Skip to main content

Systemic Administration of 3-Nitropropionic Acid

A New Model of Huntington’s Disease in Rat

  • Chapter

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Huntington’s disease (HD) is a neurodegenerative disorder characterized by dyskinetic abnormal movements and cognitive decline associated with progressive atrophy of the striatum (1). Generally onset of symptoms occurs in adults and the disease evolves over 10–15 yr toward a fatal outcome. The gene responsible for HD has been identified, and molecular studies of the corresponding encoded protein named huntingtin have made considerable progress (2). However, there are no appropriate phenotypic animal models of the disease based on transgenesis, and the mechanism underlying cell death in HD remains largely unknown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harper, P. S. (1991) Huntington’s Disease (Harper, P. S., ed.), W. B. Saunders, London.

    Google Scholar 

  2. Sharp, A. H. and Ross, A. R. (1996) Neurobiology of Huntington’s disease. Neurobiol. Dis. 3, 3–15.

    Article  PubMed  CAS  Google Scholar 

  3. DiFiglia, M. (1990). Excitotoxic injury of the neostriatum is a model for Huntington’s disease. TINS 13, 286–289.

    PubMed  CAS  Google Scholar 

  4. Albin, R. L. and Greenamyre, J. T. (1992) Alternative excitotoxic hypotheses. Neurology 42, 733–738.

    Article  PubMed  CAS  Google Scholar 

  5. Beal, M. F. (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illness? Ann. Neurol. 31, 119–130.

    Article  PubMed  CAS  Google Scholar 

  6. Beal, M. F. (1995b) Aging, energy and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38, 357–366.

    Article  PubMed  CAS  Google Scholar 

  7. Martin, J. J., Van de Vyver, F. L., Scholte, H. R., Roodhooft, A. M., Ceuterick, C., Martin, L., and Luyt-Houwen, I. E. M. (1988) Defect in succinate oxidation by isolated muscle mitochondria in a patient with symmetrical lesions in the basal ganglia. J. Neurol. Sci. 84, 189–200.

    Article  PubMed  CAS  Google Scholar 

  8. Bourgeron, T., Rustin, P., Chretien, D., Birch-Machin, M., Bourgeois, M., Viegas-Pequignot, E., Munnich, A., and Rotig, A. (1995) Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat. Genet. 11, 144–149.

    Article  PubMed  CAS  Google Scholar 

  9. He, F., Zhang, S., Qian, F., and Zhang, C. (1995) Delayed dystonia with striatal CT lucencies induced by a mycotoxin (3-nitropropionic acid). Neurology 45, 2178–2183.

    Article  PubMed  CAS  Google Scholar 

  10. Gould, D. H. and Gustine, D. L. (1982) Basal ganglia degeneration, myelin alterations, enzyme inhibition induced in mice by the plant toxin 3-nitropropionic acid. Neuropathol. Appl. Neurobiol. 8, 377–393.

    Article  PubMed  CAS  Google Scholar 

  11. Gould, H., Wilson, M. P., and Hamar, D. W. (1985) Brain enzyme and clinical alterations induced in rats and mice by nitroaliphatic toxicants. Toxicol. Lett. 27, 83–89.

    Article  PubMed  CAS  Google Scholar 

  12. Hamilton, B. F. and Gould, D. H. (1987a) Correlation of morphological brain lesions with physiological alterations and blood—brain barrier impairment by 3-nitropropionic acid toxicity in rats. Acta Neuropathol. (Berl.) 74, 67–74.

    Article  CAS  Google Scholar 

  13. Hamilton, B. F. and Gould, D. H. (1987b) Nature and distribution of brain lesions in rats intoxicated with 3-nitropropionic acid: a type of hypoxic (energy deficient) brain damage. Acta Neuropathol. (Berl.) 72, 286–297.

    Article  CAS  Google Scholar 

  14. Beal, M. F., Brouillet, E., Jenkins, B., Ferrante, R., Kowall, N., Miller, J., Storey, E., Srivastava, R., Rosen, B., and Hyman, B. T. (1993a). Neurochemical and histologic characterization of the striatal lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 13, 4181–4192.

    PubMed  CAS  Google Scholar 

  15. Brouillet, E., Jenkins, B., Hyman, B., Ferrante, R. J., Kowall, N. W., Srivastava, R., Roy, D. S., Rosen, B., and Beal, M. F. (1993a) Age dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem. 60, 356–359.

    Article  PubMed  CAS  Google Scholar 

  16. Brouillet, E., Guyot, M.-C., Mittoux, V., Altairac, S., Condé, F., Palfi, S., and Hantraye, P. (1998a) Partial inhibition of brain succinate dehydrogenase by 3-nitropropionic acid is sufficent to initiate striatal degeneration in rat. J. Neurochem. 70, 794–805.

    Article  PubMed  CAS  Google Scholar 

  17. Guyot, M. C., Hantraye, P., Dolan, R., Palfi, S., Mazière, M., and Brouillet, E. (1997a) Quantifiable bradykinesia, gait abnormalities and Huntington’s disease-like striatal lesions in rats chronically treated with 3-nitropropionic acid. Neuroscience 79, 45–56.

    Article  PubMed  CAS  Google Scholar 

  18. Guyot, M. C., Palfi, S., Stutzmann, J. M., Mazière, M., Hantraye, P., and Brouillet, E. (1997b) Riluzole protects from motor deficits and striatal degeneration produced by systemic 3-nitropropionic acid intoxication in rats. Neuroscience 81, 141–149.

    Article  PubMed  CAS  Google Scholar 

  19. Jenkins, B. G., Brouillet, E., Chen, Y. C., Storey, E., Schulz, J. B., Kirschner, P., Beal, M. F., and Rosen, B. R. (1996) Non-invasive neurochemical analysis of focal excitotoxic lesions in models of neurodegenerative illness using spectroscopic imaging. J. Cereb. Blood Flow Metab. 16, 450–461.

    Article  PubMed  CAS  Google Scholar 

  20. Frim, D. M., Simpson, J., Uhler, T. A., Short, M. P., Bossi, S. R., Breakfield, X. O., and Isacson, O. (1993) Striatal degeneration induced by mitochondrial blockade is prevented by biologically delivered NGF. J. Neurosci. Res. 35, 452–458.

    Article  PubMed  CAS  Google Scholar 

  21. Galpert, W. R., Matthews, R. T., Beal, M. F., and Isacson, O. (1996) NGF attenuates 3-nitrotyrosine formation in a 3NP model of Huntington’s disease. NeuroReport 7, 2639–2642.

    Google Scholar 

  22. Matthews, R. T., Yang, L., Jenkins, B. G., Ferrante, R. J., Rosen, B. R., Kaddurah-Daouk, R., and Beal, M. F. (1998a) Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J. Neurosci. 18, 156–163.

    PubMed  CAS  Google Scholar 

  23. Matthews, R. T., Yang, L., Browne, S., Baik, M., and Beal, M. F. (1998b) Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc. Natl. Acad. Sci. USA 95, 8892–8897.

    Article  PubMed  CAS  Google Scholar 

  24. Nishino, H., Shimano, Y., Kumazaki, M., and Sakurai, T. (1995) Chronically administered 3-nitropropionic acid induces striatal lesions attributed to dysfunction of the blood—brain barrier. Neurosci. Lett. 186, 161–164.

    Article  PubMed  CAS  Google Scholar 

  25. Schulz, J.B., Matthews, R. T., Jenkins, B. G., Ferrante, R. J., Siwek, D., Henshaw, D. R., Cipolloni, P. B., Meccoci, P., Kowall, N. W., Rosen, B. R., and Beal, M. F. (1995b) Blockade of neuronal nitric oxide synthase protects against excitotoxicity in vivo. J. Neurosci. 15, 8419–8429.

    PubMed  CAS  Google Scholar 

  26. Borlongan, C. V., Koutousis, T. K., Freeman, T. B., Cahill, D. W., and Sanberg, P. R. (1995a) Behavioral pathology induced by repreated systemic injections of 3-nitropropionic acid mimics the motoric symptoms of Huntington’s disease. Brain Res. 697, 254–257.

    Article  PubMed  CAS  Google Scholar 

  27. Borlongan, C. V., Koutousis, T. K., Randall, T. S., Freeman, T. B., Cahill, D. W., and Sanberg, P. R. (1995b) Systemic 3-nitropropionic acid: behavioral deficits and striatal damage in adult rats. Brain Res. Bull. 36, 549–556.

    Article  PubMed  CAS  Google Scholar 

  28. Wüllner, U., Young, A., Penney, J., and Beal, M. F. (1994) 3-Nitropropionic acid toxicity in the striatum. J. Neurochem. 63, 1772–1781.

    Article  PubMed  Google Scholar 

  29. Kremer, B., Weber, B., and Hayden, M. R. (1992) New insights into the clinical features, pathogenesis and molecular genetics of Huntington’s disease. Brain Pathol. 2, 321–335.

    Article  PubMed  CAS  Google Scholar 

  30. Myers, R. H., Vonsattel, J. P., Stevens, T. J., Cupples, L. A., Richardson, E. P., Martin, J. B., and Bird, E. D. (1988) Clinical and neuropathologic assessment of severity in Huntington’s disease. Neurology 38, 341–347.

    Article  PubMed  CAS  Google Scholar 

  31. Vonsattel, J.-P., Myers, R. H., and Stevens, T. J. (1985) Neuropathological classification of Huntington’s disease. J. Neuropathol. Exp. Neurol. 44, 559–577.

    Article  PubMed  CAS  Google Scholar 

  32. Kowall, N., Ferrante, R. J., and Martin, J. B. (1987) Patterns of cell loss in Huntington’s disease. TINS 10, 24–29.

    Google Scholar 

  33. Beal, M. F., Ellison, D. W., and Martin, J. B. (1987) Inhibition in Huntington’s disease. J. Mind Behay. 8, 635–642.

    Google Scholar 

  34. Bird, E. D. and Iversen, L. L. (1977) Neurochemical findings in Huntington’s chorea, in Esaays in Neurochemistry and Neuropharmacology, Vol. 1 (Youdim, M. B. H., Sharman, D. F., Lovenberg, W., and Lagnado, J. R., eds.), John Wiley & Sons, New York, pp. 177–195.

    Google Scholar 

  35. Buck, S. H., Burks, T. F., Brown, M. R., and Yamamura, H. I. (1981) Reduction in basal ganglia and sustantia nigra substance P levels in Huntington’s disease. Brain Res. 209, 464–469.

    Article  PubMed  CAS  Google Scholar 

  36. Aronin, N., Cooper, P. E., Lorenz, L. J., Bird, E. D., Sagar, S. M., Leeman, S. E., and Martin, J. B. (1983) Somatostatin is increased in the basal ganglia in Huntington’s disease. Ann. Neurol. 13, 519–526.

    Article  PubMed  CAS  Google Scholar 

  37. Beal, M. F., Ellison, D. W., Mazurek, M. F., Swartz, K. J., Malooy, J. R., Bird, E. D., and Martin, J. B. (1988a) A detailed examination of substance P in pathologically graded cases of Huntington’s disease. J. Neurol. Sci. 84, 51–61.

    Article  PubMed  CAS  Google Scholar 

  38. Richfield, E. K., Maguire-Zeiss, K. A., Vonkeman, H. E., and Voorn, P. (1995) Preferential loss of preproenkephalin versus preprotachykinin neurons from the striatum of Huntington’s disease patients. Ann. Neurol. 38, 852–861.

    Article  PubMed  CAS  Google Scholar 

  39. Spokes, E. G. S. (1980) Neurochemical alterations in Huntington’s chorea: a study of postmortem brain tissue. Brain 103, 179–210.

    Article  PubMed  CAS  Google Scholar 

  40. Storey, E. and Beal, M. F. (1993) Neurochemical substrates of rigidity and chorea in Huntington’s disease. Brain 116, 1201–1222.

    Article  PubMed  Google Scholar 

  41. Ferrante, R. J., Kowall, N. W., and Richardson, E. P., Jr. (1991) Proliferative and degenerative changes in striatal spiny-neurons in Huntington’s disease: a combine study using the section-Golgi method and calbindin D28k immunochemistry. J. Neurosci. 11, 3877–3887.

    PubMed  CAS  Google Scholar 

  42. Goto, S., Hirano, A., and Rojas-Corona, R. R. (1989) An immunohistochemical investigation of the human neostriatum in Huntington’s disease. Ann. Neurol. 25, 298–304.

    Article  PubMed  CAS  Google Scholar 

  43. Kiyama, H., Seto-Ohshima, A., and Emson, P. C. (1990) Calbindin D28k as a marker for the degeneration of the striatonigral pathway in Huntington’s disease. Brain Res. 525, 209–214.

    Article  PubMed  CAS  Google Scholar 

  44. Seto-Oshima, A., Emson, P. C., Lawson, E., Mountjoy, C. Q., and Carrasco, L. H. (1988) Loss of matrix calcium-binding protein-containing neurons in Huntington’s disease. Lancet 1, 1252–1255.

    Article  Google Scholar 

  45. Graveland, G. A., Williams, R. S., and DiFiglia, M. (1985) Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 227, 770–773.

    Article  PubMed  CAS  Google Scholar 

  46. Ferrante, R. J., Kowall, N. W., Beal, M. F., Richardson, E. P., and Martin, J. B. (1985) Selective sparing of a class of striatal neurons in Huntington’s disease. Science 230, 561–563.

    Article  PubMed  CAS  Google Scholar 

  47. Ferrante, R. J., Kowall, N. W., Beal, M. F., Martin, J. B., Bird, E. D., and Richardson, E. P. (1987c) Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J. Neuropathol. Exp. Neurol. 46, 12–27.

    Article  PubMed  CAS  Google Scholar 

  48. Dawbarn, D., DeQuidt, M. E., and Emson, P. C. (1985) Survival of basal ganglia neuropeptide Y somatostatin neurones in Huntington’s disease. Brain Res. 340, 251–261.

    Article  PubMed  CAS  Google Scholar 

  49. Beal, M. F., Mazurek, M. F., Ellison, D. W., Swartz, K. J., MacGarvey, U., Bird, E. D., and Martin, J. B. (1988b) Somatostatin and neuropeptide Y concentrations in pathologically graded cases of Huntington’s disease. Ann. Neurol. 23, 562–569.

    Article  PubMed  CAS  Google Scholar 

  50. Hope, B. T., Michael, G. J., Knigge, K. M., and Vincent, S. R. (1991) Neuronal NADPH-diaphorase is a nitric oxide synthase. Proc. Natl. Acad. Sci. USA 88, 2811–2814.

    Article  PubMed  CAS  Google Scholar 

  51. Dawson, T. M., Bredt, D. S., Fotuhi, M., Hwang, P. M., and Snyder, S. H. (1991) Nitric oxide synthase and neuronal NADPH-diaphorase are identical in brain and peripheral tissues. Proc. Natl. Acad. Sci. USA 88, 7797–7801.

    Article  PubMed  CAS  Google Scholar 

  52. Bredt, D. S. and Snyder, S. H. (1992) Nitric oxide, a novel neuronal messenger. Neuron 8, 3–11.

    Article  PubMed  CAS  Google Scholar 

  53. Dawson, V. L., Dawson, T. M., Bartley, D. A., Uhl, G. R., and Snyder, S.H. (1993) Mechanisms of nitric oxide mediated neurotoxicity in primary brain cultures. J. Neurosci. 13, 2651–2661.

    PubMed  CAS  Google Scholar 

  54. Ferrante, R. J., Beal, M. F., Kowall, N. W., Richardson, E. P., and Martin, J. B. (1987b) Sparing of acetylcholinesterase-containing striatal neurons in Huntington’s disease. Brain Res. 411, 162–166.

    Article  PubMed  CAS  Google Scholar 

  55. Beal, M. F., Matson, W. R., Swartz, K. J., Gamache, P. H., and Bird, E. D. (1990) Kynurenine pathway measurements in Huntington’s disease striatum: evidence for reduced formation of kynurenic acid. J. Neurochem. 55, 1327–1339.

    Article  PubMed  CAS  Google Scholar 

  56. Bird, E. D. and Iversen, L. L. (1974) Huntington’s chorea. Post-mortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia. Brain 97, 452–472.

    Article  Google Scholar 

  57. Ferrante, R. J. and Kowall, N. W. (1987a) Tyrosine hydroxylase-like immunoreactivity is distributed in the matrix compartment of normal human and Huntington’s disease striatum. Brain Res. 416, 141–146.

    Article  PubMed  CAS  Google Scholar 

  58. McGeer, P.L. and McGeer, E. G. (1976b) Enzymes associated with the metabolism of cathecholamines, acetylcholine and GABA in human controls and patients with Parkinson’s disease and Huntington’s chorea. J. Neurochem. 26, 65–76.

    PubMed  CAS  Google Scholar 

  59. DiFiglia, M., Sapp, E., Chase, K. O., Davies, S. W., Bates, G. P., Vonsattel, J. P., and Aronin, N. (1997) Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993.

    Article  PubMed  CAS  Google Scholar 

  60. Savoiardo, M., Strada, L., Oliva, D., Girotti, F., and D’Incerti, L. (1991) Abnormal MRI signal in the rigid form of Huntington’s disease. J. Neurol. Neurosurg. Psychiatry 54, 888–891.

    Article  PubMed  CAS  Google Scholar 

  61. Lenti, C. and Bianchini, E. (1993) Neuropsychological and neuroradiological study of a case of early-onset Huntington’s chorea. Dey. Med. Child Neurol. 35, 1007–1010.

    Article  CAS  Google Scholar 

  62. Oliva, D., Carella, F., Savoiardo, M., Strada, L., Giovannini, P., Testa, D., Filippini, G., Caraceni, T., and Girotti, F. (1993) Clinical and magnetic resonance features of the classic and akinetic-rigid variants of Huntington’s disease. Arch. Neurol. 50, 17–19.

    Article  PubMed  CAS  Google Scholar 

  63. Portera-Caillau, C., Hedreen, J. C., Price, D. L., and Koliatsos, V. E. (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J. Neurosci. 15, 3775–3787.

    Google Scholar 

  64. Thomas, L. B., Gates, D. J., Richfield, E. K., O’Brien, T. F., Schweitzer, J. B., and Steindler, D. A. (1995) DNA end labeling (TUNEL) in Huntington’s disease and other neuropathological conditions. Exp. Neurol. 133, 265–272.

    Article  PubMed  CAS  Google Scholar 

  65. Gusella, J. F., Wexler, N. S., Conneally, P. M., Naylor, S. L., Anderson, M. A., Tanzi, R. E., Watkins, P. C., Ottina, K., Wallace, M. R., Sakagushi, A. Y., Young, A. B., Shouldson, I., Bonnila, E., and Martin, J. B. (1986) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306, 234–238.

    Article  Google Scholar 

  66. The Huntington’s Disease Collaborative Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983.

    Article  Google Scholar 

  67. Wellington, C. L., Brinkman, R. R., O’ Kursky, J. R., and Hayden, M. R. (1997) To ard understanding the molecular pathology of Huntington’s disease. Brain Pathol. 7, 979–1002.

    Article  PubMed  CAS  Google Scholar 

  68. Goldberg, Y. P., Nicholson, D. W., Rasper, D. M., Kalchman, M. A., Koide, H. B., Graham, R. K., Bromm, M., Kazemi-esfarjani, P., Thornberry, N. A., Vaillancourt, J. P., and Hayden, M. R. (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat. Genet. 13, 442–449.

    Article  PubMed  CAS  Google Scholar 

  69. Burke, J. R., Enghild, J. J., Martin, M. E., Jou, Y.-S., Myers, R. M., Roses, A. D., Vance, J. M., Strittmatter, W. J. (1996) Huntingtin and DRPLA proteins selectively intereact with the enzyme GAPDH. Nat. Med. 2, 347–350.

    Article  PubMed  CAS  Google Scholar 

  70. Ishitani, R., Sunaga, K., Tanaka, M., Aishita, H., and Chuang, D.-M. (1997) Overexpression of glyceraldehyde-3-phosphate dehydrogenase is involved in low K+-induced apoptosis but not necrosis of cultured cerebellar cells. Mol. Pharmacol. 51, 542–550.

    PubMed  CAS  Google Scholar 

  71. Ishitani, R. and Chuang, D.-M. (1996) Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleoside-induced apoptosis in cultured cerebellar neurons. Proc. Natl. Acad. Sci. USA 93, 9937–9941.

    Article  PubMed  CAS  Google Scholar 

  72. Davies, S. W., Turmaine, M., Cozens, B., DiFiglia, M., Sharp, A. H., Ross, C. A., Scherzinger, E., Wanker, E. E., Mangiarini, L., and Bates, G. P. (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548.

    Article  PubMed  CAS  Google Scholar 

  73. Beal, M. F. (1995a) Mitochondrial Dysfunction and Oxidative Damage in Neurological Diseases. Neuroscience Intelligence Unit, R.G. Landes Company, Austin, TX.

    Google Scholar 

  74. Hennebery, R. C. (1989) The role of neuronal energy in the neurotoxicity of excitatory amino acids. Neurobiol. Aging 10, 611–613.

    Article  Google Scholar 

  75. McGeer, E. G. and McGeer, P. L. (1976a) Duplication of biochemical changes of Huntington’s chorea by intrastriatal injections of glutamic and kainic acid. Nature 263, 517–519.

    Article  PubMed  CAS  Google Scholar 

  76. Coyle, J. T. and Schwarcz, R. (1976) Lesion of striatal neurons with kainic acid provides a model for Huntington’s chorea. Nature 263, 244–246.

    Article  PubMed  CAS  Google Scholar 

  77. Beal, M. F., Kowall, N. W., Ellison, D. W., Mazurek, M. F., Swartz, K. J., and Martin, J. B. (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321, 168–171.

    Article  PubMed  CAS  Google Scholar 

  78. Beal, M. F., Ferrante, R. J., Swartz, K. J., and Kowall, N. W. (1991a) Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J. Neurosci. 11, 1649–1659.

    PubMed  CAS  Google Scholar 

  79. Ferrante, R. J., Kowall, N. W., Cipolloni, P. B., Storey, E., and Beal, M. F. (1993) Excitotoxin lesions in primates as a model for Huntington’s disease: histopathologic and neurochemical characterization. Exp. Neurol. 119, 46–71.

    Article  PubMed  CAS  Google Scholar 

  80. Roberts, R., Ahn, A., Swartz, K. J., Beal, M. F., and DiFiglia, M. (1993) Intrastriatal injections of quinolinic acid or kainic acid: differential patterns of cell survival and effects of data analysis on outcome. Exp. Neurol. 124, 274–282.

    Article  PubMed  CAS  Google Scholar 

  81. Schwarcz, R., Fuxe, K., Agnati, L. F., Hökfelt, T., and Coyle, J. T. (1979) Rotational behaviour in rats with unilateral striatal kainic acid lesions: a behavioural model for studies on intact dopamine receptors. Brain Res. 170, 485–495.

    Article  PubMed  CAS  Google Scholar 

  82. Dunnett, S. B. and Iversen, S. D. (1982) Spontaneous and drug-induced rotation following localized 6-hydroxydopamine and kainic acid-induced lesions of the neostriatum. Neuropharmacology 21, 899–908.

    Article  PubMed  CAS  Google Scholar 

  83. Isacson, O., Brundin, P., Kelly, P. A. T., Gage, F. H., and Borjklund, A. (1984) Functional neuronal replacement by grafted striatal neurones in the ibotenic acid lesioned rat striatum. Nature 311, 458–460.

    Article  PubMed  CAS  Google Scholar 

  84. Isacson, O., Dunnett, S. B., and Bjorklund, A. (1986) Behavioural recovery in an animal model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 83, 2728–2732.

    Article  PubMed  CAS  Google Scholar 

  85. Sanberg, P. R., Lehmann, J., and Fibiger, H. C. (1978) Impaired learning and memory after kainic acid lesions of the striatum: a behavioral model of Huntington’s disease. Brain Res. 149, 546–551.

    Article  PubMed  CAS  Google Scholar 

  86. Sanberg, P. R., Pisa, M., and Fibiger, H. C. (1979) Avoidance, operant and locomotor behavior in rats with neostriatal injections of kainic acid. Pharmacol. Biochem. Behay. 10, 137–144.

    Article  CAS  Google Scholar 

  87. Sanberg, B. R., Calderon, S. F., Giordano, M., Tew, J. M., and Norman, A. B. (1989) The quinolinic acid model of Huntington’s disease: locomotor abnormalities. Exp. Neurol. 105, 45–53.

    Article  PubMed  CAS  Google Scholar 

  88. Kanazawa, I., Kimura, M., Mutrata, M., Tanaka, Y., and Cho, F. (1986) Choreic movements induced by unilateral kainate lesions of the striatum and L-Dopa administration in monkey. Neurosci. Lett. 71, 241–246.

    Article  PubMed  CAS  Google Scholar 

  89. Hantraye, P., Riche, D., Maziere, M., and Isacson, O. (1990) An experimental primate model of Huntington’s disease: anatomical and behavioural studies of unilateral excitotoxic lesions of the caudate-putamen in the baboon. Exp. Neurol. 108, 91–104.

    Article  PubMed  CAS  Google Scholar 

  90. Hantraye, P., Riche, D., Mazière, M., and Isacson O. (1992) Intrastriatal transplantation of cross-species fetal striatal cells reduces abnormal movements in a primate model of Huntington’s disease. Proc. Natl. Acad Sci. USA 89, 4187–4191.

    Article  PubMed  CAS  Google Scholar 

  91. Beal, M. F., Kowall, N. W., Ferrante, R. J., and Cipolloni, P. B. (1989) Quinolinic acid striatal lesions in primates as a model of Huntington’s disease. Ann. Neurol. 26, 137.

    Google Scholar 

  92. Young, A. B., Greenamyre, J. T., Hollingsworth, Z., Albin, R., D’ Amato, C., Shoulson, I., and Penney, J. B. (1988) NMDA receptor losses in putamen from patients with Huntington’s disease. Science 241, 981–983.

    Article  PubMed  CAS  Google Scholar 

  93. Kuhl, D. E., Phelp, M. E., Markham, C. H., Metter, E. J., Riege, W. H., and Winter, J. (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computated tomographic scan. Ann. Neurol. 12, 425–434.

    Article  PubMed  CAS  Google Scholar 

  94. Garnett, E. S., Firnau, G., Nahmias, C., Carbotte, R., and Bartolucci, G. (1984) Reduced striatal glucose consumption and prolonged reaction time are early features in Huntington’s disease. J. Neurol. Sci. 65, 231–237.

    Article  PubMed  CAS  Google Scholar 

  95. Grafton, S. T., Mazziotta, J. C., Pahl, J. J., George-Hyslop, P. S., Haines, J. L., Gusella, J., Hoffman, J. M., Baxter, L. R., and Phelps, M. E. (1990) A comparison of neurological, metabolic, structural, and genetic evaluations in persons at risk for Huntington’s disease. Ann. Neurol. 28, 614–621.

    Article  PubMed  CAS  Google Scholar 

  96. Hayden, M. R., Martin, W. R. W., Stoessl, A. J., Clark, C., Hollenberg, S., Adam, M. J., Ammann, W., Harrop, R., Rogers, J., Ruth, T., Sayre, C., and Pate, B. D. (1986) Positron emission tomography in the early diagnosis of Huntington’s disease. Neurology 36, 888–894.

    Article  PubMed  CAS  Google Scholar 

  97. Kuwert, T., Lange, H. W., Langen, K.-J., Herzog, H., Aulich, A., and Feinendegen, L. E. (1990) Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain 113, 1405–1423.

    Article  PubMed  Google Scholar 

  98. Kuwert, T., Lange, H. W., Boecker, H., Titz, H., Herzog, H., Aulich, A., Wang, B.-C., Nayak, U., and Feinendegen, L. E. (1993) Striatal glucose consumption in chorea-free subjects at risk of Huntington’s disease. J. Neurol. 241, 31–36.

    Article  PubMed  CAS  Google Scholar 

  99. Mazziotta, J. C., Phelps, M. E., Pahl, J. J., Huang, S. C., Baxter, L. R., Riege, W. H., Hoffmann, J. M., Kuhl, D. E., Lanto, A. B., Wapenski, J. A., and Markham, C. H. (1987) Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington’s disease. N. Engl. J. Med. 316, 356–362.

    Article  Google Scholar 

  100. Jenkins, B. G., Koroshetz, W. J., Beal, M. F., and Rosen, R. (1993) Evidence for an energy metabolic defect in Huntington’s disease using localized proton spectroscopy. Neurology 43, 2689–2693.

    Article  PubMed  CAS  Google Scholar 

  101. Jenkins, B. G., Rosas, H. D., Chen, Y. C. I., Makabe, T., Myer, R., MacDonald, M., Rosen, B. R., Beal, M. F., and Koroshetz, W. J. (1998) 1H NMR spectroscopy studies of Huntington’s disease; correlation with CAG repeat numbers. Neurology 50, 1357–1365.

    Article  PubMed  CAS  Google Scholar 

  102. Koroshetz, W. J., Jenkins, B. G., Rosen, B. R., Beal, M. F. (1997) Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann. Neurol. 41, 160–165.

    Article  PubMed  CAS  Google Scholar 

  103. Brennan, W. A., Bird, E. D., and Aprille, J. R. (1985) Regional mitochondrial respiratory activity in Huntington’s disease brain. J. Neurochem. 44, 1948–1950.

    Article  PubMed  CAS  Google Scholar 

  104. Browne, S. E., Bowling, A. C., MacGarvey, U., Baik, M. J., Berger, S. C., Muqit, M. K., Bird, E. D., and Beal, M. F. (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann. Neurol. 41, 646–653.

    Article  PubMed  CAS  Google Scholar 

  105. Butterworth, J., Yates, C. M., and Reynolds, G. P. (1985) Distribution of phosphateactivated glutaminase, succinic dehydrogenase, pyruvate dehydrogenase and gammaglutamyl transpeptidase in post-mortem brain from Huntington’s disease and agonal cases. J. Neurol. Sci. 67, 161–171.

    Article  PubMed  CAS  Google Scholar 

  106. Gu, M., Gash, M. T., Mann, V. M., Javoy-Agid, F., Cooper, J. M., and Shapira, A. H. (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann. Neurol. 39, 385–389.

    Article  PubMed  CAS  Google Scholar 

  107. Mann, V. M., Cooper, J. M., Javoy-Agid, F., Agid, Y., Jenner, P., and Schapira, A. H. V. (1990) Mitochondrial function and parental sex effect in Huntington’s disease. Lancet 336, 749.

    Article  PubMed  CAS  Google Scholar 

  108. Novelli, A., Reilly, J. A., Lysko, P. G., Hennebery, R. C. (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res. 451, 205–212.

    Article  PubMed  CAS  Google Scholar 

  109. Zeevalk, G. D. and Nicklas, W. J. (1990) Chemically induced hypoglycemia and anoxia: relationship to glutamate receptor-mediated toxicity in retina. J. Pharmacol. Exp. Ther. 253, 1285–1292.

    PubMed  CAS  Google Scholar 

  110. Zeevalk, G. D. and Nicklas, W. J. (1991) Mechanisms underlying initiation of excitotoxicity associated with metabolic inhibition. J. Pharmacol. Exp. Ther. 257, 870–878.

    PubMed  CAS  Google Scholar 

  111. Zeevalk, G. D. and Nicklas, W. J. (1992) Evidence that the loss of the voltage-dependent Mg++ block at the N-methyl-D-aspartate receptor underlies receptor activation during inhibition of neuronal metabolism. J. Neurochem. 59, 1211–1220.

    Article  PubMed  CAS  Google Scholar 

  112. Marey-Semper, I., Gelman, M., and Levi-Strauss, M. (1995) A selective toxicity toward cultured mesencephalic dopaminergic neurons is induced by the synergistic effects of energy metabolism impairment and NMDA receptor activation. J. Neurosci. 15, 5912–5918.

    PubMed  CAS  Google Scholar 

  113. Schinder, A. F., Olson, E. C., Spitzer, N. C., and Montai, M. (1996) Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci. 116, 6125–6133.

    Google Scholar 

  114. White, R. J. and Reynolds, I. J. (1995) Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. J. Neurosci. 15, 1318–1328.

    PubMed  CAS  Google Scholar 

  115. Nowak, L., Bregestouski, P., Ascher, P., Herbert, A., and Prochiantz, A. (1984) Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307, 462–465.

    Article  PubMed  CAS  Google Scholar 

  116. Turski, L. and Turski, W. A. (1993) Towards an understanding of the role of glutamate in neurodegenerative disorders: energy metabolism and neuropathology. Experientia 49, 1064–1072.

    Article  PubMed  CAS  Google Scholar 

  117. Beal, M. F., Swartz, K. J., Hyman, B. T., Storey, E., Finn, S. F., and Koroshetz, W. (1991b) Aminooxyacetic acid results in excitotoxic lesions by a novel indirect mechanism. J. Neurochem. 57, 1068–1073.

    Article  PubMed  CAS  Google Scholar 

  118. Beal, M. F., Brouillet, E., Jenkins, B., Henshaw, R., Rosen, B., and Hyman, B. T. (1993b) Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J. Neurochem. 61, 1147–1150.

    Article  PubMed  CAS  Google Scholar 

  119. Brouillet, E., Shinobu, L., McGarvey, U., and Beal, M. F. (1993b). Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp. Neurol. 120, 89–94.

    Article  PubMed  CAS  Google Scholar 

  120. Greene, J. G., Porter, R. H. P., Eller, R. V., and Greenamyre, J. T. (1993) Inhibition of succinate dehydrogenase by malonic acid produces an “excitotoxic” lesion in rat striatum. J. Neurochem. 61, 1151–1154.

    Article  PubMed  CAS  Google Scholar 

  121. Greene, J. G. and Greenamyre, J. T. (1995) Characterization of the excitotoxic potential of the reversible succinate dehydrogenase inhibitor malonate. J. Neurochem. 64, 430–436.

    Article  PubMed  CAS  Google Scholar 

  122. Greene, J. G. and Greenamyre, J. T. (1996) Manipulation of membrane potential modulates malonate-induced striatal excitotoxicity in vivo. J. Neurochem. 66, 637–643.

    Article  PubMed  CAS  Google Scholar 

  123. Schultz, J. B., Henshaw, D. R., Jenkins, B. G., Ferrante, R. J., Kowall, N. W., Rosen, B. R., and Beal, M.F (1995a) 3-Acetylpyridine produces age-dependent excitotoxic lesions in rat striatum. J. Cereb. Blood Flow Metab. 14, 1024–1029.

    Article  Google Scholar 

  124. Storey, E., Hyman, B., Jenkins, B., Brouillet, E., Miller, J., Rosen, B., and Beal, M. F. (1992) MPP+ produces excitotoxic lesions in rats striatum due to impairment of oxidative metabolism. J. Neurochem. 58, 1975–1978.

    Article  PubMed  CAS  Google Scholar 

  125. Maragos, W. F. and Silverstein, F. S. (1995) The mitochondrial inhibitor malonate enhances NMDA toxicity in the neonatal rat striatum. Dev. Brain Res. 88, 117–121.

    Article  CAS  Google Scholar 

  126. Ludolph, A. C., He, F., Spencer, P. S., Hammerstad, J., and Sabri, M. (1991) 3-Nitroproprionic acid exogenous animal neurotoxin and possible human striatal toxin. Can. J. Neurol. Sci. 18, 492–498.

    PubMed  CAS  Google Scholar 

  127. Alston, T. A., Mela, L., and Bright, H. J. (1977) Nitropropionate, the toxic substance of indigofera, is a suicide inactivator of succinate dehydrogenase. Proc. Natl. Acad. Sci. USA 74, 3767–3771.

    Article  PubMed  CAS  Google Scholar 

  128. Coles, C. J., Edmonson, D. E., and Singer, T.P. (1979) Inactivation of succinate dehydrogenase by 3-nitropropionate. J Biol. Chem. 255, 4772–4780.

    Google Scholar 

  129. Brouillet, E., Ménétrat, H., Ouary, S., Altairac, S., Poyot, T., Mittoux, V., and Hantraye, P. (1998b) Major species difference in behavioral and neuropathological deficit observed in rats following chronic 3-nitropropionate treatment: implication for modeling Huntington’s disease in rodents. Soc. Neurosci. Abst. 24, 970.

    Google Scholar 

  130. Castillo, C., Valencia, I., Reyes, G., and Hong, E. (1993) 3-Nitropropionic acid, obtained from astragalus species, has vasodilatator and hypertensive properties. Drug Dev. Res. 28, 183–188.

    Article  CAS  Google Scholar 

  131. Guyot, M. C., Hantraye, P., Moya, K., Mazière, M., and Brouillet, E. (1995) Abnormal NADPH-diaphorase staining in striatal interneurons of rats chronically treated with 3-nitropropionic acid. Soc. Neurosci. Abstr. 21, 490.

    Google Scholar 

  132. Marshall, P. E. and Landis, D. M. D. (1985) Huntington’s disease is accompanied by changes in the distribution of somatostatin-containing neuronal process. Brain Res. 329, 71–82.

    Article  PubMed  CAS  Google Scholar 

  133. Koutouzis, T. K., Borlongan, C. V., Scorcia, T., Creese, I., Cahill, D. W., Freeman, T. B. and Sanberg, P. R. (1994) Systemic 3-nitropropionic acid: long-term effects on locomotor behavior. Brain Res. 646, 242–246.

    Article  PubMed  CAS  Google Scholar 

  134. Koller, W. C. and Trimble, J. (1985) The gait abnormality of Huntington’s disease. Neurology 35, 1450–1454.

    Article  PubMed  CAS  Google Scholar 

  135. Thomson, P. D., Berardelli, A., Rothwell, J. C., Day, B. L., Dick, S. P. R., Benecke, R., and Marsden, C. D. (1988) The coexistence of bradykinesia and chorea in Huntington’s disease and its implications for theories of basal ganglia control of movement. Brain 111, 223–244.

    Article  Google Scholar 

  136. Brouillet, E., Hantraye, P., Ferrante, R. J., Dolan, R., Leroy-Willig, A., Kowall, N. W., and Beal, M. F. (1995) Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc. Natl. Acad. Sci. USA 92, 7101–7109.

    Article  Google Scholar 

  137. Palfi, S., Ferrante, R. J., Brouillet, E., Beal, M. F., Dolan, R., Guyot, M. C., Peschanski, M., and Hantraye, P. (1996) Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease. J. Neurosci. 16, 3019–3025.

    PubMed  CAS  Google Scholar 

  138. Erecinska, M. and Nelson, D. (1994) Effects of 3-nitropropionic acid on synaptosomal energy and transmitter metabolism: relevance to neurodegenerative brain diseases. J. Neurochem. 63, 1033–1041.

    Article  PubMed  CAS  Google Scholar 

  139. Ludolph, A. C., Seeling, M., Ludolph, A., Novitt, P., Allen, C. N., and Sabri, M.I(1992)3-Nitropropionic acid decreases cellular energy levels and causes neurodegeneration in cortical explants. Neurodegeneration 1, 155–161.

    Google Scholar 

  140. Pang, Z. and Geddes, J. W. (1997) Mechanisms of cell death induced by the mitochondrial toxin 3-nitropropionic acid: acute excitotoxic necrosis and delayed apoptosis. J. Neurosci. 17, 3064–3073.

    PubMed  CAS  Google Scholar 

  141. Riepe, M., Ludolph, A., Seeling, M., Spencer, P. S., and Ludolph, A. A. C. (1994) Increase of ATP levels by glutamate antagonists is unrelated to neuroprotection. NeuroReport 5, 2130–2132.

    Article  PubMed  CAS  Google Scholar 

  142. Zeevalk, G. D., Derr-Yellin, E., and Nicklas, W. J. (1995a) NMDA receptor involvement in toxicity to dopamine neurons in vitro caused by the succinate dehydrogenase inhibitor 3-nitropropionic acid. J. Neurochem. 64, 455–458.

    Article  PubMed  CAS  Google Scholar 

  143. Zeevalk, G. D., Derr-Yellin, E., Nicklas, W. J. (1995b) Relative vulnerability of dopamine and GABA neurons in mesencephalic culture to inhibition of succinate dehydrogenase by malonate and 3-nitropropionic acid and protection by NMDA receptor blockade. J. Pharmacol. Exp. Ther. 275, 1124–1130.

    PubMed  CAS  Google Scholar 

  144. Hassel, B. and Sonnewald, U. (1995) Selective inhibition of the tricarboxylic acid cycle of GABAergic neurons with 3-nitropropionic acid in vivo. J. Neurochem. 65, 1184–1191.

    Article  PubMed  CAS  Google Scholar 

  145. Tsai, M. J., Goh, C. C., Wan, C., and Chang, C. (1997) Metabolic alterations produced by 3-nitropropionic acic in rat striata and cultured astrocytes: quantitative in vitro 1H nuclear magnetic resonance spectroscopy and biochemical characterization. Neuroscience 79, 819–826.

    Article  PubMed  CAS  Google Scholar 

  146. Dautry, C., Condé, F., Brouillet, E., Mittoux, V., Beal, M. F., Bloch, G., and Hantraye, P. (1998) Early striatal metabolic impairment detected by localized NR spectroscopy in a chronic primate model of Huntington’s disease. Soc. Neurosci. Abstr. in press.

    Google Scholar 

  147. Fink, S. L., Ho, D. Y., and Sapolsky, R. M. (1996) Energy and glutamate dependency of 3-nitropropionic acid neurotoxicity in culture. Exp. Neurol. 138, 298–304.

    Article  PubMed  CAS  Google Scholar 

  148. Weller, M. and Paul, S. M. (1993) 3-Nitropropionic acid is an indirect excitotoxin to cultured cerebellar granule neurons. Eur. J. Pharmacol. 248, 223–228.

    PubMed  CAS  Google Scholar 

  149. Behrens, M. I., Koh, J. Y., Muller, M. C., and Choi, D. (1996) NADPH diaphorasecontaining striatal or cortical neurons are resistant to apoptosis. Neurobiol. Dis. 3, 72–75.

    Article  PubMed  CAS  Google Scholar 

  150. Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., and Nicotera, P. (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961–973.

    Article  PubMed  CAS  Google Scholar 

  151. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P., and Lipton, S. A. (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 92, 7162–7166.

    Article  PubMed  CAS  Google Scholar 

  152. Charriaut-Marlangue, C., Aggoun-Zouaoui, D., Represa, A., and Ben-Ari, Y. (1996) Apoptotic features of selective neuronal death in ischemia, epilepsy and gp 120 toxicity. TINS 19, 109–114.

    PubMed  CAS  Google Scholar 

  153. Didier, M., Bursztajn, S., Adamec, E., Passani, L., Nixon, R. A., Coyle, J. T., Wei, J. Y., and Berman, S.A. (1996) DNA strand breaks induced by sustained glutamate excitotoxicity in primary neuronal cultures. J. Neurosci. 16, 2238–2250.

    PubMed  CAS  Google Scholar 

  154. Simpson, J. R. and Isacson, O. (1993) Mitochondrial impairment reduces the threshold for in vivo NMDA-mediated neuronal death in the striatum. Exp. Neurol. 121, 57–64.

    Article  PubMed  CAS  Google Scholar 

  155. Sato, S., Gobel, G. T., Honkaniemi, J., Li, Y., Kondo, T., Murakami, K., Sato, M., Copin, J.-C., and Chan, P. H. (1997) Apoptosis in the striatum of rats following intraperitoneal injection of 3-nitropropionic acid. Brain Res. 745, 343–347.

    Article  PubMed  CAS  Google Scholar 

  156. DiFiglia, M., Sharp, E., Chase, K., Shwarz, C., Meloni, A., Young, C., Martin, E., Vonsattel, J-P., Carraway, R., Reeves, S. A., Boyce, F. M., and Aronin, N. (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081.

    Article  PubMed  CAS  Google Scholar 

  157. Li, S. H., Schiling, G., Young, W. S., Li, X. J., Margolis, R. L., Stine, O. C., Wagster, M. V., Abbott, M. H., Franz, M. L., Ranen, N. G., Folstein, S. E., Hedreen, J. C., and Ross, C. A. (1993) Huntington’s disease gene (IT15) is widely expressed in human and rat tissues. Neuron 11, 985–993.

    Article  PubMed  CAS  Google Scholar 

  158. Sharp, A. H., Loev, S. J., Schilling, G., Li, S. H., Li, X-J., Bao, J., Wagster, M. V., Kotzuk, J. A., Steiner, J. P., Lo, A., Hedreen, J., Sisodia, S., Snyder, S., Dawson, T. M., Ryugo, D. K., and Ross, C. A. (1995) Widespread expression of Huntington’s disease gene (IT15) protein product. Neuron 14, 1065–1074.

    Article  PubMed  CAS  Google Scholar 

  159. Wallace, D. C. (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256, 628–632.

    Article  PubMed  CAS  Google Scholar 

  160. Coyle, J. T. and Puttfarcken, P. (1993) Oxidative stress, glutamate and neurodegenerative disorders. Science 262, 689–695.

    Article  PubMed  CAS  Google Scholar 

  161. Bowling, A., Mutisya, E. M., Walker, L. C., Price, D. L., Cork, L. C., and Beal, M. F. (1993) Age-dependent impairment of mitochondrial function in primate brain. J. Neurochem. 60, 1964–1967.

    Article  PubMed  CAS  Google Scholar 

  162. Di Monte, D. A., Sandry, M. S., Jewell, S. A., Irwin, I., Delanney, L. E., and Langston, W. J. (1992) Age-related changes in mitochondrial energy metabolism in the squirrel monkey. Soc. Neurosci. Abstr. 18, 1488.

    Google Scholar 

  163. Corral-Debrinski, M., Horton, T., Lott, M. T., Shoffner, J. M., Beal, M. F. and Wallace, D.C. (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat. Genet. 2, 324–329.

    Article  PubMed  CAS  Google Scholar 

  164. Soong, N. W., Hinton, D. R., Cortopassi, G., and Arnheim, N. (1992) Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat. Genet. 2, 318–323.

    Article  PubMed  CAS  Google Scholar 

  165. Reed, J. C. (1997) Cytochrome c: can’t live with it can’t live without it. Cell 91, 559–562.

    Article  PubMed  CAS  Google Scholar 

  166. Brouillet, E., Henshaw, D., Schulz, J. B., and Beal, M. F. (1994) Aminooxyacetic acid striatal lesions attenuated by 1,3-butanediol and coenzyme Q10. Neurosci. Lett. 177, 58–62.

    Article  PubMed  CAS  Google Scholar 

  167. Beal, M. F., Henshaw, D. R., Jenkins, B. G., Rosen, B. R., and Schulz, J. B. (1994) Coenzyme Q10 and nicotinamide block striatal lesions produced by the mitochondrial toxin malonate. Ann. Neurol. 36, 882–888.

    Article  PubMed  CAS  Google Scholar 

  168. Greenamyre, J. T., Garcia-Osuna, M., and Greene, J. G. (1994) The endogenous cofactors, thioctic acid and dihydrolipoic acid are neuroprotective against NMDA and malonic acid lesions of striatum. Neurosci. Lett. 171, 17–20.

    Article  PubMed  CAS  Google Scholar 

  169. Holtzman, D. M. and Deshmukh, M. (1997) Caspases: a treatment target for neurodegenerative disease. Nat. Med. 3, 954–955.

    Article  PubMed  CAS  Google Scholar 

  170. Anderson, K. D., Panayotatos, N., Corcoran, T. L., Lindsay, R. M., and Wiegand, S. J. (1996) Ciliary neurotrophic factor protects striatal output neurons in an animal model of Huntington disease. Proc. Natl. Acad. Sci. USA 93, 7346–7351.

    Article  PubMed  CAS  Google Scholar 

  171. Emerich, D. F., Winn, S. R., Hantraye, P. M., Peschanski, M., Chen, E. Y., Chu, Y., McDermott, P., Baetge, E. E., and Cordower, J. H. (1997) Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington’s disease. Nature 386, 395–399.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brouillet, E., Hantraye, P., Beal, M.F. (2000). Systemic Administration of 3-Nitropropionic Acid. In: Emerich, D.F., Dean, R.L., Sanberg, P.R. (eds) Central Nervous System Diseases. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-691-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-691-1_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-152-3

  • Online ISBN: 978-1-59259-691-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics