Skip to main content

Operant Analysis of Striatal Dysfunction

  • Chapter
  • 235 Accesses

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Huntington’s disease (HD) is a fatal inherited neurological disorder, the genetic basis of which has recently been identified as an expanded trinucleotide repeat in a previously unknown gene (the normal function of which remains mysterious) on chromosome 4 (1). The disease is characterized pathologically by a primary progressive loss of medium spiny projection neurons within the neostriatum (caudate nucleus and putamen) in addition to fibrillary astrocytosis. In later stages of the disease the pathology spreads beyond the striatum itself to affect other cortical and subcortical systems, although predominantly those that are afferent and efferent to the striatum. HD is traditionally viewed as a movement disorder, and is typically characterized by dementia and psychiatric symptoms in addition to the more conspicuous choreic movements. This composition of impairments suggests a striatal influence in many responserelated functions, mirroring the diversity of its neocortical afferents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983.

    Google Scholar 

  2. Vonsattel, J.-P., Myers, R. H., and Stevens, T. J. (1985) Neuropathologic classification of Huntington’s disease. J. Neuropathol. Exp. Neurol. 44, 559–577.

    PubMed  CAS  Google Scholar 

  3. Myers, R. H., Vonsattel, J.-P., Paskevich, P. A., Kiely, D. K., Stevens, T. J., Cupples, L. A., Richardson, E. P. and Bird, E. D. (1991) Decreased neuronal and increased oligodendroglial densities in Huntington’s disease caudate nucleus. J. Neuropathol. Exp. Neurol. 50, 742.

    Google Scholar 

  4. Graveland, G. A., Williams, R. S., and DiFiglia, M. (1985) Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 227, 770–773.

    PubMed  CAS  Google Scholar 

  5. Albin, R. L., Qin, Y., Young, A. B., Penney, J. B., and Chesselet, M.-F. (1991) Preproenkephalin messenger RNA-containing neurons in striatum of patients with symptomatic and presymptomatic Huntington’s disease: an in situ hybridisation study. Ann. Neurol. 30, 542–549.

    PubMed  CAS  Google Scholar 

  6. Albin, R. L., Reiner, A., Anderson, K. D., Dure, L. S., Handelin, B., Balfour, R., Whetsell, W. O., Penney, J. B., and Young, A. B. (1992) Preferential loss of striato-external pallidal projection neurons in presymptomatic Huntington’s disease. Ann. Neurol. 31, 425–430.

    PubMed  CAS  Google Scholar 

  7. Hedreen, J. C. and Folstein, S. E. (1995) Early loss of neostriatal striosome neurons in Huntington’s disease. J. Neuropathol. Exp. Neurol. 54, 105–120.

    PubMed  CAS  Google Scholar 

  8. Cudkowicz, M. and Kowall, N. W. (1990) Degeneration of pyramidal projection neurons in Huntington’s disease cortex. Ann.Neurol. 27, 200–204.

    PubMed  CAS  Google Scholar 

  9. Sotrel, A., Paskevich, P. A., Kiely, D. K., Bird, E. D., Williams, R. S., and Myers, R. H. (1991) Morphometric analysis of the prefrontal cortex in Huntington’s disease. Neurology 41, 1117–1123.

    PubMed  CAS  Google Scholar 

  10. Sotrel, A., Williams, R. S., Kaufmann, W. E., and Myers, R. H. (1993) Evidence for neuronal degeneration and dendritic plasticity in cortical pyramidal neurons of Huntington’s disease—a quantitative Golgi study. Neurology 43, 2088–2096.

    PubMed  CAS  Google Scholar 

  11. Oyanagi, K., Takeda, S., Takahashi, H., Ohama, E., and Ikuta, F. (1989) A quantitative investigation of the substantia nigra in Huntington’s disease. Ann. Neurol. 26, 13–19.

    PubMed  CAS  Google Scholar 

  12. Lange, H., Thorner, G., Hopf, A., and Schroder, K. F. (1976) Morphometric studies of the neuropathological changes in choreatic diseases. J. Neurol. Sci. 28, 401–425.

    PubMed  CAS  Google Scholar 

  13. Sanberg, P. R., Wictorin, K., and Isacson, O. (1994) Cell transplantation for Huntington’s disease, R.G. Landes Company, Austin, TX.

    Google Scholar 

  14. Lawrence, A. D., Hodges, J. R., Rosser, A. E., Kershaw, A., ffrench-Constant, C., Rubinsztein, D. C., Robbins, T. W., and Sahakian, B. J. (1998) Evidence for specific cognitive deficits in preclinical Huntington’s disease. Brain 121, 1329–1341.

    PubMed  Google Scholar 

  15. Van Vugt, J. P. P., Van Hilten, B. J., and Roos, R. A. C. (1996) Hypokinesia in Huntington’s disease. Move. Dis. 11, 384–388.

    Google Scholar 

  16. Harper, P. S. (1996) Huntington’s Disease, W. B. Saunders, London.

    Google Scholar 

  17. Mason, S. T., Sanberg, P. R., and Fibiger, H. C. (1978) Kainic acid lesions of the striatum dissociate amphetamine and apomorphine stereotypy: similarities to Huntington’s chorea. Science 201, 352–355.

    PubMed  CAS  Google Scholar 

  18. Sanberg, P. R. and Coyle, J. T. (1984) Scientific approaches to Huntington’s disease. CRC Crit. Rev. Clin. Neurobiol. 1, 1–44.

    PubMed  CAS  Google Scholar 

  19. Brown, R. G. and Marsden, C. D. (1998) Subcortical dementia the neuropsychological evidence. Neuroscience 25, 363–387.

    Google Scholar 

  20. Butters, N., Sax, D., Montgomery, K., and Tarlow, S. (1978) Comparison of the neuropsychological deficits associated with early and advanced Huntington’s disease. Arch. Neurol. 35, 585–589.

    PubMed  CAS  Google Scholar 

  21. Lange, K. W., Sahakian, B. J., Quinn, N. P., Marsden, C. D., and Robbins, T. W. (1995) Comparison of executive and visuospatial memory function in Huntington’s disease and dementia of Alzheimer-type matched for degree of dementia. J. Neurol. Neurosurg. Psychiatry 58, 598–606.

    PubMed  CAS  Google Scholar 

  22. Knopman, D. and Nissen, M. J. (1991) Procedural learning is impaired in Huntington’s disease evidence from the serial reaction time task. Neuropsychologia 29, 245–254.

    PubMed  CAS  Google Scholar 

  23. Sprengelmeyer, R., Lange, H., and Hömberg, V. (1995) The pattern of attentional deficits in Huntington’s disease. Brain 118, 145–152.

    PubMed  Google Scholar 

  24. Georgiou, N., Bradshaw, J. L., Phillips, J. G., and Chiu, E. (1996) The effect of Huntington’s disease and Gilles de la Tourette’s syndrome on the ability to hold and shift attention. Neuropsychologia 34, 843–851.

    PubMed  CAS  Google Scholar 

  25. Georgiou, N., Bradshaw, J. L., Phillips, J. G., and Chiu, E. (1997) Effect of directed attention in Huntington’s disease. J. Clin. Exp. Neuropsychol. 19, 367–377.

    PubMed  CAS  Google Scholar 

  26. Lawrence, A. D., Sahakian, B. J., Hodges, J. R., Rosser, A. E., Lange, J. W., and Robbins, T. W. (1996) Executive and mnemonic functions in early Huntington’s disease. Brain 119, 1633–1645.

    PubMed  Google Scholar 

  27. Brandt, J., Strauss, M. E., Larus, J., Jensen, B., Folstein, S. E., and Folstein, M. F. (1984) Clinical correlates of dementia and disability in Huntington’s disease. J. Cognit. Neuropsychol. 6, 401–412.

    CAS  Google Scholar 

  28. Coyle, J. T. and Schwarcz, R. (1976) Lesions of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature 263, 244–246.

    PubMed  CAS  Google Scholar 

  29. McGeer, E. G. and McGeer, P. L. (1976) Duplication of the biochemical changes of Huntington’s choreas by intrastriatal injection of glutamic and kainic acids. Nature 263, 517–519.

    PubMed  CAS  Google Scholar 

  30. Schwarcz, R., Whetsell, W. O., and Mangano, R. M. (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219, 316–318.

    PubMed  CAS  Google Scholar 

  31. Schwarcz, R., Hökfelt, T., Fuxe, K., Jonsson, G., Goldstein, M., and Terenius, L. (1979) Ibotenic acid-induced neuronal degeneration: a morphological and neurochemical study. Exp. Brain Res. 37, 199–216.

    PubMed  CAS  Google Scholar 

  32. Beal, M. F., Ferrante, R. J., Swartz, K. J., and Kowall, N. W. (1991) Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J. Neurosci. 11, 1649–1659.

    PubMed  CAS  Google Scholar 

  33. Beal, M. F., Kowall, N. W., Swartz, K. J., Ferrante, R. J., and Martin, J. B. (1989) Differential sparing of somatostatin-neuropeptide Y and cholinergic neurons following striatal excitotoxic lesions. Synapse 3, 38–47.

    PubMed  CAS  Google Scholar 

  34. Beal, M. F., Hyman, B. T., and Koroshetz, W. (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci. 16, 125–131.

    PubMed  CAS  Google Scholar 

  35. Borlongan, C. V., Koutouzis, T. K., and Sanberg, P. R. (1997) 3-Nitropropionic acid animal model and Huntington’s disease. Neurosci. Biobehay. Rev. 21, 289–293.

    CAS  Google Scholar 

  36. Beal, M. F., Brouillet, E. P., Jenkins, B. G., Ferrante, R. J., Kowall, N. W., Miller, J. M., Storey, E., Srivastava, R., Rosen, B. R., and Hyman, B. T. (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 13, 4181–4192.

    PubMed  CAS  Google Scholar 

  37. Palfi, S. P., Ferrante, R. J., Brouillet, E., Beal, M. F., Dolan, R., Guyot, M. C., Peschanski, M., and Hantraye, P. (1996) Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease. J. Neurosci. 16, 3019–3025.

    PubMed  CAS  Google Scholar 

  38. Page, K. J., Dunnett, S. B., and Everitt, B. J. (1998) 3-Nitroproprionic acid induced changes in the expression of metabolic and astrocyte mRNAs. NeuroReport 9, 2881–2886.

    PubMed  CAS  Google Scholar 

  39. Dunnett, S. B. and Everitt, B. J. (1998) Topographic factors affecting the functional viability of dopamine-rich grafts in the neostriatum, in Fetal Transplantation in Neurological Disease (Freeman, T. B. and Kordower, J. H., eds.), Humana Press, Totowa, NJ, pp. 135–169.

    Google Scholar 

  40. Figueredo-Cardenas, G., Anderson, K. D., Chen, Q., Veenman, C. L., and Reiner, A. (1994) Relative survival of striatal projection neurons and interneurons after intrastriatal injection of quinolinic acid in rats. Exp. Neurol. 129, 37–56.

    PubMed  CAS  Google Scholar 

  41. Gerfen, C. R., Baimbridge, K. G., and Thibault, J. (1987) The neostriatal mosaic: III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J. Neurosci. 7, 3935–3944.

    PubMed  CAS  Google Scholar 

  42. Marsden, C. D. (1982) The mysterious motor function of the basal ganglia: the Robert Wartenberg lecture. Neurology 32, 514–539.

    PubMed  CAS  Google Scholar 

  43. Isacson, O., Dunnett, S. B., and Björklund, A. (1986) Graft-induced behavioral recovery in an animal model of Huntington disease. Proc. Natl. Acad. Sci. USA 83, 2728–2732.

    PubMed  CAS  Google Scholar 

  44. Mason, S. T. and Fibiger, H. C. (1979) Kainic acid lesions of the striatum mimic the spontaneous locomotor abnormalities of Huntington’s disease. Neuropharmacology 18, 403.

    PubMed  CAS  Google Scholar 

  45. Schwarcz, R., Fuxe, K., Agnati, L. F., Hökfelt, T., and Coyle, J. T. (1979) Rotational behavior in rats with unilateral striatal kainic acid lesions: a behavioural model for studies on intact dopamine receptors. Brain Res. 170, 485–495.

    PubMed  CAS  Google Scholar 

  46. Dunnett, S. B., Isacson, O., Sirinathsinghji, D. J. S., Clarke, D. J., and Björklund, A. (1988) Striatal grafts in rats with unilateral neostriatal lesions. III. Recovery from dopaminedependent motor asymmetry and deficits in skilled paw reaching. Neuroscience 24, 813–820.

    PubMed  CAS  Google Scholar 

  47. Fricker, R. A., Annett, L. E., Torres, E. M., and Dunnett, S. B. (1996) The locus of a striatal ibotenic acid lesion affects the direction of drug-induced rotation and skilled forelimb use. Brain Res. Bull. 41, 409–416.

    PubMed  CAS  Google Scholar 

  48. Norman, A. B., Norgren, R. B., Wyatt, L. M., Hildebrand, J. P., and Sanberg, P. R. (1992) The direction of apomorphine-induced rotation behavior is dependent on the location of excitotoxin lesions in the rat basal ganglia. Brain Res. 569, 169–172.

    PubMed  CAS  Google Scholar 

  49. Borlongan, C. V., Randall, T. S., Cahill, D. W., and Sanberg, P. R. (1995) Asymmetrical motor behavior in rats with unilateral striatal excitotoxic lesions as revealed by the elevated body swing test. Brain Res. 676, 231–234.

    PubMed  CAS  Google Scholar 

  50. Pisa, M. (1988) Motor functions of the striatum in the rat: critical role of the lateral region in tongue and forelimb reaching. Neuroscience 24, 453–463.

    PubMed  CAS  Google Scholar 

  51. Whishaw, I. Q., O’Connor, W. T., and Dunnett, S. B. (1986) The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain 109, 805–843.

    PubMed  Google Scholar 

  52. Divac, I., Rosvold, H. E., and Szwarcbart, M. K. (1967) Behavioral effects of selective ablation of the caudate nucleus. J. Comp. Physiol. Psychol. 63, 184–190.

    PubMed  CAS  Google Scholar 

  53. Divac, I. (1968) Effects of prefrontal and caudate lesions on delayed response in cats. Acta Neurobiol. Exp. 28, 149–167.

    CAS  Google Scholar 

  54. Divac, I. (1971) Frontal lobe system and spatial reversal in the rat. Neuropsychologia 9, 175–183.

    PubMed  CAS  Google Scholar 

  55. Divac, I., Markowitsch, H. J., and Pritzel, M. (1978) Behavioural and anatomical consequences of small intrastriatal injections of kainic acid in the rat. Brain Res. 151, 523–532.

    PubMed  CAS  Google Scholar 

  56. Dunnett, S. B. and Iversen, S. D. (1982) Neurotoxic lesions of ventrolateral but not anteromedial neostriatum in rats impair differential reinforcement of low rates (DRL) performance. Behay. Brain Res. 6, 213–226.

    CAS  Google Scholar 

  57. Sanberg, P. R., Lehmann, J., and Fibiger, H. C. (1978) Impaired learning and memory after kainic acid lesions of the striatum: a behavioral model of Huntington’s disease. Brain Res. 149, 1204–1208.

    Google Scholar 

  58. Pisa, M., Sanberg, P. R., and Fibiger, H. C. (1981) Striatal injections of kainic acid selectively impair serial memory performance in the rat. Exp. Neurol. 74, 633–653.

    PubMed  CAS  Google Scholar 

  59. Öberg, R. G. E. and Divac, I. (1979) Cognitive functions of the neostriatum, in The Neostriatum (Divac, I. and Öberg, R. G. E., eds.), Pergamon Press, Oxford.

    Google Scholar 

  60. Robbins, T. W., Cador, M., Taylor, J. R., and Everitt, B. J. (1989) Limbic-striatal interactions in reward-related processes. Neurosci. Biobehay. Rev. 13, 155–162.

    CAS  Google Scholar 

  61. Robbins, T. W. and Everitt, B. J. (1996) Neurobehavioral mechanisms of reward and motivation. Curr. Opin. Neurobiol. 6, 228–236.

    PubMed  CAS  Google Scholar 

  62. Skinner, B. F. (1938) The Behavior of Organisms, Appleton-Century-Crofts, New York.

    Google Scholar 

  63. Ferster, C. B. and Skinner, B. F. (1957) Schedules of Reinforcement, Appleton-Century-Crofts, New York.

    Google Scholar 

  64. Sanberg, P. R., Pisa, M., and Fibiger, H. C. (1979) Avoidance, operant and locomotor behavior in rats with neostriatal injections of kainic acid. Pharmacol. Biochem. Behay. 10, 137–144.

    CAS  Google Scholar 

  65. Döbrössy, M. D., Svendsen, C. N., and Dunnett, S. B. (1995) The effects of bilateral striatal lesions on the acquisition of an operant test of short-term memory. NeuroReport 6, 2059–2053.

    Google Scholar 

  66. Reading, P. J., Dunnett, S. B., and Robbins, T. W. (1991) Dissociable roles of the ventral, medial and lateral striatum on the acquisition and performance of a complex visual stimulus response habit. Behay. Brain Res. 45, 147–161.

    CAS  Google Scholar 

  67. Reading, P. J., Torres, E. M., and Dunnett, S. B. (1995) Embryonic striatal grafts ameliorate the disinhibitory effects of ventral striatal lesions. Exp. Brain Res. 105, 76–86.

    PubMed  CAS  Google Scholar 

  68. Ljungberg, T. and Ungerstedt, U. (1976) Sensory inattention produced by 6-hydroxydopamine-induced degeneration of ascending dopamine neurons in the brain. Exp. Neurol. 53, 585–600.

    PubMed  CAS  Google Scholar 

  69. Ungerstedt, U. and Arbuthnott, G. W. (1970) Quantitative recording of rotational behaviour in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res. 24, 485–493.

    PubMed  CAS  Google Scholar 

  70. Marshall, J. F., Richardson, J. S., and Teitelbaum, P. (1974) Nigrostriatal bundle damage and the lateral hypothalamic syndrome. J. Comp. Physiol. Psychol. 87, 808–830.

    PubMed  CAS  Google Scholar 

  71. Schallert, T., Upchurch, M., Wilcox, R. E., and Vaughn, D. M. (1983) Posture-independent sensorimotor analysis of inter-hemispheric receptor asymmetries in neostriatum. Pharmacol. Biochem. Behay. 18, 753–759.

    CAS  Google Scholar 

  72. Evenden, J. L. and Robbins, T. W. (1984) Effects of unilateral 6-hydroxydopamine lesions of the caudate-putamen on skilled forepaw use in the rat. Behay. Brain Res. 14, 61–68.

    CAS  Google Scholar 

  73. Abrous, D. N., Wareham, A. T., Torres, E. M., and Dunnett, S. B. (1992) Unilateral dopamine lesions in neonatal, weanling and adult rats: comparison of rotation and reaching deficits. Behay. Brain Res. 51, 67–75.

    CAS  Google Scholar 

  74. Turner, B. H. (1973) Sensorimotor syndrome produced by lesions of the amygdala and lateral hypothalamus. J. Comp. Physiol. Psychol. 82, 37–47.

    PubMed  CAS  Google Scholar 

  75. Marshall, J. F., Turner, B. H., and Teitelbaum, P. (1971) Sensory neglect produced by lateral hypothalamic damage. Science 174, 423–525.

    Google Scholar 

  76. Carli, M., Evenden, J. L., and Robbins, T. W. (1985) Depletion of unilateral striatal dopamine impairs initiation of contralateral actions and not sensory attention. Nature 313, 679–682.

    PubMed  CAS  Google Scholar 

  77. Robbins, T. W., Muir, J. L., Killcross, A. S., and Pretsell, D. (1993) Methods of assessing attention and stimulus control in the rat, in Behavioural Neuroscience Vol. I (Sahgal, A., ed.), IRL Press, Oxford, pp. 13–47.

    Google Scholar 

  78. Mittleman, G., Brown, V. J., and Robbins, T. W. (1988) Intentional neglect following unilateral ibotenic acid lesions of the striatum. Neurosci. Res. Commun. 2, 1–8.

    Google Scholar 

  79. Mayer, E., Brown, V. J., Dunnett, S. B., and Robbins, T. W. (1992) Striatal graftassociated recovery of a lesion-induced performance deficit in the rat requires learning to use the transplant. Eur. J. Neurosci. 4, 119–126.

    PubMed  CAS  Google Scholar 

  80. Amalric, M., Baunez, C., and Nieoullon, A. (1995) Does the blockade of excitatory amino acid transmission in the basal ganglia simply reverse reaction time deficits induced by dopamine inactivation? Behay. Pharmacol. 6, 508–519.

    CAS  Google Scholar 

  81. Brown, V. J. and Robbins, T. W. (1991) Simple and choice reaction time performance following unilateral striatal dopamine depletion in the rat. Impaired motor readiness but preserved response preparation. Brain 114, 513–525.

    PubMed  Google Scholar 

  82. Brown, V. J. and Robbins, T. W. (1989) Elementary processes of response selection mediated by distinct regions of the striatum. J. Neurosci. 9, 3760–3765.

    PubMed  CAS  Google Scholar 

  83. Brown, V. J. and Robbins, T. W. (1989) Deficits in response space following unilateral striatal dopamine depletion in the rat. J. Neurosci. 9, 983–989.

    PubMed  CAS  Google Scholar 

  84. Brasted, P., Humby, T., Dunnett, S. B., and Robbins, T. W. (1997) Response space deficits following unilateral excitotoxic lesions of the dorsal striatum in the rat. J. Neurosci. 17, 8919–8926.

    PubMed  CAS  Google Scholar 

  85. Rosvold, H. E. and Delgado, J. M. R. (1956) The effect on delayed alternation test performance of stimulating or destroying electrically structures within the frontal lobes of the monkey’s brain. J. Comp. Physiol. Psychol. 49, 365–372.

    PubMed  CAS  Google Scholar 

  86. Rosvold, H. E. (1972) The frontal lobe system: cortical-subcortical interrelationships. Acta Neurobiol. Exp. 32, 439–460.

    CAS  Google Scholar 

  87. Rosvold, H. E. and Szwarcbart, M. K. (1964) Neural structures involved in delayed response performance, in The Frontal Granular Cortex and Behavior (Warren, J. M. and Akert, K., eds.), McGraw-Hill, New York, pp. 1–15.

    Google Scholar 

  88. Divac, I., Wikmark, R. G. E., and Gade, A. (1975) Spontaneous alternation in rats with lesions in the frontal lobes: an extension of the frontal lobe syndrome. Physiol. Psychol. 3, 39–42.

    Google Scholar 

  89. Leonard, C. M. (1969) The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections. Brain Res. 12, 321–343.

    PubMed  CAS  Google Scholar 

  90. Krettek, J. E. and Price, J. L. (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J. Comp. Neurol. 171, 157–192.

    PubMed  CAS  Google Scholar 

  91. Beckstead, R. M. (1979) An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat. J. Comp. Neurol. 184, 43–62.

    PubMed  CAS  Google Scholar 

  92. Larsen, J. K. and Divac, I. (1978) Selective ablations within the prefrontal cortex of the rat and performance of delayed alternation. Physiol. Psychol. 6, 15–17.

    Google Scholar 

  93. Johnston, V. S., Hart, M., and Howell, W. (1974) The nature of the medial wall deficit in the rat. Neuropsychologia 12, 503.

    Google Scholar 

  94. Dunnett, S. B. and Iversen, S. D. (1981) Learning impairments following selective kainic acid-induced lesions within the neostriatum of rats. Behay. Brain Res. 2, 189–209.

    CAS  Google Scholar 

  95. Kolb, B., Sutherland, R. J., and Singh, R. K. (1975) Double dissociation of spatial impairments and perseveration following selective prefrontal lesions in rats. J. Comp. Physiol. Psychol. 88, 806–815.

    PubMed  CAS  Google Scholar 

  96. Neill, D. B. (1976) Frontal-striatal control of behavioral inhibition in the rat. Brain Res. 105, 89–103.

    PubMed  CAS  Google Scholar 

  97. Packard, M. G., Hirsh, R., and White, N. M. (1989) Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: evidence for multiple memory systems. J. Neurosci. 9, 1465–1472.

    PubMed  CAS  Google Scholar 

  98. Adams, F. S., La Rosa, F. G., Kumar, S., Edwards-Prasad, J., Kentroti, S., Vernadakis, A., Freed, C. R., and Prasad, K. N. (1996) Characterization and transplantation of two neuronal cell lines with dopaminergic properties. Neurochem. Res. 21, 619–627.

    PubMed  CAS  Google Scholar 

  99. Gerfen, C. R. (1984) The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature 311, 461–464.

    PubMed  CAS  Google Scholar 

  100. Graybiel, A. M. and Ragsdale, C. W. (1978) Histochemically distinct compartments in the striatum of human, monkey and cat demonstrated by acetylcholinesterase. Proc. Natl. Acad. Sci. USA 75, 5723–5726.

    PubMed  CAS  Google Scholar 

  101. Alexander, G. E., Crutcher, M. D., and DeLong, M. R. (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, prefrontal and limbic functions. Prog. Brain Res. 85, 119–146.

    PubMed  CAS  Google Scholar 

  102. Alexander, G. E., DeLong, M. R., and Strick, P. L. (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381.

    PubMed  CAS  Google Scholar 

  103. DeLong, M. R. (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285.

    PubMed  CAS  Google Scholar 

  104. Albin, R. L., Young, A. B., and Penney, J. B. (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375.

    PubMed  CAS  Google Scholar 

  105. D’Amato, M. R. (1973) Delayed matching and short-term memory in monkeys. Psychol. Learn. Motiv. 7, 227–269.

    Google Scholar 

  106. Dunnett, S. B. (1985) Comparative effects of cholinergic drugs and lesions of nucleus basalis or fimbria-fornix on delayed matching in rats. Psychopharmacology 87, 357–363.

    PubMed  CAS  Google Scholar 

  107. Mishkin, M. and Manning, F. J. (1978) Non-spatial memory after selective prefrontal lesions in monkeys. Brain Res. 143, 313–323.

    PubMed  CAS  Google Scholar 

  108. Eacott, M. J., Gaffan, D., and Murray, E. A. (1994) Preserved recognition memory for small sets, and impaired stimulus identification for large sets, following rhinal cortex ablations in monkeys. Eur. J. Neurosci. 6, 1466–1478.

    PubMed  CAS  Google Scholar 

  109. Goldman-Rakic, P. S. (1989) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory, in Handbook of Physiology—The Nervous System V. American Physiological Association, Baltimore, pp. 373–417.

    Google Scholar 

  110. Dunnett, S. B. (1990) Role of prefrontal cortex and striatal output systems in short-term memory deficits associated with ageing, basal forebrain lesions, and cholinergic-rich grafts. Can. J. Psychol. 44, 210–232.

    PubMed  CAS  Google Scholar 

  111. Döbrössy, M. D., Svendsen, C. N., and Dunnett, S. B. (1996) Bilateral striatal lesions impair retention of an operant test of short-term memory. Brain Res. Bull. 41, 159–166.

    PubMed  Google Scholar 

  112. Dunnett, S. B. (1990) Is it possible to repair the damaged prefrontal cortex by neural tissue transplantation? Prog. Brain Res. 85, 285–297.

    PubMed  CAS  Google Scholar 

  113. Dunnett, S. B. and Martel, F. L. (1990) Proactive interference effects on short-term memory in rats. 1. Basic parameters and drug effects. Behay. Neurosci. 104, 655–665.

    CAS  Google Scholar 

  114. Dunnett, S. B., Martel, F. L., and Iversen, S. D. (1990) Proactive interference effects on short-term memory in rats. 2. Effects in young and aged rats. Behay. Neurosci. 104, 666–670.

    CAS  Google Scholar 

  115. Rosenkilde, C. E. (1979) Functional heterogeneity of the prefrontal cortex in the monkey: a review. Behay. Neur. Biol. 25, 301–345.

    CAS  Google Scholar 

  116. Jacobsen, C. F. (1936) Studies of cerebral function in primates. I. The functions of the frontal association areas in monkeys. Comp. Psychol. Monogr. 13, 3–60.

    Google Scholar 

  117. Brutkowski, S., Mishkin, M., and Rosvold, H. E. (1963) Positive and inhibitory motor conditioned reflexes in monkeys after ablation of orbital or dorso-lateral surface of the frontal cortex, in Central and Peripheral Mechanisms of Motor Functions (Gutman, E. and Hnik, P., eds.), Czechoslovak Academy of Sciences, Prague, pp. 133–141.

    Google Scholar 

  118. Wikmark, R. G. E., Divac, I., and Weiss, R. (1973) Retention of spatial delayed alternation in rats with lesions in the frontal lobes. Brain Behay. Evol. 8, 329–339.

    CAS  Google Scholar 

  119. Wilcott, R. C. (1986) Preoperative overtraining and effects of prefrontal lesions on delayed alternation in the rat. Physiol. Psychol. 14, 87–89.

    Google Scholar 

  120. Mogensen, J., Iversen, I. H., and Divac, I. (1987) Neostriatal lesions impaired rats delayed alternation performance in a T-maze but not in a two-key operant chamber. Acta Neurobiol. Exp. 47, 45–54.

    CAS  Google Scholar 

  121. van Haaren, F., van Zijderveld, G., van Hest, A., and de Bruin, J. P. C. (1988) Acquisition of conditional associations and operant delayed spatial response alternation effects of lesions in the medial prefrontal cortex. Behay. Neurosci. 102, 481–488.

    Google Scholar 

  122. Sanberg, P. R. and Fibiger, H. C. (1978) Body weight, feeding and drinking behaviors in rats with kainic acid lesions of striatal neurons: with a note on body weight symptomatology in Huntington’s disease. Exp. Neurol. 66, 444–466.

    Google Scholar 

  123. Dunnett, S. B. and Iversen, S. D. (1980) Regulatory impairments following selective kainic acid lesions of the neostriatum. Behay. Brain Res. 1, 497–506.

    CAS  Google Scholar 

  124. Skjoldager, P., Pierre, P. J., and Mittleman, G. (1993) Reinforcer magnitude and progressive ratio responding in the rat: effects of increased effort, prefeeding and extinction. Learn. Motiv. 24, 303–343.

    Google Scholar 

  125. Hodos, W. and Kalman, G. (1963) Effects of increment size and reinforcer volume on progressive ratio performance. J. Exp. Anal. Behay. 6, 387–392.

    CAS  Google Scholar 

  126. Eagle, D. M., Humby, T., Dunnett, S. B., and Robbins, T. W. (1998) Effects of regional striatal lesions on motor, motivational and executive aspects of progressive ratio performance in rats. Behay. Neurosci., in press.

    Google Scholar 

  127. Felton, M. and Lyon, D. O. (1966) The post-reinforcement pause. J. Exp. Anal. Behay. 9, 131–134.

    CAS  Google Scholar 

  128. Iversen, S. D. and Iversen, L. L. (1981) Behavioral Pharmacology, Oxford University Press, New York and Oxford.

    Google Scholar 

  129. Björklund, A., Campbell, K., Sirinathsinghji, D. J. S., Fricker, R. A., and Dunnett, S. B. (1994) Functional capacity of striatal transplants in the rat Huntington model, in Functional Neural Transplantation (Dunnett, S. B. and Björklund, A., eds.), Raven Press, New York, pp. 157–195.

    Google Scholar 

  130. Dunnett, S. B. (1995) Functional repair of striatal systems by neural transplants: evidence for circuit reconstruction. Behay. Brain Res. 66, 133–142.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brasted, P.J., Döbrössy, M.D., Eagle, D.M., Nathwani, F., Robbins, T.W., Dunnett, S.B. (2000). Operant Analysis of Striatal Dysfunction. In: Emerich, D.F., Dean, R.L., Sanberg, P.R. (eds) Central Nervous System Diseases. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-691-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-691-1_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-152-3

  • Online ISBN: 978-1-59259-691-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics