTS) in the thymus II. Direct demonstration of the presence of FTS in thymosin fraction V. Clin. Exp. Immunol. 42, 477–482.

    PubMed  CAS  Google Scholar 

  29. Tode, A., Egawa, M., and Nagai, R. (1983) Effect of 4-(o-benzylphenoxy)-N-methylbutylamine hydrochloride (MCI-2016) on the scopolamine-induced deficit of spontaneous alternation behavior in rats. Jpn. J. Pharmacol. 33, 775–784.

    Article  Google Scholar 

  30. Saito, K., Honda, S., Egawa, M., and Tobe, A. (1985) Effecs of bifemelane hydrochloride (MCI-2016) on acetylcholine release from cortical and hippocampal slices of rats. Jpn. J. Pharmacol. 39, 410–414.

    Article  PubMed  CAS  Google Scholar 

  31. Kitamura, Y., Ohnuki, T., and Nomura, Y. (1991) Effects of bifemelane, a brain function improver, on muscarinic receptors in the CNS of senescence-accelerated mouse. Jpn. J. Pharmacol. 56, 231–235.

    Article  PubMed  CAS  Google Scholar 

  32. Hanai, K., Oomura, Y., Kai, Y., Nishikawa, K., Shimizu, N., Morita, H., and Plata-Salaman, C. R. (1989) Central action of acidic fibroblast growth factor in feeding regulation. Am. J. Physiol. 256, R217–223.

    Google Scholar 

  33. Oomura, Y., Sasaki, K., Suzuki, K., Muto, T., Li, A. J., Ogita, Z., Hanai, K., Tooyama, I., Kimura, H., and Yanaihara, N. (1992) A new brain glucosensor and its physiological significance. Am. J. Clin. Nutr. 55 (Suppl. 1), 278S–282S.

    Google Scholar 

  34. Sasaki, K., Oomura, Y., Muto, T., Suzuki, K., Hanai, K., Tooyama, I., Kimura, H., and Yanaihara, N. (1991) Effects of fibroblast growth factors and platelet-derived growth factor on food intake in rats. Brain Res. Bull. 27, 327–332.

    Article  PubMed  CAS  Google Scholar 

  35. Gospodarowicz, D., Neufeld, G., and Schweigerer, L. (1986) Fibroblast growth factor. Mol. Cell. Endocrinol. 46, 187–204.

    Article  PubMed  Google Scholar 

  36. Neufeld, G., Gospodarowicz, D., Dodge, L., and Fujii, D. K. (1987) Heparin modulation of the neurotropic effects of acidic and basic fibroblast growth factors and nerve growth factor on PC 12 cells. J. Cell. Physiol. 131, 131–140.

    Article  PubMed  CAS  Google Scholar 

  37. Oomura, Y., Sasaki, A., Li, A., Kimura, H., Tooyama, I., Hanai, K., Nomura, Y., Kitamura, Yanaihara, N., and Yago, H. (1994) FGF facilitation of learning and memory and protection from memory loss in senescence accelerated mice, in The SAM Model of Senescence (Takeda, T., ed.), Excerpta Medica, Amsterdam/Tokyo, pp. 415–418.

    Google Scholar 

  38. Oomura, Y., Sasaki, K., Li, A., Yoshii, H., Fukata, Y., Yago, H., Kimura, H., Tooyama, K., Hanai, K., Nomura, Y., Kitamura, K., and Yanaihara, N. (1996) Protection against impairment of memory and immunoreactivity in senescence-accelerated mice by acidic fibroblast frowth factor. Ann. NY Acad. Sci. 786, 337–347.

    Article  PubMed  CAS  Google Scholar 

  39. Kaufman, D. B. (1980) Maturational effects thymic hormones on human helper and suppressor T cells: effects of FTS (factuer thymique serique) and thymosin. Clin. Exp. Immunol. 39, 722–727.

    PubMed  CAS  Google Scholar 

  40. Nagai, Y., Osanai, T., and Sakakibara, K. (1982) Intensive suppression of experimental allergic encephalomyelitis (EAE) by serum thymic factor and therapeutic implication for multiple sclerosis. Jpn. J. Exp. Med. 52, 213–219.

    PubMed  CAS  Google Scholar 

  41. Amor, B., Dougados, M., Mery, C., Gery, A. D., Choay, J., Dardenne, M., and Bach, J. F. (1984) Thymuline (FTS) in rheumatoid arthritis. Arthritis Rheum. 27, 117–118.

    Article  PubMed  CAS  Google Scholar 

  42. Bordigoni, P., Faure, G., Bene, M. C., Dardenne, M., Bach, J. F., Duheille, J., and Olive, D. (1982) Improvement of cellular immunity and lgA production in immunodeficient children after treatment with synthetic serum thymic factor (FTS). Lancet ii, 293–297.

    Article  Google Scholar 

  43. Blazsek, I. and Lenfant, M. (1983) The stimulatory effect of serum thymic factor (FTS) on spontaneous DNA synthesis of mouse thymocytes. Cell Tissue Kinet. 16, 247–257.

    PubMed  CAS  Google Scholar 

  44. Vécsei, L., Faludi, M., and Najbauer, J. (1987) The effect of “facteur thymique sérique” (FTS) on catecholamine and serotonin neurotransmission in discrete brain regions of mice. Acta Physiol. Hungarica 69, 129–132.

    Google Scholar 

  45. Zhao, X.-H., Awaya, A., Kobayashi, H. C., and Nomura, Y. (1990) Effects of repeated administration of facteur thymique serique (FTS) on biochemical changes related to aging in senescence-accelerated mouse (SAM). Jpn. J. Pharmacol. 53, 311–319.

    Article  PubMed  CAS  Google Scholar 

  46. Arima, T., Baba, I., Hori, H., Kitamura, Y., Namba, T., Hattori, M., Kadota, S., and Nomura, Y. (1996) Ameliorating effects of dan-shen methanol extract on cognitive deficiencies in senescence-accelerated mouse. Kor. J. Gerontol. 6, 14–21.

    Google Scholar 

  47. Arima, T., Matsuno, J., Hori, H., Kitamura, Y., Namba, T., Hattori, M., Kadota, S., and Nomura, Y. (1997) Ameliorating effects of calcium/magnesium lithospermate B on cognitive deficiencies in senescence-accelerated mouse. Kor. J. Gerontol. 7, 17–24.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nomura, Y., Okuma, Y., Kitamura, Y. (2000). The Senescence-Accelerated Mouse as a Possible Animal Model of Senile Dementia. In: Emerich, D.F., Dean, R.L., Sanberg, P.R. (eds) Central Nervous System Diseases. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-691-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-691-1_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-152-3

  • Online ISBN: 978-1-59259-691-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics